References
1. Preetam S, Nahak BK, Patra S, Toncu
DC, Park S, Syväjärvi M, et al. Emergence of microfluidics for next
generation biomedical devices. Biosensors and Bioelectronics: X.
2022;10:100106.
2. Akther F, Little P, Li Z, Nguyen
N-T, Ta HT. Hydrogels as artificial matrices for cell seeding in
microfluidic devices. RSC advances. 2020;10(71):43682-703.
3. Morbioli GG, Speller NC, Stockton
AM. A practical guide to rapid-prototyping of PDMS-based microfluidic
devices: A tutorial. Analytica Chimica Acta. 2020;1135:150-74.
4. Halldorsson S, Lucumi E,
Gómez-Sjöberg R, Fleming RMT. Advantages and challenges of microfluidic
cell culture in polydimethylsiloxane devices. Biosensors and
Bioelectronics. 2015;63:218-31.
5. Chen M, Aluunmani R, Bolognesi G,
Vladisavljevic GT. Facile Microfluidic Fabrication of Biocompatible
Hydrogel Microspheres in a Novel Microfluidic Device. Molecules.
2022;27(13).
6. Buchanan CF, Voigt EE, Szot CS,
Freeman JW, Vlachos PP, Rylander MN. Three-dimensional microfluidic
collagen hydrogels for investigating flow-mediated tumor-endothelial
signaling and vascular organization. Tissue Eng Part C Methods.
2014;20(1):64-75.
7. Lee Y, Lee J, Bae PK, Chung IY,
Hyun Chung B, Chung BG. Photo-crosslinkable hydrogel-based 3D
microfluidic culture device: Microfluidics and Miniaturization2015.
8. Bhusal A, Dogan E, Nguyen H-A,
Labutina O, Nieto D, Khademhosseini A, et al. Multi-material digital
light processing bioprinting of hydrogel-based microfluidic chips.
Biofabrication. 2021;14(1):014103.
9. Russo M, Cejas CM, Pitingolo G.
Chapter Six - Advances in microfluidic 3D cell culture for preclinical
drug development. In: Pandya A, Singh V, editors. Progress in Molecular
Biology and Translational Science. 187: Academic Press; 2022. p.
163-204.
10. Bhusal A, Dogan E, Nieto D,
Mousavi Shaegh SA, Cecen B, Miri AK. 3D Bioprinted Hydrogel Microfluidic
Devices for Parallel Drug Screening. ACS applied bio materials. 2022.
11. Zhao S, Chen Y, Partlow BP,
Golding AS, Tseng P, Coburn J, et al. Bio-functionalized silk hydrogel
microfluidic systems. Biomaterials. 2016;93:60-70.
12. Sun W, Gregory DA, Tomeh MA, Zhao
X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. Int
J Mol Sci. 2021;22(3).
13. Zhang M, Zhao M, Jian M, Wang C,
Yu A, Yin Z, et al. Printable Smart Pattern for Multifunctional
Energy-Management E-Textile. Matter. 2019;1(1):168-79.
14. Carvalho MR, Maia FR, Vieira S,
Reis RL, Oliveira JM. Tuning Enzymatically Crosslinked Silk Fibroin
Hydrogel Properties for the Development of a Colorectal Cancer
Extravasation 3D Model on a Chip. Global challenges.
2018;2(5-6):1700100.
15. Carvalho CR, Costa JB, da Silva
Morais A, Lopez-Cebral R, Silva-Correia J, Reis RL, et al. Tunable
Enzymatically Cross-Linked Silk Fibroin Tubular Conduits for Guided
Tissue Regeneration. Advanced healthcare materials. 2018;7(17):e1800186.
16. Bettinger CJ, Cyr KM, Matsumoto
A, Langer R, Borenstein JT, Kaplan DL. Silk Fibroin Microfluidic
Devices. Advanced materials. 2007;19(5):2847-50.
17. Ribeiro VP, Silva-Correia J,
Gonçalves C, Pina S, Radhouani H, Montonen T, et al. Rapidly responsive
silk fibroin hydrogels as an artificial matrix for the programmed tumor
cells death. PLOS ONE. 2018;13(4):e0194441.
18. Costa JBS-CJOJMaRRL, inventorINKS
FOR 3D PRINTING, METHODS OF PRODUCTION AND USES THEREOF2017 2017-06-09.
19. Yan LP, Silva-Correia J, Ribeiro
VP, Miranda-Goncalves V, Correia C, da Silva Morais A, et al. Tumor
Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels.
Scientific reports. 2016;6:31037.
