Fake News Detection via Graph-Based Markov Chains

Shashank Parmar
Department of Software Engineering
Delhi Technological University
New Delhi, India
parmarshashank11@gmail.com
Shashank Taneja
Department of Software Engineering
Delhi Technological University
New Delhi, India
shashanktaneja72@gmail.com
Rahul
Department of Software Engineering
Delhi Technological University
New Delhi, India
Rahul@dtu.ac.in

Abstract
Social media platforms have seen a major boom in the past decade. Apart from entertainment and establishing social connections, the use of social media to read news articles has become prevalent. News has not only become less costly but also fast and accessible. However, accessing news via social media has its own demerits. It is next to impossible for the end users to establish the validity of the news articles. Manual review of each and every article on the internet is neither quick nor economically feasible, considering the vast amount of news articles that are published on day-to-day basis. Hence, there arises a need for quick and highly accurate machine learning models to detect the fake news articles. In this paper, we propose a method to detect fake news via Graph based Markov chains. We initiate the classification process by first segregating the fake news articles from the real ones, then training two separate Markov Chains for both the classes, and finally calculating the probability that a news article was generated by a given Markov Chain. Our approach of establishing similarity between a text sequence and a Markov chain relies on probabilistic and statistical calculations, attained by performing random walks on the Markov chains. Such an approach has proven to provide a high accuracy on multiple datasets.
Keywords: Markov Chains, Fake news detection Online social media, Supervised Learning, Hidden Markov Model
1. Introduction
Fake news is often a result of clever wordplay. Fake news detection algor[footnoteRef:1]ithms often recognise each word as a feature. Such techniques fail to recognise clever wordplays as they do not give any weightage to the structure of the sentence [1], [2], [3], [4], [5], [6]. [1: Corresponding Author: Shashank Parmar, parmarshashank11@gmail.com, address: C-3/181, Yamuna Vihar, Delhi – 110053, India
]

E.g.: let us consider a real news, S1, “The government increased the taxation on petrol even though global prices have decreased by a huge margin”. Now consider a fake news, S2, “The government decreased the taxation on petrol even though global prices have increased by a huge margin”. The Bag of Words and the TF-IDF representation of the sentences S1 and S2 would be identical [1], [2], [3], [4], [5], [6]. Hence, a machine learning algorithm that makes use of such representations would fail to distinguish between these two sentences. Such cases promote the need of a machine learning model that not only has high accuracy but also gives weightage to the sentence structure.
Markov chains [7], [8], [9], [10], [11], [12], [13] give immense weightage to sentence structures. A hidden Markov model [12],[13] works on the assumption that a future state depends only on the current state and not any state before that. Each node in a Markov chain leads to a set of words that occurred after it in the training dataset. Such a construction makes wordplay detection easier.
Traditionally Hidden Markov Model (HMM) [12] based classification schemes function by training a single Hidden Markov Model for each class [14]. Then these HMMs are used to calculate class-conditional densities via the Bayes Classification paradigm. Then the sequence is classified upon which class-based Markov model would have most likely generated that sequence. Such a rule is known as maximum-likelihood (ML) classification rule [14].
The issue with such a Markov model-based classification is that it works upon the Bayes Classification paradigm [14]. This limits the model’s ability to take into consideration only the word frequencies and not the actual order of words. In this paper, we have proposed a new methodology of determining the likelihood that a sequence would have been generated by a given Markov model. This scheme takes into consideration the sentence structure, instead of just the word frequencies.
We have performed our experimentational work on the “Fake News” dataset from Kaggle [15] and the ISOT fake news dataset [16], [17]. We have then verified the results of our experiments on the WellFake dataset [18]. We have also compared our results with other previously published results [19], [20], [21].
2. Literature Survey
The literature regarding similarity-based classification is scarce. However, in the recent years Markov model and graph-based classification techniques have been quite popular. One of the first research works in this field was carried out by Martin Szummer and Tommi Jaakkola, who applied Markov models to perform classification. They made use of K-nearest neighbour (KNN) to define edges of an object with its neighbours. They then performed random walk on the data to classify the unlabelled data points [22]. Their research was further improved by Zhu et al. who introduced Gaussian Fields and Harmonic Functions to classify the unlabelled data [23]. Based on the research work by Zhu et al. Zhou at al. proposed a global and local consistency method based on the intuition of spreading activation networks [24]. Fei Wang and Changshui Zhang made further improvements by introducing a novel graph based semi supervised learning approach. They made use of neighbourhood information of objects. Their approach works on the assumption that a point can be reconstructed by a linear combination of its neighbours [25].
All the approaches quoted till now made use of some metric to calculate the similarity or dissimilarity between two objects. S. Hassan, R. Mihalcea and C. Banea made notable contributions in determining the edge weights between two objects. Traditional models, which generally relied on Bag of Words and TF-IDF data representations, made use of word frequencies and gave equal weightage to all the words. They employed Graph based Ranking algorithms and random walks on such graphs to find a more representative weight for a word [26]. Md. Rafiqul Islam and Md. Rakibul Islam made further contributions to the work by Hasan et al. by performing optimizations of the term weighing methods [27].
Bhagat et al. provided a survey of graph based-classification techniques such as the iterative classification method, random walk-based methods such as label propagation, graph regularization, adsorption, etc. The label propagation method, works on the underlying assumption that the probability of labelling a node, N, with a label, L, is the total probability that a random walk starting at node N will end at a node labelled L [28].
Ping He and Xiaohua Xu attempted to perform multiclass classification via Markov Chains. They marked all the labelled objects as absorbing states and all the unlabelled objects as transitive states. They verified their method on Text classification and Face recognition datasets [29].
Sam Blasiak and Huzefa Rangwala made use of Hidden Markov model variant for sequence classification. They performed classification by first converting sequences into fixed length vectors. They established that classification of these fixed length vectors is easier and more accurate as compared to performing classification on the sequences themselves [30].
Bicegoa et al. proposed a novel similarity-based classification of sequences via the Hidden Markov Model. He made use of the Hidden Markov Model to represent objects by a vector of similarities with respect to other objects [14].
Nguyen et al. proposed the method of fake news detection using Deep Markov Random fields, which aims to first establish correlation between news articles before applying Deep Learning models for classification. They established these correlations via the Markov Random Fields [31].
Mor et al. performed a survey of Hidden Markov models and their applications. He performed his study on nine different variants of the hidden Markov model namely:
1. First-order Hidden Markov Model
2. Higher order Hidden Markov Model
3. Hidden-semi–Markov Model
4. Factorial Hidden Markov Model
5. Second-order Hidden Markov Model
6. Layered Hidden Markov Model
7. Auto-regressive Hidden Markov Model
8. Non-stationary Hidden Markov Model
9. Hierarchical Hidden Markov Model
He summarised their usages domains as speech recognition, musicology, gesture recognition, tool wearing, part-of-speech tagging, bioinformatics, data pre-processing, network analysis, human activity recognition, label sequencing, earthquake prediction, etc. However, their paper lacked the domain of sequence classification [12]. The aim of this paper is to perform text sequence classification, w.r.t Fake News, via Graph based Markov Chains.
3. Methodology and Experiments
3.1. Markov Chains – a brief introduction
Consider a set of amino acid sequences (proteins).
Sequence,
S1 = {A, T, G, C}
S2 = {G, T, A, C}
S3 = {A, T, C, A}
S4 = {T, T, G, C}

