REFERENCES
1. Dutta C, Mitra S, Basak M, et al. A comprehensive review on batteries and supercapacitors: Development and challenges since their inception.Energy Storage . 2022;e339.
2. Huettner C, Xu F, Paasch S, et al. Ultra-hydrophilic porous carbons and their supercapacitor performance using pure water as electrolyte.Carbon N Y . 2021;178:540-551.
3. Yun H, Zhou X, Zhu H, Zhang M. One-dimensional zinc-manganate oxide hollow nanostructures with enhanced supercapacitor performance. J Colloid Interface Sci . 2021;585:138-147.
4. Chen J, Lin Y, Liu J, et al. Outstanding supercapacitor performance of nitrogen-doped activated carbon derived from shaddock peel. J Energy Storage . 2021;39:102640.
5. Saranya M, Ramachandran R, Wang F. Graphene-zinc oxide (G-ZnO) nanocomposite for electrochemical supercapacitor applications. J Sci Adv Mater Devices . 2016;1:454-460.
6. Zhang Z, Yao Z, Jiang Z. Fast self-assembled microfibrillated cellulose@MXene film with high-performance energy storage and superior mechanical strength. Chinese Chem Lett . 2021;32:3575-3578.
7. Beaumont M, Otoni CG, Mattos BD, et al. Regioselective and water-assisted surface esterification of never-dried cellulose: nanofibers with adjustable surface energy. Green Chem . 2021;23:6966-6974.
8. Wasim M, Shi F, Liu J, et al. Extraction of cellulose to progress in cellulosic nanocomposites for their potential applications in supercapacitors and energy storage Devices. J Mater Sci.2021;56:14448-14486.
9. Deng L, Young RJ, Kinloch IA, et al. Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl Mater Interfaces . 2013;5:9983-9990.
10. Li Z, Liu J, Jiang K, Thundat T. Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy . 2016;25:161-169.
11. Lyu S, Chen Y, Zhang L, et al. Nanocellulose supported hierarchical structured polyaniline/nanocarbon nanocomposite electrode: Via layer-by-layer assembly for green flexible supercapacitors. RSC Adv . 2019;9:17824-17834.
12. Yuan Q, Ma MG. Conductive polypyrrole incorporated nanocellulose/MoS2 film for preparing flexible supercapacitor electrodes. Front Mater Sci .2021:1-14.
13. Chen Y, Lyu S, Han S, Chen Z, Wang W, Wang S. Nanocellulose/polypyrrole aerogel electrodes with higher conductivity via adding vapor grown nano-carbon fibers as conducting networks for supercapacitor application. RSC Adv . 2018;8:39918-39928.
14. Lv P, Meng Y, Song L, Pang H, Liu W. A self-supported electrode for supercapacitors based on nanocellulose/multi-walled carbon nanotubes/polypyrrole composite. RSC Adv . 2020;11:1109-1114.
15. Hou M, Xu M, Hu Y, Li B. Nanocellulose incorporated graphene/polypyrrole film with a sandwich-like architecture for preparing flexible supercapacitor electrodes. Electrochim Acta . 2019;313:245-254.
16. Xiong C, Zheng C, Nie S, et al. Fabrication of reduced graphene oxide-cellulose nanofibers based hybrid film with good hydrophilicity and conductivity as electrodes of supercapacitor. Cellulose . 2021;28:3733-3743.
17. Liao Z, Cheng J, Yu JH, Tian XL, Zhu MQ. Graphene aerogel with excellent property prepared by doping activated carbon and CNF for free-binder supercapacitor. Carbohydr Polym . 2022;286:119287.
18. Tan S, Li J, Zhou L, Chen P, Xu D, Xu Z. Fabrication of a flexible film electrode based on cellulose nanofibers aerogel dispersed with functionalized graphene decorated with SnO2 for supercapacitors. J Mater Sci . 2018;53:11648-11658.
19. Rabani I, Yoo J, Kim HS, et al. Highly dispersive Co3O4nanoparticles incorporated into a cellulose nanofiber for a high-performance flexible supercapacitor.Nanoscale . 2021;13:355-370.
20. Ge W, Cao S, Yang Y, Rojas OJ, Wang X. Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions. Chem Eng J . 2021;408:127306.
21. Liu Q, Chen Z, Jing S, et al. A foldable composite electrode with excellent electrochemical performance using microfibrillated cellulose fibers as a framework. J Mater Chem A . 2018;6:20338-20346.
