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Key Points: 29 

• An empirical model using three tropical forcings accurately describes 50–80% of peak 30 

monsoon precipitation variability in Southern Africa. 31 

• Significant prediction skill exists with up to five months lead time, which is weakest 32 

when the identified forcings are highly correlated  33 

 34 

• Seasonal forecast systems underperform the empirical model as they skillfully represent 35 

the forcings but lack accuracy in teleconnections.  36 
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Abstract 37 

Rainfed agriculture is the mainstay of economies across Southern Africa (SA), where most 38 

precipitation is received during the austral summer monsoon. Despite that, seasonal precipitation 39 

predictability in SA is less explored. Here we use three natural climate forcings, El Niño–40 

Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), and the Indian Ocean Precipitation 41 

Dipole (IOPD) – the dominant precipitation variability mode – to construct an empirical model 42 

that exhibits significant skill over SA during monsoon in explaining precipitation variability and 43 

in forecasting it with a five-month lead. While most explained precipitation variance (50–75%) 44 

comes from contemporaneous IOD and IOPD, preconditioning all three forcings is key in 45 

predicting monsoon precipitation with a zero to five-month lead. Seasonal forecasting systems 46 

accurately represent the interplay of the three forcings but show varying skills in representing 47 

their teleconnection over SA. This makes them less effective at predicting monsoon precipitation 48 

than the empirical model.  49 

Plain Language Summary 50 

Accurately predicting precipitation is crucial for agricultural planning in Southern Africa (SA), 51 

as the region is prone to droughts and floods. Here we develop an empirical model employing 52 

sea surface temperature and precipitation indexes from the Pacific and Indian Oceans to forecast 53 

average precipitation in SA from December through February. It can account for approximately 54 

half of the variation in Southern African precipitation with a five-month lead time and about 55 

three-fourths of the variation using December preconditions. The empirical model outperforms 56 

seasonal forecast systems when considering the same lead times. Although seasonal forecast 57 

systems can skillfully predict modes of variability related to sea surface temperatures and 58 

precipitation in the two oceanic basins, they are less consistent in predicting the relationship 59 

between their indexes and precipitation over Southern Africa. Specifically, they show a stronger 60 

correlation between Pacific Ocean temperatures and Southern African precipitation and too weak 61 

correlation with the Indian Ocean. 62 

1 Introduction 63 

Southern Africa (SA) is a drought- and flood-prone region of the world where over 95% 64 

of agriculture relies on seasonal precipitation primarily occurring during the austral summer 65 

monsoon (Ashfaq et al., 2020; Mpungose et al., 2022; Reason & Rouault, 2002; Wetterhall et al., 66 

2014; Winsemius et al., 2014). Most of the precipitation during the peak of the monsoon season 67 

(December to February) is enhanced by tropical lows and, in some cases, tropical cyclones that 68 

form within the tropics and move westward over Africa (Barimalala et al., 2020; Howard et al., 69 

2019; Ibebuchi, 2023a). 70 

Earlier studies suggested that El Niño–Southern Oscillation (ENSO) and Indian Ocean 71 

Dipole (IOD) are the two primary mechanisms contributing to SA monsoon seasonal variability 72 

(Crétat et al., 2019; Howard et al., 2019; Ibebuchi, 2023b; Manatsa et al., 2012; Reason & 73 

Jagadheesha, 2005), while Madden Julian Oscillation (MJO) is responsible for intraseasonal 74 

variability (De Andrade et al., 2021; Silvério & Grimm, 2022). Beyond providing 75 

contemporaneous forcing, the IOD has also been shown to predict austral summer precipitation 76 

with several months lead (Ibebuchi, 2023b). However, IOD and ENSO are usually not 77 

independent of each other. Therefore, it is only possible to independently attribute precipitation 78 
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variability to one with accounting for the other's influence. Recent studies also suggest that the 79 

leading mode of precipitation variability in the Indian Ocean (IO) mediates tropical forcings 80 

effects in distant regions (Abid et al., 2020, 2023; Horan et al., 2023; Mehmood et al., 2022). 81 

