References
- Stapleton F, Alves M, Bunya V.Y, et al. (2017) TFOS DEWS II
Epidemiology Report. Ocul Surf 15, 334-365.
- Yan H, Shan X, Wei S, et al. (2020) Abnormal Spontaneous Brain
Activities of Limbic-Cortical Circuits in Patients With Dry Eye
Disease. Front Hum Neurosci 14, 574758.
- Kalangara J.P, Galor A, Levitt R.C, et al. Characteristics of Ocular
Pain Complaints in Patients With Idiopathic Dry Eye Symptoms.Eye Contact Lens. 2017; 43:192-198.
- Fakih D, Zhao Z, Nicolle P, et al. (2019) Chronic dry eye induced
corneal hypersensitivity, neuroinflammatory responses, and synaptic
plasticity in the mouse trigeminal brainstem. J
Neuroinflammation 16, 268.
- Zhang B, Jung M, Tu Y, et al. (2019) Identifying brain regions
associated with the neuropathology of chronic low back pain: a
resting-state amplitude of low-frequency fluctuation study. Br J
Anaesth 123, e303-e311.
- Chen X, Lu B, Yan C.G. (2018) Reproducibility of R-fMRI metrics on the
impact of different strategies for multiple comparison corrEction and
sample sizes. Hum Brain Mapp 39, 300e18.
- Touj S, Tokunaga R, Al Aïn S, Bronchti G, Piché M. (2019) Pain
Hypersensitivity is Associated with Increased Amygdala Volume and
c-Fos Immunoreactivity in Anophthalmic Mice. Neuroscience 418,
37-49.
- Qu T, Qi Y, Yu S, et al. (2019) Dynamic Changes of Functional Neuronal
Activities Between the Auditory Pathway and Limbic Systems Contribute
to Noise-Induced Tinnitus with a Normal Audiogram. Neuroscience408, 31-45.
- Belmonte C, Nichols J.J, Cox S.M, et al. (2017) TFOS DEWS II pain and
sensation report. Ocul Surf 15, 404e37.
- Siedlecki A.N, Smith S.D, Siedlecki A.R, et al. (2020) Ocular pain
response to treatment in dry eye patients. Ocul Surf 18,
305-311.
- Melik Parsadaniantz S, Rostène W, Baudouin C, et al. (2018)
Understanding chronic ocular pain. Biol Aujourdhui 212, 1-11.
- Du J.G, Xiao H, Zuo Y.X. (2018) Amplitude of Low Frequency Fluctuation
(ALFF) study of the spontaneous brain activities of patients with
phantom limb pain. Eur Rev Med Pharmacol Sci 22, 7164-7171.
- Zhou F, Gu L, Hong S, et al. (2018) Altered low-frequency oscillation
amplitude of resting state-fMRI in patients with discogenic low-back
and leg pain. J Pain Res 11, 165-176.
- Chen Y, Xiang C.Q, Liu W.F, et al. (2019) Application of amplitude of
low‑frequency fluctuation to altered spontaneous neuronal activity in
classical trigeminal neuralgia patients: A resting‑state functional
MRI study. Mol Med Rep. 20,1707-1715.
- Yan H, Shan X, Wei S, et al. (2020) Abnormal Spontaneous Brain
Activities of Limbic-Cortical Circuits in Patients With Dry Eye
Disease. Front Hum Neurosci 14, 574758.
- Pan Z.M, Li H.J, Bao J, et al. (2018) Altered intrinsic brain
activities in patients with acute eye pain using amplitude of
low-frequency fluctuation: a resting-state fMRI
study. Neuropsychiatr Dis Treat 14, 251-257.
- Moulton EA, Becerra L, Rosenthal P, et al. (2012) An approach to
localizing corneal pain representation in human primary somatosensory
cortex. PLoS One 7, e44643.
- Wan K.H, Chen L.J, Young A.L. (2016) Depression and anxiety in dry eye
disease: a systematic review and meta-analysis. Eye (Lond) 30,
1558-1567.
- Drevets W.C. (1998) Functional neuroimaging studies of depression: the
anatomy of melancholia. Annu Rev Med 49, 341–361.
- Giotakos O. Neurobiology of emotional
trauma.(2020) Psychiatriki 31, 162-171.
- Wigestrand M.B, Schiff H.C, Fyhn M, et al. (2016) Primary auditory
cortex regulates threat memory specificity. Learn Mem 24,
55-58.
- Lee G.J, Kim YJ, Lee K, et al. (2021) Patterns of brain c-Fos
expression in response to feeding behavior in acute and chronic
inflammatory pain condition. Neuroreport 32, 1269-1277.
- Wang J, Zhou R, Gao W. (2017) The neural pathway for lacrimal gland
tear secretion in New Zealand White rabbits. Neurosci Lett 649,
14-19.
- Alvarez P, Dieb W, Hafidi A, et al. (2009) Insular cortex
representation of dynamic mechanical allodynia in trigeminal
neuropathic rats. Neurobiol Dis 33,89-95.
- Nieuwenhuys R. (2012) The insular cortex: a review. Prog Brain
Res 195, 123-163.
- Pezet S, Malcangio M, McMahon S.B. (2002) BDNF: a neuromodulator in
nociceptive pathways? Brain Res Brain Res Rev 40, 240-249.
- Jin M, Sheng W, Han L, et al. (2018) Activation of BDNF-TrkB signaling
pathway-regulated brain inflammation in pentylenetetrazole-induced
seizures in zebrafish. Fish Shellfish Immunol 83, 26-36.
- Groth R, Aanonsen L. (2002) Spinal brain-derived neurotrophic factor
(BDNF) produces hyperalgesia in normal mice while antisense directed
against either BDNF or trkB, prevent inflammation-induced
hyperalgesia. Pain 100, 171-181.
- Takeda M, Takahashi M, Kitagawa J, et al. (2013) Brain-derived
neurotrophic factor enhances the excitability of small-diameter
trigeminal ganglion neurons projecting to the trigeminal nucleus
interpolaris/caudalis transition zone following masseter muscle
inflammation. Mol Pain 9, 49.