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Abstract 24 

Scientists have not always had freely accessible high-quality and high-resolution datasets 25 

relevant to their study systems. Today, early career researchers routinely confront a deluge of 26 

data that is relevant to their research questions. Early-career scientists face the combined 27 

challenges of using accessible yet powerful models, under high publication pressure, and with 28 

mixed guidance from scientists trained under an earlier era. There exists a temptation to reach 29 

for black-box analytical approaches to offer guidance through this wilderness of data. New 30 

complex models consisting of artificial intelligence and machine learning tools are poised to be 31 

co-opted by large numbers of early career researchers due to their modelling strength and 32 

easy, out-of-the-box usage. Just because we can use these new tools, does not mean we always 33 

should. I argue we should reconsider the role of complexity in the construction of our ecological 34 

models when we test ideas of our understanding of the natural world.  35 



Resisting the Lure of Complexity As Ecologists and Early Career 36 

Ecologists 37 

Early career ecologists seek to understand the biological world. We conduct scientific research 38 

to elucidate the underlying patterns and mechanisms of nature. Yet more and more often, I feel 39 

myself predisposed toward models of complexity commensurate with the phenomena 40 

themselves1. In the ecological world of infinite interactions and rapidly expanding datasets, I 41 

feel a strong temptation to follow the current trend of complexifying my models2. This 42 

“complexification” phenomenon partly comes from the lure of gathering easy research 43 

outcomes from measuring everything possible and throwing it all into a pre-made analytical 44 

framework or machine learning toolbox. We now have on our laptops the computational power 45 

to accommodate the full assemblage of nature, and increasingly accessible packages and tools 46 

to summarise it in reviewer- and publisher-friendly ways. The other enticement of overly 47 

complex analysis is the ability to find a nice little predictive tranche for every nanometre of 48 

variance within a dataset. Here the analysis becomes an incomprehensible mess, but at least 49 

the summary statistics look good.  50 

 51 

We are all aware of the academic pressure on early-career researchers (ECRs) to produce 52 

publications. Some of us may also be aware that discussion on the issue of kitchen-sink model 53 

parameterisations and ecological model building is not a new phenomenon. Most famously, 54 

Levins (1966) remarked upon the impossibility of achieving generality, realism, and precision 55 

simultaneously3. But since the 1960s, the quantity of data collected has increased dramatically. 56 

This rapid increase in data collection has led to increased model complexity, a trend which has 57 



been highlighted multiple times over the last couple of years1,2,4. This trend means I am not the 58 

first ECR with a parameter problem. However, I do contend that this complexity conundrum is 59 

not necessarily a good thing for ecology or ecologists, and I suggest that this article serves as a 60 

reminder for all ECRs, and more specifically for ecologists, to watch the complexity of the 61 

models we use. 62 

 63 

I acknowledge that for ECRs it is hard to avoid the benefits of pre-made black-box modelling 64 

tools. Such tools increase research speed and consequently mean that more thesis chapters can 65 

be completed; more papers can be sent for publication; and more grants applications can be 66 

written. As outcome-driven researchers with a lust for H-indices that that we must flaunt with 67 

the discretion of a peacock, this all seems very appealing. But we should all resist the urge for 68 

three simple reasons.  69 

 70 

1. Complex models are nuanced in their outcomes 71 

Nurse (2021) suggested in his article last year that “students will be better motivated and will 72 

feel more inspired if they are taught that biology has ideas”1. As a PhD student I feel that this is 73 

true. As students working on knowledge-based ideas, PhD students are driven by the curiosity 74 

and satisfaction and fulfilment that building accurate ecological models can deliver. But this is 75 

balanced against the highly pressurised world of academic research that traffics in a specific 76 

currency that has less to do with understanding and more to do with production. The lure of 77 

the black-box modelling system is the ability to skip over hard choices comparing competing 78 

mechanisms and deliver a simple outcome prediction, without cutting statistical corners. Black-79 

box modelling approaches save time and answer research questions without months of 80 



agonising over fiddly mechanisms. One such example can be found in the field of phylogenetics. 81 

Done correctly, phylogenetics offers the chance to explore our past and offer insight into 82 

ecological history, biogeography, and inter-taxa and intra-population relations. Just as 83 

important, phylogenetics is essential as a blocking variable for any comparative study to 84 

account for the large trait variance due to shared ancestry. But phylogenetics is also a large 85 

field with active debate about the rate of mutation, speciation, and extinction5,6, and intricate 86 

nuances in the ways sampling and calibration are accounted for in models7,8. Combining these 87 

two caveats, they suggest that simply putting data into the model to create a phylogenetic tree 88 

is not enough, it has to be a well-tuned model too.  The second statement also suggests that if 89 

the tree building is not understood from the basics upwards, incorrect conclusions are easily 90 

possible. It is also possible that without understanding the mechanics of the model, it is highly 91 

likely that we will not understand why we are incorrect. George Box’s famous quote of “all 92 

models are wrong but some are useful” is hard to apply to black-box models systems in 93 

ecology. If we do not know why our models are wrong, we cannot also know if they are useful. 94 

In short, just because the ecological mechanisms can be skipped in models, does not mean they 95 

should be. Karl Popper said, “science may be described as the art of systematic simplification.” 96 

And systematic thinking begins with simpler models. 97 

 98 

2. Excessive complexity in models begets unintelligibility in understanding 99 

Excessive complexity in models begets unintelligibility in outcome; hinders understanding of 100 

processes; and obscures causality in effect. Accordingly, and despite how it may sometimes 101 

feel, being an early-career ecologist is more than just being a paper mule churning out 102 

predictions from pre-made, all-singing, all-dancing, cookie-cutter models. As ecologists, our 103 



time could be better off spent developing simpler, strategic models which are targeted in their 104 

aim and that capture the necessary information to make the inferences we desire. They are 105 

more flexible to use making them more applicable, and provide understanding across broader 106 

ranges of natural phenomena. Going back to our purpose as ecologists, science is supposed to 107 

be about developing understanding to solve problems. It has been pointed out that the paradox 108 

of enrichment9 contributed to understanding about self-regulation in ecological systems10, and 109 