However, it is currently unknown whether it plays a role in mediating ENSO and IOD influences 82 

over SA during monsoon or has a distinct role that can be leveraged to predict monsoon 83 

precipitation. 84 

Accurate seasonal predictability of monsoon precipitation across SA can be a key to 85 

sustainable agricultural practices. Evidence of seasonal precipitation predictability over parts of 86 

SA relates to Pacific and Indian oceans Sea Surface temperature (SST) variability (De Andrade 87 

et al., 2021; Ibebuchi, 2023b; Landman et al., 2012; Monerie et al., 2019; Reason et al., 2006).  88 

However, neither the sources of predictability nor empirical and dynamical models have been 89 

fully exploited for predicting monsoon precipitation in SA (Landman et al., 2012; Landman & 90 

Beraki, 2012; Munday & Washington, 2017). To further our understanding of the SA monsoon, 91 

we develop an empirical model using ENSO, IOD, and the dominant precipitation mode in the 92 

IO as leading precursors and contemporaneous forcings. This model examines the roles of these 93 

factors in precipitation variability and predictability across SA. In addition, we analyze the 94 

skillfulness of two seasonal forecasting systems, the Geophysical Fluid Dynamics Laboratory 95 

(GFDL) Seamless System for Prediction and Earth System Research (SPEAR; Delworth et al., 96 

2020) and the European Center for Medium-Range Weather Forecasts (ECMWF) fifth-97 

generation seasonal forecasting system (SEAS5; Johnson et al., 2019), in predicting monsoon 98 

over SA with initializations at zero-, two-, and five-months lead. We aim to answer two key 99 

questions using this analytical framework: 1) What are the roles of ENSO, IOD, and the 100 

dominant IO precipitation mode in monsoon precipitation variability and predictability over SA? 101 

How effective are SPEAR and SEAS5 in predicting summer monsoon over SA, and can their 102 

skillfulness or lack thereof be explained by their capability or shortcoming to represent the 103 

influences of these three natural forcings? 104 

2 Data and Methods 105 

This study uses precipitation and atmospheric variables from ECMWF’s Fifth Generation 106 

Reanalysis (ERA5; Hersbach et al., 2020) for data consistency required in teleconnection 107 

analyses (Mukherjee et al., 2020). We analyze monthly precipitation, SST, and three-108 

dimensional atmospheric winds, divergence, and vertical pressure velocity.  ERA5 precipitation 109 

compares reasonably with the Climate Research Unit (CRU) Timeseries 4.07. (Harris et al., 110 

2020). However, a substantial disparity exists between CRU and Climate Prediction Center 111 

(CPC; Xie et al., 2007) over SA (Figure S1), with CPC being substantially drier.  112 

Moreover, two seasonal forecasting systems are analyzed for their skillfulness in 113 

predicting the SA monsoon: GFDL’s SPEAR with 15 members and ECMWF's SEAS5 with 25 114 

members. We use zero-, two-, and five-month lead simulations, initialized in December, 115 

October, and July for SPEAR, while SEAS5 only has data for zero- and two-month 116 

lead simulations, initialized in December and October. The analysis period covers 1991 through 117 

2022, which overlaps in all three datasets (ERA5, SEAS5, and SPEAR). All data is linearly 118 

detrended before use except for climatological analyses.  119 
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The analyses cover land areas south of 5°S for the austral summer months (December to 120 

February; DJF). While the rainy season substantially varies latitudinally across SA, DJF is the 121 

region's core monsoon season (Ashfaq et al., 2020). We investigate monsoon 122 

precipitation variability and predictability using three natural modes of variability: ENSO, IOD, 123 

and the dominant mode of precipitation variability in the IO, hereafter termed the IO 124 

Precipitation Dipole (IOPD; Horan et al., 2023). We define the ENSO index as the Principal 125 

Component (PC) of the first Empirical Orthogonal Function (EOF) of monthly SSTs in the 126 

