References
1. Preetam S, Nahak BK, Patra S, Toncu DC, Park S, Syväjärvi M, et al. Emergence of microfluidics for next generation biomedical devices. Biosensors and Bioelectronics: X. 2022;10:100106.
2. Akther F, Little P, Li Z, Nguyen N-T, Ta HT. Hydrogels as artificial matrices for cell seeding in microfluidic devices. RSC advances. 2020;10(71):43682-703.
3. Morbioli GG, Speller NC, Stockton AM. A practical guide to rapid-prototyping of PDMS-based microfluidic devices: A tutorial. Analytica Chimica Acta. 2020;1135:150-74.
4. Halldorsson S, Lucumi E, Gómez-Sjöberg R, Fleming RMT. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosensors and Bioelectronics. 2015;63:218-31.
5. Chen M, Aluunmani R, Bolognesi G, Vladisavljevic GT. Facile Microfluidic Fabrication of Biocompatible Hydrogel Microspheres in a Novel Microfluidic Device. Molecules. 2022;27(13).
6. Buchanan CF, Voigt EE, Szot CS, Freeman JW, Vlachos PP, Rylander MN. Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization. Tissue Eng Part C Methods. 2014;20(1):64-75.
7. Lee Y, Lee J, Bae PK, Chung IY, Hyun Chung B, Chung BG. Photo-crosslinkable hydrogel-based 3D microfluidic culture device: Microfluidics and Miniaturization2015.
8. Bhusal A, Dogan E, Nguyen H-A, Labutina O, Nieto D, Khademhosseini A, et al. Multi-material digital light processing bioprinting of hydrogel-based microfluidic chips. Biofabrication. 2021;14(1):014103.
9. Russo M, Cejas CM, Pitingolo G. Chapter Six - Advances in microfluidic 3D cell culture for preclinical drug development. In: Pandya A, Singh V, editors. Progress in Molecular Biology and Translational Science. 187: Academic Press; 2022. p. 163-204.
10. Bhusal A, Dogan E, Nieto D, Mousavi Shaegh SA, Cecen B, Miri AK. 3D Bioprinted Hydrogel Microfluidic Devices for Parallel Drug Screening. ACS applied bio materials. 2022.
11. Zhao S, Chen Y, Partlow BP, Golding AS, Tseng P, Coburn J, et al. Bio-functionalized silk hydrogel microfluidic systems. Biomaterials. 2016;93:60-70.
12. Sun W, Gregory DA, Tomeh MA, Zhao X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. Int J Mol Sci. 2021;22(3).
13. Zhang M, Zhao M, Jian M, Wang C, Yu A, Yin Z, et al. Printable Smart Pattern for Multifunctional Energy-Management E-Textile. Matter. 2019;1(1):168-79.
14. Carvalho MR, Maia FR, Vieira S, Reis RL, Oliveira JM. Tuning Enzymatically Crosslinked Silk Fibroin Hydrogel Properties for the Development of a Colorectal Cancer Extravasation 3D Model on a Chip. Global challenges. 2018;2(5-6):1700100.
15. Carvalho CR, Costa JB, da Silva Morais A, Lopez-Cebral R, Silva-Correia J, Reis RL, et al. Tunable Enzymatically Cross-Linked Silk Fibroin Tubular Conduits for Guided Tissue Regeneration. Advanced healthcare materials. 2018;7(17):e1800186.
16. Bettinger CJ, Cyr KM, Matsumoto A, Langer R, Borenstein JT, Kaplan DL. Silk Fibroin Microfluidic Devices. Advanced materials. 2007;19(5):2847-50.
17. Ribeiro VP, Silva-Correia J, Gonçalves C, Pina S, Radhouani H, Montonen T, et al. Rapidly responsive silk fibroin hydrogels as an artificial matrix for the programmed tumor cells death. PLOS ONE. 2018;13(4):e0194441.
18. Costa JBS-CJOJMaRRL, inventorINKS FOR 3D PRINTING, METHODS OF PRODUCTION AND USES THEREOF2017 2017-06-09.
19. Yan LP, Silva-Correia J, Ribeiro VP, Miranda-Goncalves V, Correia C, da Silva Morais A, et al. Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels. Scientific reports. 2016;6:31037.