Markov chains are built upon the Markov property, which states that a future state is dependent solely on the current state and not any state that occurred before it [9], [10], [11].
Amino acid “A” is followed by “T”, “C” and “T” in sequences S1, S2 and S3 respectively.
Based on the given amino acids, we can create a probability emission matrix, based on the Markov property, as follows [10]:
· Probability of “A” being followed by “T”: 2/3
· Probability of “A” being followed by “C”: 1/3
· Probability of “A being followed by “G”: 0/3
Similarly, probabilities can be calculated for all pairs of amino acids.
	
	A
	T
	G
	C

	A
	0
	0.67
	0
	0.34

	T
	0.20
	0.20
	0.20
	0.40

	G
	0
	0.34
	0
	0.67

	C
	1.00
	0
	0
	0

Table 1: Emission probability Matrix for amino acids
The emission probability matrix in table 1 has been visually represented in the form of Markov chain in figure 1.
[image: Diagram

Description automatically generated]
Figure 1: Markov Chain representation for amino acid sequences.

3.2. Probability of sequence generation from a given Markov chain
We now aim to determine the probability or likelihood that a particular sequence was generated by a given Markov model. Traditional approaches such make use of Bayesian Classification paradigm for such calculation [14]. However, as stated earlier, such a method relies solely on word count/frequencies and completely ignores the order of the words or the sentence structure. We aim to devise a method for probability calculation such that importance is paid to the word order as well.
Given a Markov Chain and its corresponding emission matrix, E, and s sequence, S = {o1, o2, o3, …, on}, the probability that S belong to, or is generated from, M can be calculated as:

 eq. 1

For e.g.: consider the emission matrix, E, shown in Table 1 and an amino acid sequence, S = {T, A, C}.

		= 0.20 * 0.34
		= 0.068
3.2.1 Dealing with Infinitesimal results
 defined in eq.1 is quite trivial to compute. However, multiplication of probabilities can lead to precision errors as the final product may end up becoming infinitesimal.
Hence, we have made use of log-based probabilities to deal with infinitesimal probability results. Eq. 1 is modified as:
 eq.2

 eq.3
This simple alteration eliminates the chances of dealing with infinitesimal values and prevent any sort of precision errors.

[image: Diagram

Description automatically generated]
Figure 2: Classification methodology

3.3. Classification Methodology
In order to classify the tuples via Markov models, we begin by first splitting the training dataset. In the case of Fake News Detection, we split the training dataset based on whether the news is real or fake [14].
We then consider each of the split datasets and generate a Markov model or Markov chain for each. These Markov chains will allow us to find the probability that a testing tuple was generated by either of them.
This approach has been summarised in figure 2.
Let the probability that the testing tuple was generated by the Markov chain representing true news be equal to P1, and the probability that the testing tuple was generated by the Markov chain representing fake news be equal to P2.
If P1 > P2, then the tuple is classified as “Real News” else it is classified as “Fake News”.
3.4. Challenges in the classification methodology

Our classification methodology, though robust, but assumes a training model with all the possible words in the English language with all possible connections between them. However, it is impossible to come up with such a training dataset.
In English language, the average sentence length is 15-20 words [32]. Total words in the English language are estimated to be around 171,476 [33]. Hence, the total possible sentence-permutations come out to be (171476)15. It is impossible to gather a dataset with such a large number of articles.
To better understand this let us consider the following example:
Fake News Training Dataset:
1. “Shashank eats apples.”
2. “Shashank plays football.”
3. “Apples grow on trees.”
Shashank
eats
apples
plays
football
grow
trees
on