Pacific covering 160°W–80°E and 10°S–10°N (Figure S2). The PC-based ENSO index strongly 127 

correlates with SST-based Niño indexes. It is preferred over choosing one of the four Niño 128 

indexes to minimize issues related to ENSO diversity. The IOD (Saji et al., 1999) is defined 129 

using the standardized difference in SSTs between the Western (50°E–70°E, 10°S–10°N) 130 

and Eastern (90°E–110°E, 10°S–0°) IO. Some studies have used the Subtropical IOD (SIOD) 131 

index to investigate SA's precipitation variability (Behera & Yamagata, 2001; Hoell et al., 2017; 132 

Ibebuchi, 2023a; Reason, 2001). Our analyses didn’t find it more relevant than IOD (not shown). 133 

IOPD is the PC of the first EOF of monthly precipitation in the IO, covering 40°E–140°E and 134 

10°S–10°N (Figure S1; Horan et al., 2023).  135 

We use multiple linear regression (MLR), simple Pearson correlation, and partial 136 

correlation analyses to investigate the individual and combined influences of three modes 137 

of variability on SA monsoon precipitation. A two-tailed T-test determines the significance of 138 

regression coefficients, while an F-test determines the added value of each independent variable 139 

in the MLR model. All results are tested for significance at 95% confidence. The MLR model is 140 

further tested for overfitting by comparing the coefficient of determination (R2) and predicted R2. 141 

For calculating predicted R2, we remove each data point from the time series at each grid point, 142 

calculate the regression equation, and subsequently use that equation to predict the removed data 143 

point. The process is repeated for each data point until we have a time series that is completely 144 

predicted based on the regression model.  145 

3 Results and Discussion 146 

The rainy season in SA varies significantly with latitude, from three months south of 147 

20°S to over six months at 10°S (Figure 1a). The seasonal march of monsoon rains over SA 148 

starts in November (Figures 1a, S1, S3), the onset month (Ashfaq et al., 2020). DJF is the core 149 

monsoon season as zonal average precipitation exceeds 2 mm/day throughout the latitudinal belt 150 

between 5°S and 30°S. Monsoon withdraws from most of the region in March (Figure S3; 151 

Ashfaq et al., 2020). The seasonal maximum of average precipitation and its variability occurs at 152 

the boundary of the dryline or Congo air boundary (Figure 1b, 1c; Howard & Washington, 153 

2019). A comparable seasonal precipitation distribution with a low interannual variability is also 154 

observed between northern Mozambique and Angola. South of that, precipitation exhibits a 155 

latitudinally expanding east-west  156 

157 
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 158 

Figure 1. Zonally averaged (5°E–52°E, land points) monthly precipitation (a), DJF mean, 159 

and standard deviation of precipitation, along with the ratio of standard deviation to the 160 

mean (b). c) Color contours: DJF surface temperature (ocean) and precipitation (land), line 161 

contours: DJF precipitation standard deviation (red, blue, white: 1, 2, 3 mm/day), vectors: 162 

winds at 850 hPa. The white box indicates the core study area. d) 200 hPa winds and 163 

topography over Southern Africa. Analyses cover 1991–2022 in ERA5. 164 

gradient with higher magnitudes east of the Kalahari Desert and little precipitation in its west. 165 

The proportion of precipitation variability relative to the mean increases over regions south of 166 

15°S (Figure 1b). The north-south precipitation gradient also extends from mainland Africa to 167 

Madagascar. SA receives the most moisture from continental recycling, while the warm IO 168 

(Figure 1c) contributes the major oceanic moisture source to continental precipitation (Geppert et 169 

al., 2022). Several key dynamical features regulate the spatially complex distribution of monsoon 170 

precipitation over SA. In the lower atmosphere (850 hPa), these features include the Angolan 171 

Low  172 
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 173 

Figure 2. a) The monthly Pearson (dashed) and partial (solid) correlation between ENSO, 174 