20. Teixeira LS, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M. Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials. 2012;33(5):1281-90.
21. Wen S, Du X, Gou Y, Jiang L. Treatment effects of oxaliplatin combined with gemcitabine on colorectal cancer and its influence on HMGB1 expression. Oncol Lett. 2016;12(5):3187-90.
22. Maietta I, Martínez-Pérez A, Álvarez R, De Lera ÁR, González-Fernández Á, Simón-Vázquez R. Synergistic Antitumoral Effect of Epigenetic Inhibitors and Gemcitabine in Pancreatic Cancer Cells. Pharmaceuticals. 2022;15(7):824.
23. Wolf MP, Salieb-Beugelaar GB, Hunziker P. PDMS with designer functionalities—Properties, modifications strategies, and applications. Progress in Polymer Science. 2018;83:97-134.
24. Carvalho MR, Barata D, Teixeira LM, Giselbrecht S, Reis RL, Oliveira JM, et al. Colorectal tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine. Science advances. 2019;5(5):eaaw1317.
25. Baker BM, Trappmann B, Stapleton SC, Toro E, Chen CS. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab on a chip. 2013;13(16):3246-52.
26. Treebupachatsakul T, Lochotinunt C, Teechot T, Pensupa N, Pechprasarn S. Gelatin-Based Microfluidic Channel for Quantitative E. Coli Detection Using Blue Fluorescence of 4-Methyl-Umbelliferone Product and a Smartphone Camera. IEEE Sensors Journal. 2022;22(13):12473-84.
27. Li Y, Yan X, Feng X, Wang J, Du W, Wang Y, et al. Agarose-Based Microfluidic Device for Point-of-Care Concentration and Detection of Pathogen. Analytical chemistry. 2014;86(21):10653-9.
28. Akther F, Little P, Li Z, Nguyen NT, Ta HT. Hydrogels as artificial matrices for cell seeding in microfluidic devices. RSC advances. 2020;10(71):43682-703.
29. Ribeiro VP, Silva-Correia J, Gonçalves C, Pina S, Radhouani H, Montonen T, et al. Rapidly responsive silk fibroin hydrogels as an artificial matrix for the programmed tumor cells death. PloS one. 2018;13(4):e0194441-e.
30. Kumar V, Madhurakkat Perikamana SK, Tata A, Hoque J, Gilpin A, Tata PR, et al. An In Vitro Microfluidic Alveolus Model to Study Lung Biomechanics. Frontiers in bioengineering and biotechnology. 2022;10.
31. Kitsara M, Kontziampasis D, Agbulut O, Chen Y. Heart on a chip: Micro-nanofabrication and microfluidics steering the future of cardiac tissue engineering. Microelectronic Engineering. 2019;203-204:44-62.
32. Floren M, Migliaresi C, Motta A. Processing Techniques and Applications of Silk Hydrogels in Bioengineering. J Funct Biomater. 2016;7(3).
33. Wang X, Phan DT, Sobrino A, George SC, Hughes CC, Lee AP. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab on a chip. 2016;16(2):282-90.
34. Joseph JS, Malindisa ST, Ntwasa M. Two-Dimensional (2D) and Three-Dimensional (3D) Cell Culturing in Drug Discovery. Cell Culture. 2019.
35. Cattel L, Airoldi M, Delprino L, Passera R, Milla P, Pedani F. Pharmacokinetic evaluation of gemcitabine and 2’,2’-difluorodeoxycytidine-5’-triphosphate after prolonged infusion in patients affected by different solid tumors. Annals of oncology : official journal of the European Society for Medical Oncology. 2006;17 Suppl 5:v142-7.
36. Tefas LR, Barbălată C, Tefas C, Tomuță I. Salinomycin-Based Drug Delivery Systems: Overcoming the Hurdles in Cancer Therapy. Pharmaceutics. 2021;13(8):1120.
37. Toschi L, Finocchiaro G, Bartolini S, Gioia V, Cappuzzo F. Role of gemcitabine in cancer therapy. Future oncology. 2005;1(1):7-17.