Lotka11-Volterra12 models demonstrate population dynamics, even if their simplicity is 110 

controversial13. Neither models are correct or found in nature, but both examples provide 111 

organising principals that allow us to understand the natural world. Simple models are integral 112 

to a fundamental understanding of nature that runs through laws or broadly consistent 113 

patterns and mechanisms in nature. In the 1970s, Bob May shook the foundations of ecology by 114 

demonstrating how stable equilibria, point cycles, and chaos can emerge from a simple, two-115 

parameter discrete logistic model – perhaps the most elegant model the field has ever 116 

known14,15. The subtle but profound insight extending from May’s work was that the immense 117 

complexity of natural patterns need not commensurately complex mechanism. Today we 118 

appear to have lost this wisdom.  119 

 120 

A second outcome from ecological models are the underlying principals which emerge allow 121 

ecologists to inform decision-makers of processes occurring on both modified and wild 122 

landscapes. Without the simplicity of trophic cascade models and ideas, the reintroduction of 123 

wolves and predators would never have occurred16. Having worked on the Yellowstone system, 124 

the dynamics are complex but with simple models the ideas can be communicated. Without 125 

this simplicity, therefore, the whole reintroduction movement would have been more difficult.  126 



 127 

Accordingly, we should choose models which we can inform with processes, making the 128 

outcomes more communicable when external stakeholders seek to interrogate the scientific 129 

processes they are being informed by. As ECRs, we have to remember that unintelligibility due 130 

to complexity means a lack of comprehension of the biology in the middle of the black-box. 131 

Lacking understanding provides an issue for science. In our own research we should try to 132 

understand the mechanisms, even if we don’t explain all the variance through it.  133 

 134 

3. Big excitement and big futures  135 

Aside from this philosophical quandary, as ECRs, much of our time is spent developing skills 136 

which will enable us to solve future problems. To use techniques which skip any understanding 137 

is akin to finding the answers to the homework questions in the back of the textbook. It is very 138 

useful for now, and you can always go and check them again, but it doesn’t allow you to 139 

develop the skills for sitting the exam. Or in this case, the detailed understanding of your 140 

chosen system. I currently work with big data sets to provide insight into local ecological 141 

processes, trying to infer what is happening to individual plants based on high-level datasets. As 142 

in much of ecology, the models that I build contain a portion of data bias, implicit assumptions 143 

and models built on models. Without deep understanding of how the models were designed, 144 

the robustness of both my model and my researcher integrity is compromised. Or put another 145 

way, by developing the techniques to pull apart the relationships between variables one 146 

develops into a more thorough, patient, and resilient ecological researcher. Inquisition 147 

becomes your passion, and you never know where the discoveries will lead you. Such personal 148 

development is the true value of mechanism over outcomes. Anything could be around the 149 



corner, and the little findings may spark curiosities which last a lifetime. Big ideas, rather than 150 

just big data, are what make ecology exciting, and so we should embrace this fully in our work! 151 

 152 

Being careful when reconciling black-boxes with ecological modelling 153 

Complex models will and should become part of the scientific method. But they shouldn’t stop 154 

thought. The I in AI cannot replace human intelligence, rather it should assist in helping drive 155 

understanding. Recently, work has been published that demonstrates through bark beetles that 156 

deep learning is useful for the understanding of ecology17. It very nicely shows the utility of 157 

black-box systems for prediction, but in doing so it fails to demonstrate any sort of system-level 158 

understanding. Spurious correlations in such data may well abound, and due to the analytical 159 

techniques, we would be none the wiser for it. In the light of high-intensity data collection, 160 

from drones and satellites 18 to genetic sequences and museum specimens19, we must be 161 

careful where the limit between automated assistance with data categorisation, annotation, 162 

and identification ends and the beginning of scientific excitement, inference, and analysis 163 

starts. As ECRs, we are primely placed to drive the field forward with fresh ideas. We can drop 164 

the complexity fetish and encourage simpler models. We can choose, through our own work, to 165 

defend the fundamentals of good science and evidence-based decision making.  166 

 167 

When undertaking this good research, choosing to take a more mechanistic approach does not 168 

necessarily rule out any sort of tool or technique. Complex methods are not off the table 169 

because one chooses to do investigative science based upon underlying organisational 170 

principals. We are better off considering our ideas a priori rather than post-hoc. In doing so, we 171 

can stay true to the ethos of science.  When I plan my work, I generally think about two 172 



questions: 1) Can I predict the outcome of this work based upon known knowledge? 2) Can I 173 

explain exactly the route by which these factors are having an effect on my outcomes? If the 174 

answer to both is yes, then great, I proceed onwards with the work with whichever technique is 175 

required to suit the task at hand. But if your answer is unknown to either then an overly 176 

complex approach may not be helpful. I find it as hard as anyone to admit not knowing the 177 

answer. But it is also unreasonable to expect that, especially as ECRs, we always do. Having 178 

studied a subject for 5 years is nothing compared to studying it for 40. Rather than resorting to 179 

not developing the science, we should develop the knowledge together with senior scientists 180 

such that we can develop understanding of the whole system. 181 

 182 

To strive for simplicity in modelling is to push for useful, applicable, knowledge for 183 

comprehension and prediction. As early career ecologists we should be aiming for simplicity 184 

that so that we can, in short, push science forwards to develop the understanding of our 185 

natural world. 186 

 187 
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