Figure 3: Markov chain to represent the training data.
In figure 3, solid arrows represent connections from the training dataset, whereas dotted edges represent edges which cannot be found in the training dataset but are required to classify the testing tuple, T = “Shashank grows a tree.” Such cases occur frequently when the classification methodology discussed in section 3 is employed to classify fake news data.
3.5. Solutions for the missing edge problem
In order to solve the missing edge problem discussed in Section 4, we have conducted numerous experiments. The datasets used to perform these experiments are Fake news dataset from kaggle.com [15] and the ISOT Fake news dataset [16], [17]. We have used 80% of the dataset for training and the remaining 20% for testing.
Both the datasets make use of ‘1’ to represent fake news and ‘0’ to represent true news.
Metrics used:
a) Accuracy
b) Precision
c) Recall Score
d) F1-Score
3.5.1 Approach 1: Ignoring the missing edges altogether
In this approach we ignored the problem of missing edges altogether. While performing random walks for classification, whenever we encountered a missing edge, we simply stopped the process and assumed the to be negative infinity (-1015).
In this approach, we encountered a plethora of tuples which could not be classified as neither the fake news Markov chain nor the true news Markov chain could accommodate them. These entries were marked by ‘2’. The results are summarised in Table 2, Figure 4, and Figure 5.
	
	Accuracy
	Precision
	Recall
	F1-score

	Kaggle Dataset [15]
	0.021
	0.021

	0.021

	0.021

	ISOT [16], [17]
	0.211

	0.211
	0.211

	0.211

Table 2: Result metrics for 3.5.1
[image: Text

Description automatically generated]
Figure 4: Confusion Matrix for kaggle dataset [15], for 3.5.1
[image: Text

Description automatically generated]
Figure 5: Confusion Matrix for ISOT fake news dataset [16], [17], for 3.5.1
From the results (Table 2, Figure 4 and Figure 5) we can conclude that not only the model has poor accuracy, recall, precision and f1-score but also is unable to classify majority of the tuples.
3.5.2 Approach 2: Probability smoothing via constant value
What does the weight of an edge in a Markov chain represent? It simply represents the probability that a given word will be followed by another word. These edges weights give us an idea regarding how strongly the two words are connected.
In this approach we assume the missing edges to have a probability of the order of 10-8. Why such a miniscule value? Such a value has been chosen arbitrarily and its magnitude has been kept exceedingly small in comparison to the other edge weights in order to represent that the two words are very loosely connected/interrelated. The results are summarised in Table 3, Figure 6, and Figure 7.
	
	Accuracy
	Precision
	Recall
	F1-score

	Kaggle Dataset [15]
	0.895
	0.993

	0.800

	0.886

	ISOT [16], [17]
	0.975

	0.973
	0.979
	0.976

Table 3: Result metrics for 3.5.2

[image:]
Figure 6: Confusion Matrix for Kaggle dataset [15], for 3.5.2

[image: Graphical user interface, text, application

Description automatically generated]
Figure 7: Confusion Matrix for ISOT dataset [16], [17], 3.5.2

3.5.3 Defining a few terms:
Before we discuss other approaches for probability smoothing, let us first define a few terms.
[image: Chart, diagram

Description automatically generated]
Figure 8: Defining outward probabilities
Consider a node, let us name it as A, as in Figure 8. Let this node be connected to n different nodes. The probability of reaching these n nodes be , , , , …, . Using these probabilities, we define terms such as outmean, outmedian, outGM and outHM, where outmean is the mean of all the outgoing probabilities, outmedian if the median of the outgoing probabilities, outGM is the geometric mean of the outgoing probabilities and outHM is the harmonic mean of the outgoing probabilities.
[image: Diagram, schematic

Description automatically generated]
Figure 9: Defining inward probabilities
Like outward probabilities (Figure 8), we can also define inward probabilities. Consider a node, A, let this node be directly reachable from n different nodes. Let the probabilities than these n nodes reach node ‘A’ be equal to , , , …., . Using these probabilities, we define terms such as inmean, inmedian, inGM and inHM, where inmean is the mean of all the incoming probabilities, inmedian if the median of the incoming probabilities, inGM is the geometric mean of the incoming probabilities and inHM is the harmonic mean of the incoming probabilities.
3.5.4 Approach 3: Imaginary Edge insertion
In this approach we insert a single imaginary edge between the two disconnected nodes. We then try applying different measures discussed in figure 8 and 9 as the edge weights.
B
A

Figure 10: Single imaginary edge insertion between two disconnected nodes
a) Probability smoothing via (outmean)A:

Note: in case the node ‘A’ does not exist in the Markov chain, the probability is assumed to be 10-8, as discussed in Approach 2.
The results for this experiment are summarised in Table 4.
	
	Accuracy
	Precision
	Recall
	F1-score

	Kaggle Dataset [15]
	0.694
	0.635
	0.941
	0.758

	ISOT [16], [17]
	0.814

	0.914
	0.707
	0.798

 Table 4: Result metrics for 3.5.4 (a)

b) Probability smoothing via (inmean)B:

Note: in case the node ‘B’ does not exist in the Markov chain, the probability is assumed to be 10-8, as discussed in Approach 2.
The results of this experiment are summarised in Table 5.
	
	Accuracy
	Precision
	Recall
	F1-score

	Kaggle Dataset [15]
	0.553

	0.540

	0.839

	0.657

	ISOT [16], [17]
	0.400

	0.413
	0.373
	0.392

Table 5: Result metrics for 3.5.4 (b)
c) Probability smoothing via the mean of (inmean)B and (outmean)A:

Note: in case either node ‘B’ or node ‘A’ do not exist in the Markov chain, the probability is assumed to be 10-8, as discussed in Approach 2.
The results of this experiment are summarised in Table 6.
	