IOD, and IOPD. b) DJF Pearson (second row) and partial (third row) correlations between 175 

precipitation over Southern Africa and IOD (left), IOPD (center), and ENSO (right). c) 176 

Zonal average of Pearson (dashed) and partial (solid) correlations of DJF precipitation 177 

(5°E–52°E, land points) with DJF, December, October, and July indexes of IOD, IOPD, 178 

and ENSO. Stippling in (b) and vertical dashed lines in (c) represent statistical significance 179 

(p<.05). 180 

  181 
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(AL) in the northwest, the Mozambique Channel Trough (MCT) between central Mozambique 182 

and Madagascar, and the diagonally oriented South Indian Convergence Zone (SICZ) off the 183 

southeast coast of SA (Figure 1c). The upper atmosphere circulations (200 hPa; Figure 1d) are 184 

characterized by a high extending between the South Atlantic and Indian oceans with an 185 

approximate center at the border of Zambia, Botswana, and Zimbabwe, commonly called the 186 

Botswana High (BH). The role of these dynamical features in maintaining the summer monsoon 187 

over SA has been described extensively in several earlier studies (Barimalala et al., 2020; Cook, 188 

2000; Crétat et al., 2019; Driver & Reason, 2017). 189 

Several studies have investigated how prevailing ENSO and IOD forcing or their 190 

preconditioning shape precipitation distribution in SA (Crétat et al., 2019; Gore et al., 2020; 191 

Howard et al., 2019; Ibebuchi, 2023b; Manatsa et al., 2012; Reason & Jagadheesha, 2005; 192 

Reason & Rouault, 2002); however, despite its proximity, IOPD's role is currently unknown. The 193 

three modes exhibit varying contemporaneous correlations throughout the year (Figure 2a). The 194 

strongest and most consistent is the relationship between ENSO and IOPD, which peaks in 195 

boreal winter. ENSO also correlates with IOD in the latter half of the year, but this correlation is 196 

mostly insignificant after accounting for the effect of IOPD on their relationship, indicating that 197 

IOPD acts as a mechanism for physically connecting SST variability in the Pacific and Indian 198 

oceans. The relationship between IOD and IOPD is strongest during the fall season. 199 

The contemporaneous simple Pearson correlations of the three modes with monsoon 200 

precipitation over SA suggest a similar dipolar influence by ENSO and IOPD, 201 

transitioning between negative in the south and positive in the north around 15°S (Figure 2b). 202 

Most of the IOD's influence is positive but statistically significant only in areas north of 203 

Mozambique. The similarity between ENSO and IOPD is remarkable but not surprising. In a 204 

recent study, it was determined that ENSO's influence on boreal winter precipitation variability 205 

over some regions is primarily driven by atmospheric diabatic heating anomalies caused by 206 

ENSO-driven precipitation variability in the IO because of the strong coupling between IOPD 207 

and ENSO at a seasonal scale (Abid et al., 2023; Horan et al., 2023). This is also true in SA, 208 

where the direct influence of contemporaneous ENSO forcing on monsoon precipitation 209 

becomes insignificant after controlling for the effects of IOPD and IOD (Figure 2b). IOD, in 210 

contrast, becomes a significant positive forcing over SA after controlling for ENSO and IOPD, 211 

while IOPD's influence remains mostly unchanged over SA's eastern half, north of SICZ, after 212 

controlling for ENSO and IOD.  213 

Our analysis shows that predicting monsoon precipitation in SA with significant skill is 214 

possible using ENSO, IOD, and IOPD precursors. We demonstrate this by examining the 215 

preconditioning of these natural modes in December, October, and July as predictors of the 216 

summer (DJF) monsoon in SA. First, we examine their lead simple Pearson and partial 217 

correlations with SA’s monsoon precipitation to explain their predictive power (Figure 2c, S4). 218 