20. Teixeira LS, Feijen J, van
Blitterswijk CA, Dijkstra PJ, Karperien M. Enzyme-catalyzed
crosslinkable hydrogels: emerging strategies for tissue engineering.
Biomaterials. 2012;33(5):1281-90.
21. Wen S, Du X, Gou Y, Jiang L.
Treatment effects of oxaliplatin combined with gemcitabine on colorectal
cancer and its influence on HMGB1 expression. Oncol Lett.
2016;12(5):3187-90.
22. Maietta I, Martínez-Pérez A,
Álvarez R, De Lera ÁR, González-Fernández Á, Simón-Vázquez R.
Synergistic Antitumoral Effect of Epigenetic Inhibitors and Gemcitabine
in Pancreatic Cancer Cells. Pharmaceuticals. 2022;15(7):824.
23. Wolf MP, Salieb-Beugelaar GB,
Hunziker P. PDMS with designer functionalities—Properties,
modifications strategies, and applications. Progress in Polymer Science.
2018;83:97-134.
24. Carvalho MR, Barata D, Teixeira
LM, Giselbrecht S, Reis RL, Oliveira JM, et al. Colorectal
tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine.
Science advances. 2019;5(5):eaaw1317.
25. Baker BM, Trappmann B, Stapleton
SC, Toro E, Chen CS. Microfluidics embedded within extracellular matrix
to define vascular architectures and pattern diffusive gradients. Lab on
a chip. 2013;13(16):3246-52.
26. Treebupachatsakul T, Lochotinunt
C, Teechot T, Pensupa N, Pechprasarn S. Gelatin-Based Microfluidic
Channel for Quantitative E. Coli Detection Using Blue Fluorescence of
4-Methyl-Umbelliferone Product and a Smartphone Camera. IEEE Sensors
Journal. 2022;22(13):12473-84.
27. Li Y, Yan X, Feng X, Wang J, Du
W, Wang Y, et al. Agarose-Based Microfluidic Device for Point-of-Care
Concentration and Detection of Pathogen. Analytical chemistry.
2014;86(21):10653-9.
28. Akther F, Little P, Li Z, Nguyen
NT, Ta HT. Hydrogels as artificial matrices for cell seeding in
microfluidic devices. RSC advances. 2020;10(71):43682-703.
29. Ribeiro VP, Silva-Correia J,
Gonçalves C, Pina S, Radhouani H, Montonen T, et al. Rapidly responsive
silk fibroin hydrogels as an artificial matrix for the programmed tumor
cells death. PloS one. 2018;13(4):e0194441-e.
30. Kumar V, Madhurakkat Perikamana
SK, Tata A, Hoque J, Gilpin A, Tata PR, et al. An In Vitro Microfluidic
Alveolus Model to Study Lung Biomechanics. Frontiers in bioengineering
and biotechnology. 2022;10.
31. Kitsara M, Kontziampasis D,
Agbulut O, Chen Y. Heart on a chip: Micro-nanofabrication and
microfluidics steering the future of cardiac tissue engineering.
Microelectronic Engineering. 2019;203-204:44-62.
32. Floren M, Migliaresi C, Motta A.
Processing Techniques and Applications of Silk Hydrogels in
Bioengineering. J Funct Biomater. 2016;7(3).
33. Wang X, Phan DT, Sobrino A,
George SC, Hughes CC, Lee AP. Engineering anastomosis between living
capillary networks and endothelial cell-lined microfluidic channels. Lab
on a chip. 2016;16(2):282-90.
34. Joseph JS, Malindisa ST, Ntwasa
M. Two-Dimensional (2D) and Three-Dimensional (3D) Cell Culturing in
Drug Discovery. Cell Culture. 2019.
35. Cattel L, Airoldi M, Delprino L,
Passera R, Milla P, Pedani F. Pharmacokinetic evaluation of gemcitabine
and 2’,2’-difluorodeoxycytidine-5’-triphosphate after prolonged infusion
in patients affected by different solid tumors. Annals of oncology :
official journal of the European Society for Medical Oncology. 2006;17
Suppl 5:v142-7.
36. Tefas LR, Barbălată C, Tefas C,
Tomuță I. Salinomycin-Based Drug Delivery Systems: Overcoming the
Hurdles in Cancer Therapy. Pharmaceutics. 2021;13(8):1120.
37. Toschi L, Finocchiaro G,
Bartolini S, Gioia V, Cappuzzo F. Role of gemcitabine in cancer therapy.
Future oncology. 2005;1(1):7-17.