	Accuracy
	Precision
	Recall
	F1-score

	Kaggle Dataset [15]
	0.668

	0.629

	0.852

	0.724

	ISOT [16], [17]
	0.719

	0.730
	0.731
	0.731

Table 6: Result metrics for 3.5.4 (c)

d) Probability smoothing via the geometric mean of (inmean)B and (outmean)A:

Note: in case the node ‘B’ does not exist in the Markov chain, the probability is assumed to be 10-8, as discussed in Approach 2.
The results of this experiment are summarised in Table 7.
	
	Accuracy
	Precision
	Recall
	F1-score

	Kaggle Dataset [15]
	0.703
	0.652
	0.901
	0.756

	ISOT [16], [17]
	0.800

	0.824
	0.786
	0.804

 Table 7: Result metrics for 3.5.4 (d)
e) Probability smoothing via the harmonic mean of (inmean)B and (outmean)A:

Note: in case either node ‘B’ or node ‘A’ do not exist in the Markov chain, the probability is assumed to be 10-8, as discussed in Approach 2.
The results of this experiment are summarised in Table 8.
	
	Accuracy
	Precision
	Recall
	F1-score

	Kaggle Dataset [15]
	0.761

	0.702

	0.925

	0.798

	ISOT [16], [17]
	0.884

	0.914

	0.859

	0.886

 Table 8: Result metrics for 3.5.4 (e)
3.5.5 Approach 4: Imaginary State Insertion
Methods discussed in Approach 3 were considerably better than the original model (discussed in Approach 1). However, we hit a plateau at 0.761(experiment 3e) and 0.884(experiment 3e) accuracy for the Kaggle [15] and ISOT [16], [17] datasets, respectively.
Hence, we modified our approach. In this approach instead of inserting an imaginary edge we inserted an imaginary state ‘i’.
Note: For all experiments in approach 4 if either node ‘B’ or node ‘A’ do not exist in the Markov chain, the probability is assumed to be 10-8, as discussed in Approach 2.
i

B
A

Figure 11: Imaginary state insertion between two disconnected nodes
Now, Probability of reaching B from A can be simply calculated as:

But how to calculate ?
a) Probability smoothing via (outmean)A and (inmean)B

We found a substantial improvement in the results when we assigned the value of (outmean)A and (inmean)B to respectively.
The results for this experiment have been summarised in Table 9.
	
	Accuracy
	Precision
	Recall
	F1-score

	Kaggle Dataset [15]
	0.910

	0.884

	0.948

	0.915

	ISOT [16], [17]
	0.977
	0.973
	0.983
	0.978

Table 9: Results for 3.5.5 (a)
3.5.6 Introducing Penalizing Factors
The results we achieved in 3.5.5 (a) were considerably better that Approach 1(3.5.1), 2(3.5.2), and 3(3.5.4). In 3.5.5 (a) we gave equal weightage to both the edges. In the next set of experiments, we gave different weightage to both the edges.
We can express this mathematically as (from figure 11),

where, P1 and P2 are the penalizing factors for Edge(A,i) and Edge(i,B) respectively (as in figure 11).
We now tried to study the effect of these penalizing factors on the accuracy.

a) Probability smoothing via (outmean)A and (inmean)B and range P1 and P2 from 1 to 5
X-axis denotes P1 and Y-axis denotes P2 in Table 10 and 11. Table 10 and 11 summarise the accuracy findings for the Kaggle and ISOT dataset. Figure 12 and 13 shows how the accuracy increases with the change in the penalizing factors for the Kaggle and ISOT datasets respectively.

	
	1
	2
	3
	4
	5

	1
	0.911
	0.932
	0.933
	0.930
	0.923

	2
	0.931
	0.932
	0.928
	0.924
	0.919

	3
	0.926
	0.923
	0.921
	0.917
	0.912

	4
	0.916
	0.914
	0.912
	0.909
	0.908

	5
	0.908
	0.909
	0.906
	0.906
	0.903

Table 10: Effect of penalizing factors on (outmean)A and (inmean)B; X-axis: P1, Y-axis: P2; Dataset: Kaggle, (3.5.6 a)
[image:]
Figure 12: Effect of penalizing factors on (outmean)A and (inmean)B; X-axis: (P1, P2), Y-axis: accuracy; Dataset: Kaggle, (3.5.6 a)

	
	1
	2
	3
	4
	5

	1
	0.975
	0.976
	0.976
	0.974
	0.973

	2
	0.976
	0.975
	0.974
	0.974
	0.972

	3
	0.973
	0.973
	0.974
	0.973
	0.971

	4
	0.972
	0.972
	0.971
	0.970
	0.969

	5
	0.970
	0.971
	0.970
	0.969
	0.968

Table 11: Effect of penalizing factors on (outmean)A and (inmean)B; X-axis: P1, Y-axis: P2; Dataset: ISOT Fake News Dataset, (3.5.6 a)
[image:]
Figure 13: Effect of penalizing factors on (outmean)A and (inmean)B; X-axis: (P1, P2), Y-axis: accuracy; Dataset: ISOT Fake News Dataset, (3.5.6 a)
b) Probability smoothing via (outGM)A and (inGM)B and range P1 and P2 from 1 to 5
X-axis denotes P1 and Y-axis denotes P2 in Table 12 and 13. Table 12 and 13 summarise the accuracy findings for the Kaggle and ISOT dataset. Figure 14 and 15 shows how the accuracy increases with the change in the penalizing factors for the Kaggle and ISOT datasets respectively.
	