The strength of correlations among the three modes varies during these months (Figure 2a), 219 

resulting in different contributions to SA's precipitation predictability. In July, correlations 220 

between the three natural modes are weaker, which means each mode can have a more distinct 221 

and independent role in predicting monsoon precipitation. ENSO and IOPD lead correlations 222 

retain dipolar patterns like their contemporaneous correlations (Figure 2c, dotted red). However, 223 

unlike ENSO’s limited contemporaneous role, controlling for IOD and IOPD retains most of 224 
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its lead correlation, except for southeast SA, north of SICZ, where lead IOPD forcing has a more 225 

significant negative impact (Figure 2c, solid red). The July IOD shows precipitation 226 

controls like those in its contemporaneous relationship with the SA monsoon. In October, the 227 

strongest IOPD-IOD coupling is observed (Figure 2a). As a result, the October IOD exhibits a 228 

dipolar correlation with precipitation, like ENSO and IOPD (Figure 2c; dotted blue, Figure S4). 229 

After controlling for the other two factors, the IOPD correlation becomes mostly negative, while 230 

the IOD correlation becomes positive. ENSO retains a dipolar influence pattern. In December, 231 

dipolar patterns persist, although IOD's negative influence is relatively insignificant (Figure S4). 232 

ENSO (IOD) partial correlations with the precipitation are mostly negative (positive), while the 233 

IOPD relationship remains dipolar (Figure 2c; solid green). These analyses suggest that all three 234 

forcings play a role in monsoon variability in SA, and their interplay helps determine its 235 

predictability. 236 

Next, we construct an MLR model using ENSO, IOD, and IOPD as independent 237 

variables or predictors and gridded precipitation over SA as the dependent variable to examine 238 

the extent to which precipitation variability can be explained through their 239 

contemporary forcings or preconditioning. Given the latitudinal contrast in their influences, the 240 

results are presented spatially (Figure S5) and in zonal averages (Figure 3). Several key points 241 

from this analysis can be summarized: 1) The strong coupling between ENSO and IOPD in DJF 242 

eliminates the independent role of contemporary ENSO forcing on monsoon precipitation 243 

beyond what is already propagated by IOPD (Figure 3b; black). As for the ENSO 244 

preconditioning, its predictive power is also the weakest, with statistically significant influence 245 

limited to SA's northernmost and southernmost parts (Figure 3c; black, Figure S5). 2) The IOD 246 

influence is predominantly positive and significant across all latitudes in DJF and with 247 

December preconditioning. However, its most robust influence is limited to 248 

the northernmost parts, with July and October preconditioning (Figure 3a; blue and red). The 249 

IOPD is the most prominent force, exerting strong dipolar influence in the north (positive; 5°S–250 

12°S) and south (negative; 17°S–25°S), except in October when strong coupling with IOD limits 251 

its distinct role in predicting SA monsoon. Spatiotemporally varying roles of these natural 252 

forcings suggest that they can counteract or amplify one another's effect. 253 

254 
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 255 

Figure 3. Zonally averaged partial regression coefficients of contemporaneous and lead 256 

(December, October, and July) IOD (a), IOPD (b), and ENSO (c) forcings in DJF 257 

precipitation multi-linear regression (MLR) models. Circles indicate statistical significance. 258 

d) The R2 for MLR models in (a-c). (e-g) Same as in (a-c; black) but shown spatially for 259 

contemporaneous forcings-based MLR for DJF precipitation (colors) and 850 hPa winds 260 

(vectors). Green (purple) contours represent the statistical significance of the zonal 261 

(meridional) winds regression coefficient. h) The R2 for the MLR model in (e-g). Black 262 

boxes indicated northern and southern regions. (i-k) Same as in (e-g) but for the zonally 263 

averaged vertical cross-section of DJF divergence (multiplied by 10E6) and vertical 264 

pressure velocity (multiplied by -50), shown as vectors. The regression coefficients related 265 

to vertical pressure velocity are also shown in color. White contours represent the 266 

statistical significance of colored contours. Statistical significance is at p<.05.   267 

  268 
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 269 

Figure 4.  Zonally averaged partial (solid) and Pearson (dotted) correlation between DJF 270 

precipitation (5°E–52°E, land points) and contemporaneous and lead indexes of IOD (left), 271 

