REFERENCES
1. Dutta C, Mitra S, Basak M, et al. A comprehensive review on batteries
and supercapacitors: Development and challenges since their inception.Energy Storage . 2022;e339.
2. Huettner C, Xu F, Paasch S, et al. Ultra-hydrophilic porous carbons
and their supercapacitor performance using pure water as electrolyte.Carbon N Y . 2021;178:540-551.
3. Yun H, Zhou X, Zhu H, Zhang M. One-dimensional zinc-manganate oxide
hollow nanostructures with enhanced supercapacitor performance. J
Colloid Interface Sci . 2021;585:138-147.
4. Chen J, Lin Y, Liu J, et al. Outstanding supercapacitor performance
of nitrogen-doped activated carbon derived from shaddock peel. J
Energy Storage . 2021;39:102640.
5. Saranya M, Ramachandran R, Wang F. Graphene-zinc oxide (G-ZnO)
nanocomposite for electrochemical supercapacitor applications. J
Sci Adv Mater Devices . 2016;1:454-460.
6. Zhang Z, Yao Z, Jiang Z. Fast self-assembled microfibrillated
cellulose@MXene film with high-performance energy storage and superior
mechanical strength. Chinese Chem Lett . 2021;32:3575-3578.
7. Beaumont M, Otoni CG, Mattos BD, et al. Regioselective and
water-assisted surface esterification of never-dried cellulose:
nanofibers with adjustable surface energy. Green Chem .
2021;23:6966-6974.
8. Wasim M, Shi F, Liu J, et al. Extraction of cellulose to progress in
cellulosic nanocomposites for their potential applications in
supercapacitors and energy storage Devices. J Mater Sci.2021;56:14448-14486.
9. Deng L, Young RJ, Kinloch IA, et al. Supercapacitance from cellulose
and carbon nanotube nanocomposite fibers. ACS Appl Mater
Interfaces . 2013;5:9983-9990.
10. Li Z, Liu J, Jiang K, Thundat T. Carbonized nanocellulose
sustainably boosts the performance of activated carbon in ionic liquid
supercapacitors. Nano Energy . 2016;25:161-169.
11. Lyu S, Chen Y, Zhang L, et al. Nanocellulose supported hierarchical
structured polyaniline/nanocarbon nanocomposite electrode: Via
layer-by-layer assembly for green flexible supercapacitors. RSC
Adv . 2019;9:17824-17834.
12. Yuan Q, Ma MG. Conductive polypyrrole incorporated
nanocellulose/MoS2 film for preparing flexible
supercapacitor electrodes. Front Mater Sci .2021:1-14.
13. Chen Y, Lyu S, Han S, Chen Z, Wang W, Wang S.
Nanocellulose/polypyrrole aerogel electrodes with higher conductivity
via adding vapor grown nano-carbon fibers as conducting networks for
supercapacitor application. RSC Adv . 2018;8:39918-39928.
14. Lv P, Meng Y, Song L, Pang H, Liu W. A self-supported electrode for
supercapacitors based on nanocellulose/multi-walled carbon
nanotubes/polypyrrole composite. RSC Adv . 2020;11:1109-1114.
15. Hou M, Xu M, Hu Y, Li B. Nanocellulose incorporated
graphene/polypyrrole film with a sandwich-like architecture for
preparing flexible supercapacitor electrodes. Electrochim Acta .
2019;313:245-254.
16. Xiong C, Zheng C, Nie S, et al. Fabrication of reduced graphene
oxide-cellulose nanofibers based hybrid film with good hydrophilicity
and conductivity as electrodes of supercapacitor. Cellulose .
2021;28:3733-3743.
17. Liao Z, Cheng J, Yu JH, Tian XL, Zhu MQ. Graphene aerogel with
excellent property prepared by doping activated carbon and CNF for
free-binder supercapacitor. Carbohydr Polym . 2022;286:119287.
18. Tan S, Li J, Zhou L, Chen P, Xu D, Xu Z. Fabrication of a flexible
film electrode based on cellulose nanofibers aerogel dispersed with
functionalized graphene decorated with SnO2 for
supercapacitors. J Mater Sci . 2018;53:11648-11658.
19. Rabani I, Yoo J, Kim HS, et al. Highly dispersive
Co3O4nanoparticles incorporated into a
cellulose nanofiber for a high-performance flexible supercapacitor.Nanoscale . 2021;13:355-370.
20. Ge W, Cao S, Yang Y, Rojas OJ, Wang X. Nanocellulose/LiCl systems
enable conductive and stretchable electrolyte hydrogels with tolerance
to dehydration and extreme cold conditions. Chem Eng J .