	1
	2
	3
	4
	5

	1
	0.935
	0.936
	0.932
	0.925
	0.920

	2
	0.930
	0.927
	0.922
	0.917
	0.912

	3
	0.921
	0.915
	0.913
	0.909
	0.907

	4
	0.912
	0.909
	0.907
	0.906
	0.903

	5
	0.906
	0.905
	0.902
	0.902
	0.901

Table 12: Effect of penalizing factors on (outGM)A and (inGM)B; X-axis: P1, Y-axis: P2; Dataset: Kaggle, (3.5.6 b)

[image:]
Figure 14: Effect of penalizing factors on (outGM)A and (inGM)B; X-axis: (P1, P2), Y-axis: accuracy; Dataset: Kaggle, (3.5.6 b)
	
	1
	2
	3
	4
	5

	1
	0.936
	0.974
	0.973
	0.972
	0.971

	2
	0.973
	0.972
	0.972
	0.970
	0.969

	3
	0.971
	0.971
	0.970
	0.969
	0.968

	4
	0.968
	0.968
	0.969
	0.968
	0.967

	5
	0.966
	0.966
	0.967
	0.966
	0.966

Table 13: Effect of penalizing factors on (outGM)A and (inGM)B; X-axis: P1, Y-axis: P2; Dataset: ISOT Fake News Dataset, (3.5.6 b)
[image: Chart, line chart

Description automatically generated]
Figure 15: Effect of penalizing factors on (outGM)A and (inGM)B; X-axis: (P1, P2), Y-axis: accuracy; Dataset: ISOT Fake News Dataset, (3.5.6 b)
c) Probability smoothing via (outHM)A and (inHM)B and range P1 and P2 from 1 to 5
X-axis denotes P1 and Y-axis denotes P2 in Table 14 and 15. Table 14 and 15 summarise the accuracy findings for the Kaggle and ISOT dataset. Figure 16 and 17 shows how the accuracy increases with the change in the penalizing factors for the Kaggle and ISOT datasets respectively.
	
	1
	2
	3
	4
	5

	1
	0.935
	0.929
	0.920
	0.911
	0.906

	2
	0.925
	0.917
	0.911
	0.905
	0.899

	3
	0.915
	0.909
	0.905
	0.901
	0.896

	4
	0.907
	0.903
	0.900
	0.896
	0.893

	5
	0.902
	0.898
	0.896
	0.893
	0.887

Table 14: Effect of penalizing factors on (outHM)A and (inHM)B; X-axis: P1, Y-axis: P2; Dataset: Kaggle, (3.5.6 c)
[image:]
Figure 16: Effect of penalizing factors on (outHM)A and (inHM)B; X-axis: (P1, P2), Y-axis: accuracy; Dataset: Kaggle, (3.5.6 c)
	
	1
	2
	3
	4
	5

	1
	0.979
	0.977
	0.974
	0.973
	0.971

	2
	0.976
	0.974
	0.973
	0.972
	0.970

	3
	0.973
	0.973
	0.971
	0.970
	0.969

	4
	0.971
	0.970
	0.969
	0.968
	0.967

	5
	0.969
	0.968
	0.968
	0.967
	0.966

Table 15: Effect of penalizing factors on (outHM)A and (inHM)B; X-axis: P1, Y-axis: P2; Dataset: ISOT Fake News Dataset, (3.5.6 c)
[image: Chart, line chart

Description automatically generated]
Figure 17: Effect of penalizing factors on (outHM)A and (inHM)B; X-axis: (P1, P2), Y-axis: accuracy; Dataset: ISOT Fake News Dataset, (3.5.6 c)
d) Probability smoothing via (outmedian)A and (inmedian)B and range P1 and P2 from 1 to 5
X-axis denotes P1 and Y-axis denotes P2 in Table 16 and 17. Table 16 and 17 summarise the accuracy findings for the Kaggle and ISOT dataset. Figure 18 and 19 shows how the accuracy increases with the change in the penalizing factors for the Kaggle and ISOT datasets respectively.
	
	1
	2
	3
	4
	5

	1
	0.934
	0.932
	0.926
	0.918
	0.912

	2
	0.922
	0.917
	0.914
	0.909
	0.906

	3
	0.911
	0.911
	0.905
	0.904
	0.901

	4
	0.904
	0.902
	0.901
	0.898
	0.897

	5
	0.898
	0.897
	0.896
	0.896
	0.894

Table 16: Effect of penalizing factors on (outmedian)A and (inmedian)B; X-axis: P1, Y-axis: P2; Dataset: Kaggle, (3.5.6 d)
[image:]
Figure 18: Effect of penalizing factors on (outmedian)A and (inmedian)B; X-axis: (P1, P2), Y-axis: accuracy; Dataset: Kaggle, (3.5.6 d)

	
	1
	2
	3
	4
	5

	1
	0.978
	0.978
	0.976
	0.973
	0.971

	2
	0.977
	0.976
	0.973
	0.971
	0.971

	3
	0.974
	0.972
	0.970
	0.970
	0.969

	4
	0.971
	0.970
	0.969
	0.968
	0.967

	5
	0.968
	0.968
	0.967
	0.966
	0.966

Table 17: Effect of penalizing factors on (outmedian)A and (inmedian)B; X-axis: P1, Y-axis: P2; Dataset: ISOT Fake News Dataset, (3.5.6 d)

[image:]
Figure 19: Effect of penalizing factors on (outmedian)A and (inmedian)B; X-axis: (P1, P2), Y-axis: accuracy; Dataset: ISOT Fake News Dataset, (3.5.6 d)
4. Analysing and comparing the results
4.1 Concluding with a formula and summarising results
We have achieved considerable accuracy on both the Kaggle [15] and ISOT [16], [17] fake news datasets, via our experimentation, especially from the experiments caried out in the section 3.5.6.
Based on the experimentation performed, we have concluded with the following formula:

where,
· P(A-B) is the probability of reaching node B from node A. (A and B are disconnected nodes in the Markov chain).
· M.C.T is the measure of central tendency. For e.g.: mean, geometric mean, harmonic mean, and median.
· P1 and P2 are the penalizing factors.
· is the measure of central tendency of outgoing probabilities for the initial edge ‘A’.
· is the measure of central tendency of incoming probabilities for the final edge ‘B’.
From the figure 12 to 19, we can observe that the maximum accuracy is obtained when (P1, P2) range from [1, 3].
The results of our work have been summarised on three different datasets (table 18). The results have been calculated by keeping/standardising:
·
·
· (P1, P2): (2, 2)