IOPD (center), and ENSO (right) in (a) SPEAR and (b) SEAS5. The vertical lines represent 272 

statistical significance (p<.05). c) The mean area-averaged precipitation over northern ( 273 

left) and southern (right) parts of Southern Africa (rectangles in Figure 3h) in ERA5 274 

(black), MLR model (green), SPEAR (orange) ensemble mean, and SEAS5 (violet) 275 

ensemble mean. The empirical (dynamical) models represent December forcings 276 

(initializations). Light circles indicate ensemble members in SPEAR and SEAS5. 277 

  278 
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Overall, the empirical model explains ~50% to >75% (~35% to >50%) zonally averaged 279 

precipitation variability in areas along the 5°S–12°S (17°S–25°S). Spatially, the skill is 280 

notably higher in southern Kenya and Tanzania, certain parts of Zambia, and within the region 281 

north of SICZ, encompassing parts of Mozambique, Zimbabwe, and Botswana (Figure S5). 282 

However, between 12°S and 17°S, predictability is limited due to the fluctuation between 283 

negative and positive influences and inherent low precipitation variability (Figures 1b, 3a). 284 

Regions with low predictability skills include northern Mozambique, central Zambia, southern 285 

Malawi, and southern Angola.  286 

How do these natural modes of variability influence the monsoon circulation 287 

that eventually impacts precipitation? We explain it by regressing three-dimensional divergence, 288 

vertical pressure velocity, and 850 hPa winds onto ENSO, IOD, and IOPD indexes. In DJF, IOD 289 

enhances the moist flow in the lower atmosphere from continental Africa and the warm IO 290 

through the Mozambique Channel and strengthens the deep convective environment throughout 291 

the region except over Angola, where lower-level subsidence induced by the IOD suppresses 292 

convection (Figure 3b, 3c). Overall, these dynamic anomalies lead to widespread enhanced 293 

precipitation. IOPD, on the other hand, weakens MCT and SICZ, limiting moist flow over 294 

southeast Africa and reducing precipitation. In areas south (north) of 15°S, it suppresses 295 

(intensifies) the deep convective monsoon environment, weakening the southward seasonal 296 

march of moist continental air. ENSO’s most significant influence is over South Africa, which 297 

enhances dry air entrainment from the southern Atlantic Ocean and reduces precipitation. It 298 

otherwise has limited influence on the background monsoonal environment. Accordingly, DJF 299 

atmospheric responses to ENSO, IOD, and IOPD July and October preconditioning provide a 300 

physical explanation of their leading relationships with precipitation over southern Africa, as 301 

shown in Figures 2, 3, S5, and S7.  302 

We will now examine two seasonal forecasting systems, SPEAR and SEAS5, for their 303 

skillfullness in predicting monsoon precipitation over SA within the context of the three 304 

identified forcings. We begin by analyzing correlations between the modes and note that 305 

models' ensemble mean can represent their varying relationships. For instance, the IOD–IOPD 306 

correlation is strongest in October (SEAS5=0.89; SPEAR=0.89), as seen in reanalyses (ERA5 = 307 

0.86). Similarly, the ENSO–IOPD coupling increases in December (SEAS5=0.81; 308 

SPEAR=0.74), consistent with reanalyses (ERA5 = 0.75). July's initialized SPEAR ensemble 309 

mean also shows a relatively weak correspondence between the three modes. Note that SEAS5 310 

does not provide forecast data for DJF with the July initialization. However, models exhibit 311 

biases in representing the influence of these modes on SA monsoon variability. The biases are 312 

particularly severe in SPEAR. Compared to SEAS5, it lacks skill in representing the dipolar 313 

pattern of lead Pearson correlations of three indexes with DJF precipitation (Figures 4, S8, S9). 314 