22. Garino N, Lamberti A, Stassi S, et al. Multifunctional flexible membranes based on reduced graphene oxide/tin dioxide nanocomposite and cellulose fibers. Electrochim Acta . 2019;306:420-426.
23. Sun J, Liu Y, Wu Z, et al. Compressible, anisotropic lamellar cellulose-based carbon aerogels enhanced by carbon dots for superior energy storage and water deionization. Carbohydr Polym . 2021;252:117209.
24. Hu Z, Xu X, Wang X, Yu K, Hou J, Liang C. SnO2@rice husk cellulose composite as an anode for superior lithium ion batteries. New J Chem . 2019;43:8755-8760.
25. Pang J, Liu X, Zhang X, Wu Y, Sun R. Fabrication of cellulose film with enhanced mechanical properties in ionic liquid 1-allyl-3-methylimidaxolium chloride (AmimCl). Materials (Basel) . 2013;6:1270-1284.
26. Adjimi A, Zeggar ML, Attaf N, Aida MS. Fluorine-Doped Tin Oxide Thin Films Deposition by Sol-Gel Technique. J Cryst Process Technol . 2018;08:89-106.
27. Elci A, Demirtas O, Ozturk IM, Bek A, Nalbant Esenturk E. Synthesis of tin oxide-coated gold nanostars and evaluation of their surface-enhanced Raman scattering activities. J Mater Sci . 2018;53:16345-16356.
28. Das L, Koonathan LD, Kunwar A, Neogy S, Debnath AK, Adhikari S. Nontoxic photoluminescent tin oxide nanoparticles for cell imaging: Deep eutectic solvent mediated synthesis, tuning and mechanism. Mater Adv . 2021;2:4303-4315.
29. Cheng G, Zhou M, Wei YJ, Cheng F, Zhu PX. Comparison of mechanical reinforcement effects of cellulose nanocrystal, cellulose nanofiber, and microfibrillated cellulose in starch composites. Polym Compos . 2019;40:E365-E372.
30. Lee KM, Lee DJ, Ahn H. XRD and TEM studies on tin oxide (II) nanoparticles prepared by inert gas condensation. Mater Lett . 2004;58:3122-3125.
31. Tazikeh S, Akbari A, Talebi A, Talebi E. Synthesis and characterization of tin oxide nanoparticles via the co-precipitation method. Mater Sci Pol . 2014;32:98-101.
32. Janardhan E, Reddy MM, Reddy PV, Reddy MJ. Synthesis of SnO nanopatricles—A hydrothermal Approach. World J Nano Sci Eng . 2018;08:33-37.
33. Jang DM, Jung H, Hoa ND, Kim D, Hong SK, Kim H. Tin oxide-carbon nanotube composite for NO X sensing. J Nanosci Nanotechnol . 2012;12:1425-1428.
34. Scipioni R, Gazzoli D, Teocoli F, et al. Preparation and characterization of nanocomposite polymer membranes containing functionalized SnO2 additives. Membranes (Basel) . 2014;4:123-142.
35. Lämmel C, Schneider M, Weiser M, Michaelis A. Investigations of electrochemical double layer capacitor (EDLC) materials - A comparison of test methods. Materwiss Werksttech . 2013;44:641-649.
36. Guo D, Song X, Tan L, et al. A facile dissolved and reassembled strategy towards sandwich-like rGO@NiCoAl-LDHs with excellent supercapacitor performance. Chem Eng J . 2019;356:955-963.
37. Sethi M, Bhat DK. Facile solvothermal synthesis and high supercapacitor performance of NiCo2O4 nanorods. J Alloys Compd . 2019;781:1013-1020.
38. Liu T, Zhang L, Cheng B, You W, Yu J. Fabrication of a hierarchical NiO/C hollow sphere composite and its enhanced supercapacitor performance. Chem Commun . 2018;54:3731-3734.
39. Zhao Z, Xie Y. Electrochemical supercapacitor performance of boron and nitrogen co-doped porous carbon nanowires. J Power Sources . 2018;400:264-276.
40. Handayani M, Mulyaningsih Y, Aulia Anggoro M, et al. One-pot synthesis of reduced graphene oxide/chitosan/zinc oxide ternary nanocomposites for supercapacitor electrodes with enhanced electrochemical properties. Mater Lett . 2022;314:131846.