References
  1. Stapleton F, Alves M, Bunya V.Y, et al. (2017) TFOS DEWS II Epidemiology Report. Ocul Surf 15, 334-365.
  2. Yan H, Shan X, Wei S, et al. (2020) Abnormal Spontaneous Brain Activities of Limbic-Cortical Circuits in Patients With Dry Eye Disease. Front Hum Neurosci 14, 574758.
  3. Kalangara J.P, Galor A, Levitt R.C, et al. Characteristics of Ocular Pain Complaints in Patients With Idiopathic Dry Eye Symptoms.Eye Contact Lens. 2017; 43:192-198.
  4. Fakih D, Zhao Z, Nicolle P, et al. (2019) Chronic dry eye induced corneal hypersensitivity, neuroinflammatory responses, and synaptic plasticity in the mouse trigeminal brainstem. J Neuroinflammation 16, 268.
  5. Zhang B, Jung M, Tu Y, et al. (2019) Identifying brain regions associated with the neuropathology of chronic low back pain: a resting-state amplitude of low-frequency fluctuation study. Br J Anaesth 123, e303-e311.
  6. Chen X, Lu B, Yan C.G. (2018) Reproducibility of R-fMRI metrics on the impact of different strategies for multiple comparison corrEction and sample sizes. Hum Brain Mapp 39, 300e18.
  7. Touj S, Tokunaga R, Al Aïn S, Bronchti G, Piché M. (2019) Pain Hypersensitivity is Associated with Increased Amygdala Volume and c-Fos Immunoreactivity in Anophthalmic Mice. Neuroscience 418, 37-49.
  8. Qu T, Qi Y, Yu S, et al. (2019) Dynamic Changes of Functional Neuronal Activities Between the Auditory Pathway and Limbic Systems Contribute to Noise-Induced Tinnitus with a Normal Audiogram. Neuroscience408, 31-45.
  9. Belmonte C, Nichols J.J, Cox S.M, et al. (2017) TFOS DEWS II pain and sensation report. Ocul Surf 15, 404e37.
  1. Siedlecki A.N, Smith S.D, Siedlecki A.R, et al. (2020) Ocular pain response to treatment in dry eye patients. Ocul Surf 18, 305-311.
  2. Melik Parsadaniantz S, Rostène W, Baudouin C, et al. (2018) Understanding chronic ocular pain. Biol Aujourdhui 212, 1-11.
  3. Du J.G, Xiao H, Zuo Y.X. (2018) Amplitude of Low Frequency Fluctuation (ALFF) study of the spontaneous brain activities of patients with phantom limb pain. Eur Rev Med Pharmacol Sci 22, 7164-7171.
  4. Zhou F, Gu L, Hong S, et al. (2018) Altered low-frequency oscillation amplitude of resting state-fMRI in patients with discogenic low-back and leg pain. J Pain Res 11, 165-176.
  5. Chen Y, Xiang C.Q, Liu W.F, et al. (2019) Application of amplitude of low‑frequency fluctuation to altered spontaneous neuronal activity in classical trigeminal neuralgia patients: A resting‑state functional MRI study. Mol Med Rep. 20,1707-1715.
  6. Yan H, Shan X, Wei S, et al. (2020) Abnormal Spontaneous Brain Activities of Limbic-Cortical Circuits in Patients With Dry Eye Disease. Front Hum Neurosci 14, 574758.
  7. Pan Z.M, Li H.J, Bao J, et al. (2018) Altered intrinsic brain activities in patients with acute eye pain using amplitude of low-frequency fluctuation: a resting-state fMRI study. Neuropsychiatr Dis Treat 14, 251-257.
  8. Moulton EA, Becerra L, Rosenthal P, et al. (2012) An approach to localizing corneal pain representation in human primary somatosensory cortex. PLoS One 7, e44643.
  9. Wan K.H, Chen L.J, Young A.L. (2016) Depression and anxiety in dry eye disease: a systematic review and meta-analysis. Eye (Lond) 30, 1558-1567.
  10. Drevets W.C. (1998) Functional neuroimaging studies of depression: the anatomy of melancholia. Annu Rev Med 49, 341–361.
  11. Giotakos O. Neurobiology of emotional trauma.(2020) Psychiatriki 31, 162-171.
  12. Wigestrand M.B, Schiff H.C, Fyhn M, et al. (2016) Primary auditory cortex regulates threat memory specificity. Learn Mem 24, 55-58.
  13. Lee G.J, Kim YJ, Lee K, et al. (2021) Patterns of brain c-Fos expression in response to feeding behavior in acute and chronic inflammatory pain condition. Neuroreport 32, 1269-1277.
  14. Wang J, Zhou R, Gao W. (2017) The neural pathway for lacrimal gland tear secretion in New Zealand White rabbits. Neurosci Lett 649, 14-19.
  15. Alvarez P, Dieb W, Hafidi A, et al. (2009) Insular cortex representation of dynamic mechanical allodynia in trigeminal neuropathic rats. Neurobiol Dis 33,89-95.
  16. Nieuwenhuys R. (2012) The insular cortex: a review. Prog Brain Res 195, 123-163.
  17. Pezet S, Malcangio M, McMahon S.B. (2002) BDNF: a neuromodulator in nociceptive pathways? Brain Res Brain Res Rev 40, 240-249.
  18. Jin M, Sheng W, Han L, et al. (2018) Activation of BDNF-TrkB signaling pathway-regulated brain inflammation in pentylenetetrazole-induced seizures in zebrafish. Fish Shellfish Immunol 83, 26-36.
  19. Groth R, Aanonsen L. (2002) Spinal brain-derived neurotrophic factor (BDNF) produces hyperalgesia in normal mice while antisense directed against either BDNF or trkB, prevent inflammation-induced hyperalgesia. Pain 100, 171-181.
  20. Takeda M, Takahashi M, Kitagawa J, et al. (2013) Brain-derived neurotrophic factor enhances the excitability of small-diameter trigeminal ganglion neurons projecting to the trigeminal nucleus interpolaris/caudalis transition zone following masseter muscle inflammation. Mol Pain 9, 49.