Additionally, SPEAR and SEAS5 exhibit an overly strong influence of ENSO on precipitation 315 

variability across SA.  They show no significant influence of IOPD over SA’s southeast in partial 316 

correlations after accounting for the effects of IOD and ENSO (Figures 4, S8, S9), which 317 

contrasts with reanalyses (Figures 2, S4).  Similarly, IOD’s positive association over latitudes 318 

south of 17°S is also missing in its partial correlations (Figures 2, 4). Both models show a 319 

negative IOD relationship instead. On the other hand, ENSO’s partial correlations are overly 320 

strong in both cases.  SPEAR also fails to accurately represent the IOD and IOPD lead influences 321 

in July initialized simulations.    322 
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Given the modeling errors in representing IOD, IOPD, and ENSO teleconnection across 323 

SA during monsoon, its predictability is lower in dynamical models than in the empirical model. 324 

Because of the contrasting influences of the three modes along the latitude, we assess the 325 

predictability of two seasonal forecasting systems by analyzing time series of area average 326 

precipitation over two regions, one between 5°S and 12°S where influence is predominantly 327 

positive and one between 17°S and 25°S where influence is predominantly negative (Figures 4c, 328 

S10). The empirical model using ENSO, IOD, and IOPD as predictors separately for July, 329 

October, and December can account for 52%, 64%, and 79% of precipitation variance in the 330 

northern part. It can also explain 46%, 44%, and 58% of precipitation variance in the southern 331 

part. Please note that the empirical model does not suffer from overfitting, as the predicted R2 332 

closely follows the actual R2 in all instances (Figure S11). While, by definition, the predicted R2 333 

is always lower than the actual R2, a significant difference between the two could indicate an 334 

overfitting issue in the MLR model. 335 

Due to strong coupling with IOD, IOPD loses most of its independent influence over the 336 

southern part with October preconditioning. This results in a lower predictability with the 337 

October lead. SPEAR-explained precipitation variance is 26%, 38%, and 25% in the northern 338 

part and 0%, 25%, and 23% in the southern part with July, October, and December 339 

initializations. Similarly, SEAS5-explained precipitation variance is 56% and 69% in the 340 

northern part and 46% and 34% in the southern part with October and December initializations. 341 

The substantially lower skill in SPEAR compared to SEAS5 is due to its much lower skill in 342 

representing the influences of IOD and IOPD over both areas and ENSO influence over the 343 

southern parts (Figure 4). 344 

4 Summary 345 

We have constructed an empirical model using three natural climate variability modes 346 

related to SST and precipitation variability in the Pacific and Indian oceans (ENSO, IOD, IOPD). 347 

This model effectively explains precipitation variance across SA during the core monsoon 348 

season. Furthermore, these natural modes can also be utilized to predict monsoon precipitation in 349 

SA with a five-month lead time. The three modes exhibit varying coupling strengths 350 

throughout the year. For instance, IOPD is strongly coupled with IOD in the fall and ENSO in 351 

the winter. These interdependencies between the three modes influence their distinct roles in 352 

shaping precipitation variability over SA. A major component of ENSO's contemporaneous 353 

teleconnection with SA is indirectly through its coupling with IOPD in the IO. Direct ENSO 354 

forcing does not contribute anything substantial beyond IOPD's teleconnection pattern. IOPD's 355 

forcing is a major contributor to precipitation predictability with different lead times. Its weakest 356 

predictive power is in October because of the strong coupling between IOD and IOPD, which 357 

limits IOPD's distinct role.  358 

The SEAS5 and SPEAR models provide accurate information on varying monthly 359 

correlations between ENSO, IOD, and IOPD. They also capture ENSO and IOPD interannual 360 

variability precisely. However, their ability to describe IOD's interannual variability is less 361 

effective. Moreover, SPEAR shows a poor simulation of their teleconnections in SA, particularly 362 

below 17°S. As a result, both models underperform compared to the empirical model, with 363 

SPEAR being the least effective in SA’s southeast. These findings highlight the importance of 364 
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accurately representing ENSO, IOD, and IOPD teleconnections to enhance predictability in 365 

seasonal forecasting systems during the summer monsoon in SA. 366 

 367 
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