	
	Accuracy
	Precision
	Recall
	F1-score

	Kaggle [15]
	0.931
	0.946
	0.918
	0.932

	ISOT [16], [17]
	0.975
	0.972
	0.980
	0.976

	WELFake [18]
	0.931
	0.939
	0.925
	0.932

Table 18: Summary of results obtained on different datasets.
4.2 Comparing results
We have compared our results (table18) with the works by Feyza Altunbey Ozbay and Bilal Alatas [19] (table 19, table 20), Reham Jehad and Suhad A. Yousif [20] (table 21) and Hadeer Ahmed, Issa Traore1, and Sherif Saad [21] (table 22).

[image: Table

Description automatically generated]
Table 19: The performance of different supervised artificial intelligence algorithms for the ISOT Fake News data set. Results compiled by Feyza Altunbey Ozbay and Bilal Alatas.[19]

4.2.1 Comparing our results (table 18: ISOT) with the work by Feyza Altunbey Ozbay and Bilal Alatas [19] (table 19)
	
	Accuracy
	Precision
	Recall
	F1-score

	Our results (table 18: ISOT)
	0.975
	0.972
	0.980
	0.976

	Feyza Altunbey Ozbay and Bilal Alatas [19] (table 19)
	0.968
(Decision Tree)
	0.963
(Decision Tree)
	1.000
(Zero-R, CVPS, WIHW)
	0.968
(Decision Tree)

Table 20: Comparing our results (table 18: ISOT) with the works by Feyza Altunbey Ozbay and Bilal Alatas [19] (table 19)
From table 20, we can conclude that our model has the highest accuracy, precision and F1-score as compared to the works compiled Feyza Altunbey Ozbay and Bilal Alatas [19] (table19).
4.2.2 Comparing our results (table 18: Kaggle) with the work by Reham Jehad and Suhad A. Yousif [20] (table 21)
	
	Accuracy
	Precision
	Recall
	F1-score

	Our results (table 18: Kaggle)
	0.931
	0.946
	0.918
	0.932

	Reham Jehad and Suhad A. Yousif [20]
	0.8911 (Decision Trees)
	0.921 (Random Forest)
	0.8839 (Decision Trees)
	N/A

Table 21: Comparing our results (table 18: Kaggle) with the works by Reham Jehad and Suhad A. Yousif [20]
From table 21, we can conclude that our model has the highest accuracy, recall and precision as compared to the works compiled by Reham Jehad and Suhad A. Yousif [20]
4.2.3 Comparing our results (table 18: ISOT) with the work by Hadeer Ahmed, Issa Traore1, and Sherif Saad [21] (table 22)
	