2021;408:127306.
21. Liu Q, Chen Z, Jing S, et al. A foldable composite electrode with
excellent electrochemical performance using microfibrillated cellulose
fibers as a framework. J Mater Chem A . 2018;6:20338-20346.
22. Garino N, Lamberti A, Stassi S, et al. Multifunctional flexible
membranes based on reduced graphene oxide/tin dioxide nanocomposite and
cellulose fibers. Electrochim Acta . 2019;306:420-426.
23. Sun J, Liu Y, Wu Z, et al. Compressible, anisotropic lamellar
cellulose-based carbon aerogels enhanced by carbon dots for superior
energy storage and water deionization. Carbohydr Polym .
2021;252:117209.
24. Hu Z, Xu X, Wang X, Yu K, Hou J, Liang C. SnO2@rice husk cellulose
composite as an anode for superior lithium ion batteries. New J
Chem . 2019;43:8755-8760.
25. Pang J, Liu X, Zhang X, Wu Y, Sun R. Fabrication of cellulose film
with enhanced mechanical properties in ionic liquid
1-allyl-3-methylimidaxolium chloride (AmimCl). Materials (Basel) .
2013;6:1270-1284.
26. Adjimi A, Zeggar ML, Attaf N, Aida MS. Fluorine-Doped Tin Oxide Thin
Films Deposition by Sol-Gel Technique. J Cryst Process Technol .
2018;08:89-106.
27. Elci A, Demirtas O, Ozturk IM, Bek A, Nalbant Esenturk E. Synthesis
of tin oxide-coated gold nanostars and evaluation of their
surface-enhanced Raman scattering activities. J Mater Sci .
2018;53:16345-16356.
28. Das L, Koonathan LD, Kunwar A, Neogy S, Debnath AK, Adhikari S.
Nontoxic photoluminescent tin oxide nanoparticles for cell imaging: Deep
eutectic solvent mediated synthesis, tuning and mechanism. Mater
Adv . 2021;2:4303-4315.
29. Cheng G, Zhou M, Wei YJ, Cheng F, Zhu PX. Comparison of mechanical
reinforcement effects of cellulose nanocrystal, cellulose nanofiber, and
microfibrillated cellulose in starch composites. Polym Compos .
2019;40:E365-E372.
30. Lee KM, Lee DJ, Ahn H. XRD and TEM studies on tin oxide (II)
nanoparticles prepared by inert gas condensation. Mater Lett .
2004;58:3122-3125.
31. Tazikeh S, Akbari A, Talebi A, Talebi E. Synthesis and
characterization of tin oxide nanoparticles via the co-precipitation
method. Mater Sci Pol . 2014;32:98-101.
32. Janardhan E, Reddy MM, Reddy PV, Reddy MJ. Synthesis of SnO
nanopatricles—A hydrothermal Approach. World J Nano Sci Eng .
2018;08:33-37.
33. Jang DM, Jung H, Hoa ND, Kim D, Hong SK, Kim H. Tin oxide-carbon
nanotube composite for NO X sensing. J Nanosci Nanotechnol .
2012;12:1425-1428.
34. Scipioni R, Gazzoli D, Teocoli F, et al. Preparation and
characterization of nanocomposite polymer membranes containing
functionalized SnO2 additives. Membranes (Basel) . 2014;4:123-142.
35. Lämmel C, Schneider M, Weiser M, Michaelis A. Investigations of
electrochemical double layer capacitor (EDLC) materials - A comparison
of test methods. Materwiss Werksttech . 2013;44:641-649.
36. Guo D, Song X, Tan L, et al. A facile dissolved and reassembled
strategy towards sandwich-like rGO@NiCoAl-LDHs with excellent
supercapacitor performance. Chem Eng J . 2019;356:955-963.
37. Sethi M, Bhat DK. Facile solvothermal synthesis and high
supercapacitor performance of NiCo2O4 nanorods. J Alloys Compd .
2019;781:1013-1020.
38. Liu T, Zhang L, Cheng B, You W, Yu J. Fabrication of a hierarchical
NiO/C hollow sphere composite and its enhanced supercapacitor
performance. Chem Commun . 2018;54:3731-3734.
39. Zhao Z, Xie Y. Electrochemical supercapacitor performance of boron
and nitrogen co-doped porous carbon nanowires. J Power Sources .
2018;400:264-276.
40. Handayani M, Mulyaningsih Y, Aulia Anggoro M, et al. One-pot
synthesis of reduced graphene oxide/chitosan/zinc oxide ternary
nanocomposites for supercapacitor electrodes with enhanced
electrochemical properties. Mater Lett . 2022;314:131846.