	Accuracy
	Precision
	Recall
	F1-score

	Our results (table 18: ISOT)
	0.975
	0.972
	0.980
	0.976

	Hadeer Ahmed, Issa Traore1, and Sherif Saad [21]
	0.920
	N/A
	N/A
	N/A

Table 22: Comparing our results (table 18: ISOT) with the works by Hadeer Ahmed, Issa Traore1, and Sherif Saad [21]
From table 22, we can conclude that our model has the highest accuracy as compared to the works compiled by Hadeer Ahmed, Issa Traore1, and Sherif Saad [21].
5. Conclusion and Future Work
Social media platforms have seen a major boom in the past decade. The use of social media to read news articles has become prevalent. However, it is next to impossible for the end users to establish the validity of the news articles. Hence, there arises a need for quick and highly accurate machine learning models to detect the fake news articles. In this study we have proposed a new fake news classification model. We have performed a series of experiments to verify our model. In our experiments we have monitored parameters such as accuracy, precision, recall and F1-score. We have verified our results on 3 well known datasets namely, ISOT Fake News dataset, WELFake Dataset and a fake news dataset from kaggle. We have also compared our results on the ISOT Fake News Dataset and Kaggle dataset with the results published by numerous authors [19], [20], [21] and have found that our model works considerably better than the previously proposed solutions.
In terms of future work, we aim to further improve the accuracy of our model and apply it on diverse kinds of sequence-based datasets.
References
[1] D. Rohera et al., A Taxonomy of Fake News Classification Techniques: Survey and Implementation Aspects, in IEEE Access, vol. 10 (2022) pp. 30367-30394, doi: 10.1109/ACCESS.2022.3159651.
[2] K. Poddar, G. B. Amali D. and K. S. Umadevi, Comparison of Various Machine Learning Models for Accurate Detection of Fake News, 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), (2019) pp. 1-5, doi: 10.1109/i-PACT44901.2019.8960044.
[3] S. Lyu and D. C. -T. Lo, Fake News Detection by Decision Tree, 2020 SoutheastCon, (2020) pp. 1-2, doi: 10.1109/SoutheastCon44009.2020.9249688.
[4] M. Granik and V. Mesyura, Fake news detection using naive Bayes classifier, 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), (2017) pp. 900-903, doi: 10.1109/UKRCON.2017.8100379.
[5] A. Jain and A. Kasbe, Fake News Detection, 2018 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), (2018) pp. 1-5, doi: 10.1109/SCEECS.2018.8546944.
[6] P. Jain, S. Sharma, Monica and P. K. Aggarwal, Classifying Fake News Detection Using SVM, Naive Bayes and LSTM, 2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence), (2022) pp. 460-464, doi: 10.1109/Confluence52989.2022.9734129.
[7] Ching, WK., Huang, X., Ng, M.K., Siu, TK, Introduction, in: Markov Chains, International Series in Operations Research & Management Science, vol 189, Springer, Boston, MA, (2013), https://doi.org/10.1007/978-1-4614-6312-2_1
[8] Ching, WK., Huang, X., Ng, M.K., Siu, TK, Hidden Markov Chains, in: Markov Chains, International Series in Operations Research & Management Science, vol 189, Springer, Boston, MA, (2013), https://doi.org/10.1007/978-1-4614-6312-2_8
[9] Chung, K.L, Fundamental definitions, in: Markov Chains with Stationary Transition Probabilities, Die Grundlehren der Mathematischen Wissenschaften, vol 104, Springer, Berlin, Heidelberg, (1960), https://doi.org/10.1007/978-3-642-49686-8_1
[10] Chung, K.L, Transition probabilities, in: Markov Chains with Stationary Transition Probabilities, Die Grundlehren der Mathematischen Wissenschaften, vol 104, Springer, Berlin, Heidelberg, (1960), https://doi.org/10.1007/978-3-642-49686-8_2
[11] Chung, K.L, A random walk example, in: Markov Chains with Stationary Transition Probabilities, Die Grundlehren der Mathematischen Wissenschaften, vol 104, Springer, Berlin, Heidelberg, (1960), https://doi.org/10.1007/978-3-642-49686-8_12
[12] B. Mor, S. Garhwal and A. Kumar, A Systematic Review of Hidden Markov Models and Their Applications, Arch Computational Methods Eng, 28 (2021) 1429–1448, https://doi.org/10.1007/s11831-020-09422-4
[13] Pietrzykowski, Marcin & Sałabun, Applications of Hidden Markov Model: state-of-the-art, International Journal of Computer Technology and Applications, Vol 5(4) (2014) 1384-1391.
[14] M. Bicego, V. Murino, and M. A. T. Figueiredo. Similarity-based classification of sequences using hidden markov models. Pattern Recognition, 37(12):2281–2291, 2004.
[dataset] [15] WilliamLifferth, (2018), Fake News, Kaggle, https://kaggle.com/competitions/fake-news
[dataset] [16] Ahmed H, Traore I, Saad S. “Detecting opinion spams and fake news using text classification”, Journal of Security and Privacy, Volume 1, Issue 1, Wiley, January/February 2018.
[dataset] [17] Ahmed H, Traore I, Saad S. (2017) “Detection of Online Fake News Using N-Gram Analysis and Machine Learning Techniques. In: Traore I., Woungang I., Awad A. (eds) Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments. ISDDC 2017. Lecture Notes in Computer Science, vol 10618. Springer, Cham (pp. 127- 138).
[dataset] [18] Pawan Kumar Verma, Prateek Agrawal, & Radu Prodan. (2021). WELFake dataset for fake news detection in text data [Data set]. In IEEE Transactions on Computational Social Systems (0.1, Numbers doi: 10.1109/TCSS.2021.3068519, pp. 1–13), Zenodo, https://doi.org/10.5281/zenodo.4561253
[19] F. A. Ozbay and B. Alatas, Fake news detection within online social media using supervised artificial intelligence algorithms, Physica A, 540 (2020) 123174, doi: https://doi.org/10.1016/j.physa.2019.123174
[20] R. Jehad and S. A. Yousif, Fake News Classification Using Random Forest and Decision Tree (J48), ANJS, Vol.23(4) (2020) pp. 49-55, doi: 10.22401/ANJS.23.4.09
[21] H. Ahmed, I. Traore, S. Saad, Detection of Online Fake News Using N-Gram Analysis and Machine Learning Techniques, in: Traore, I., Woungang, I., Awad, A. (eds) Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments, ISDDC 2017, Lecture Notes in Computer Science (), vol 10618, Springer, Cham (2017), doi: https://doi.org/10.1007/978-3-319-69155-8_9
[22] M. Szummer and T. Jaakkola, Partially labeled classification with Markov random walks, Proc. 14th Int. Conf. Neural Inf. Process. Syst. Natural Synthetic, (2001) pp. 945-952, doi: https://dl.acm.org/doi/10.5555/2980539.2980661
[23] X. Zhu, Z. Ghahramani, and J. Lafferty, Semi-supervised learning using gaussian fields and harmonic functions, Proceedings of the 20th International Conference on Machine Learning, (2003) pp. 912-919, doi: https://dl.acm.org/doi/10.5555/3041838.3041953
[24] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, Learning with local and global consistency, Advances in Neural Information Processing Systems, (2004) pp. 321–328, doi: https://dl.acm.org/doi/10.5555/2981345.2981386
[25] F. Wang and C. Zhang, Label Propagation through Linear Neighborhoods, IEEE Transactions on Knowledge and Data Engineering, vol. 20 (2008) pp. 55-67, doi: https://doi.org/10.1109/TKDE.2007.190672
[26] S. Hassan, R. Mihalcea and C. Banea, Random-Walk Term Weighting for Improved Text Classification, International Conference on Semantic Computing (ICSC 2007), (2007) pp. 242-249, doi: 10.1109/ICSC.2007.56.
[27] M. R. Islam and M. R. Islam, An effective term weighting method using random walk model for text classification, 2008 11th International Conference on Computer and Information Technology, (2008) pp. 411-414, doi: 10.1109/ICCITECHN.2008.4803000.
[28] S. Bhagat, G. Cormode, S. Muthukrishnan, Node Classification in Social Networks, in: Aggarwal, C. (eds) Social Network Data Analytics. Springer, Boston, MA, (2011), doi: https://doi.org/10.1007/978-1-4419-8462-3_5
[29] P. He and X. Xu, Classification with Graph-Based Markov Chain, in: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds) Nature-Inspired Computation and Machine Learning. MICAI 2014. Lecture Notes in Computer Science(), vol 8857. Springer, Cham, (2014), doi: https://doi.org/10.1007/978-3-319-13650-9_28
[30] S. Blasiak and H. Rangwala, A hidden markov model variant for sequence classification, Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI), (2011) pp. 1192–1197, doi: https://dl.acm.org/doi/10.5555/2283516.2283596
[31] D. M. Nguyen, T. H. Do, R. Calderbank, and N. Deligiannis. Fake News Detection using Deep Markov Random Fields, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), (2019) pp. 1391–1400, doi: http://dx.doi.org/10.18653/v1/N19-1141
[32] Technical Communicators Association, How many words make a sentence?, https://techcomm.nz/Story?Action=View&Story_id=106, 2016, (accessed 23rd December, 2022)
[33] BBC, How many words do you need to speak a language?, https://www.bbc.com/news/world-44569277, 2018, (accessed 23rd December, 2022)
image3.png
confusion matrix(Y_test, pred, labels=[o, 1, 2])

array([[o, 0, 2029],
[1, 91, 2030],
[e, e, o]], dtype=int64)

image4.png
confusion_matrix(Y_test, pred, labels=[o, 1, 2])

array([[169, 0, 4091],
[o, 1733, 2987],
[e, e, o]], dtype=int64)

image5.png
confusion_matrix(Y_test, pred, labels=[o, 1])

array([[2018, 11],
[424, 1698]], dtype=intea)

image6.png
confusion_matrix(Y_test, pred, labels=[o, 1])

array([[4222, 122],
[94, 4542]], dtype=intea)

image7.png
", P

i=1out;

Olllmeqn = ==

i ilities, Pyye;]
[Median of all the outgoing probabili out;
OUtmedian =

* o * Poye,
=1 * Poury * Pouts
outey = \[Pout; * Pout,

n

t1 ty 3 (t)
) () (1 ut) Pou n
(1 ou; Pou o

outyy =

image8.png
inmean -

iNmeaian = [Median of all the incoming probabilities, Pi,;]

i
ngu = \/Piny * Ping * Ping * ¥ Pinyy

n

ingy =
))+)+ ()
+ + ot
(Pin1 Pin, Ping P;

inp

image9.png
0930

0925

0920

Accuracy

0915

0910

0.905

5554534,551445211354,34,241342533321524312314211,22213
Penalizing Factors (P1, P2)

image10.png
0976

0975

0974

0973

Accuracy
°
©
N

0971

0970

0969

55544,54,45153524,335254,142153,43,13,2332423141122132112
Penalizing Factors (P1, P2)

image11.png
0935

0930

0925

0920

Accuracy

0915

0910

0905

0.900

5554534,5524451354,342342541333224153123142221131112
Penalizing Factors (P1, P2)

image12.png
0976

0974

0972

Accuracy

0970

0968

0.966

5152555453454,14,43,54,24,3342524331531322314221,3211211
Penalizing Factors (P1, P2)

image13.png
Accuracy

093

092

091

090

089

55544,54,453355225433451423324154132231,4312213211211
Penalizing Factors (P1, P2)

image14.png
Accuracy

0978

0976

0974

0972

0970

0968

0966

55544,5535244514335344,22541153324233214311322211211
Penalizing Factors (P1, P2)

image15.png
Accuracy

0935

0930

0925

0920

0915

0910

0.905

0.900

05895

555453524,54451354,34,2344133252432311523221421131211
Penalizing Factors (P1, P2)

image16.png
0978

0976

0974

o
o
&

Accuracy

0970

0968

0.966

55544,5534,4525143353,44,2332541241532231,4311322211112
Penalizing Factors (P1, P2)

image17.png
Accuracy Precision Recall F-measure
BayesNet 0,586 0,587 0,586 0,586
JRip 0,607 0611 0,588 0,599
OneR 0,559 0,567 0,560 0,547
Decision Stump 0,564 0,574 0,564 0,549
ZeroR 0,501 0,501 1,000 0,667
SGD 0,589 0,590 0,583 0,586
CVPS 0,501 0,501 1,000 0,667
RFC 0,526 0,525 0,534 0,530
LMT 0,607 0,604 0,616 0610
LWL 0,570 0,573 0,570 0,566
CvC 0,553 0,556 0,526 0,541
WIHW 0,501 0,501 1,000 0,667
Ridor 0,557 0,563 0,558 0,549
MLP 0,565 0,565 0,571 0,568
OLM 0,516 0,540 0,516 0,430
SimpleCart 0,604 0,607 0,586 0,597
ASC 0,588 0,598 0,534 0,564
J48 0,558 0,558 0,563 0,560
SMO 0,534 0,536 0,489 0512
Bagging 0,598 0,603 0,576 0,589
Decision Tree 0,968 0,963 0,973 0,968
1Bk 0,551 0,551 0,551 0,550
KLR 0,606 0,605 0,614 0,609

image1.png
0.20

image2.png
Training
Dataset

True News Fake News

Markov Model for “True News” Markov Model for “Fake News”
l Testing Tuple: {word1, word2, word4, word5} l
Prrue=Pfword1, word2) ™ Piword2, worday™* Pgworda, words} Ptake=Pfword1, word2) ™ Piword2, worday™* Pgworda, words)

If Pirue > Proie then the tuple can be classified as true, else false.

