Deriving and testing parameter values for a parsimonious soil erosion model
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[bookmark: _Toc120008863]ABSTRACT
Every application of soil erosion models brings the need of proper parametrization, i.e., finding physically or conceptually plausible parameter values that allow a model to reproduce measured values. No universal approach for model parametrization, calibration and validation exists, as it depends on the model, spatial and temporal resolution and the nature of the datasets used.
We explored some existing options for parametrization, calibration and validation for erosion modelling exemplary with a specific dataset and modelling approach. A modified version of the Morgan-Morgan-Finney (MMF) model was selected, representing a balanced position between physically-based and empirical modelling approaches. The resulting calculator for soil erosion (CASE) model works in a spatially distributed way on the timescale of individual rainfall events. A dataset of 142 high-intensity rainfall experiments in Central Europe (AT, HU, IT, CZ), covering various slopes, soil types and experimental designs was used for calibration and validation with a modified Monte-Carlo approach. Subsequently, model parameter values were compared to parameter values obtained by alternative methods (measurements, pedotransfer functions, literature data).
The model reproduced runoff and soil loss of the dataset in the validation setting with R2adj of 0.89 and 0.76, respectively. Satisfactory agreement for the water phase was found, with calibrated saturated hydraulic conductivity (ksat) values falling within the interquartile range of ksat predicted with 14 different PTFs, or being within one order of magnitude. The chosen approach also well reflected specific experimental setups contained in the dataset dealing with the effects of consecutive rainfall and different soil water conditions. For the sediment phase of the tested model agreement between calibrated cohesion, literature values and field measurements were only partially in line.
For future applications of similar model applications or datasets, the obtained parameter combinations as well as the explored methods for deriving them may provide guidance.
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1. [bookmark: _Toc120008864]INTRODUCTION
Being able to predict soil erosion rates at the field scale reliably is essential from both practical (individual landowner making informed field management decisions) and administrative (policy, water resources management, river authorities) considerations. Because of the multiple interactions between the different factors that determine the soil erosion process, soil erosion modelling is a common stategy for this purpose. However, application of models in general is not straightforward. It is usually guided by three main questions, a) which model do I use,b) which input parameters are available, and c) how to estimate unknown input parameters for the model?
Established models exist that may estimate long-term soil erosion on plot, hillslope and regional scales, the majority of which are based on the modelling concepts of the Universal Soil Loss Equation - (R)USLE or variations of it, as discussed by Bezak et al. (2021) or Kinnell (2010). In fact, although basically developped 50 years ago by Wischmeier and Smith (1978), it certainly remains the most widely used model approach. 
Because the (R)USLE technology may be considered a spatially “lumped” approach, it is challenging to link soil loss and surface runoff explicitly from cropland into a receiving watercourse, although some examples of hybrid approaches exist (e.g. Alder et al. (2015); Vieira et al. (2014a); Govers et al. (2000a). However, these approaches are limited when the influence of upstream management and landscape structure is considered. Kinnell (2010) and Kinnell (2017) examined the ability of (R)USLE models to predict individual event soil loss. When surface runoff, sediment and structural connectivities are to be investigated, and event-based soil loss is of interest, models from the (R)USLE family are therefore not the obvious choice among available erosion models. In addition, the total sediment yield of a catchment area is frequently dominated by only a few extreme events, as lined out by Boardman (2006) or Wang et al. (2022). For Central European conditions, these events mainly occur when the soil is not covered and therefore most prone to soil loss, right after seedbed preparation mainly in spring. Modelling such events necessitates employing a model that works at the timescale of individual rainfall/runoff events, excluding most of the lumped modelling approaches.
Consequently, to simulate single high-intensity rainfall events with spatially explicit surface runoff, we chose to use the revised Morgan-Morgan-Finney model (RMMF, Morgan (2001)). RMMF takes an intermediate position within the spectrum of existing soil erosion models in terms of a somewhat physical base and moderate demand for input data (Morgan (2001). RMMF is described more generally as “simple process-based” by Jain and Ramsankaran (2018). Several modifications to the RMMF model have already been implemented, the more prevalent being those by Morgan and Duzant (2008, MMMF), Choi et al. (2017, DMMF), Peñuela et al. (2018) or Jain and Ramsankaran (2018). Apart from these few “major” RMMF variants, several more exist that contain slight deviations from the original formulation. Each approach has its environmental focus and uses different temporal and spatial resolutions and procedures to collect input parameter values.
Whenever applying models, be they spatially lumped or explicit, the estimation of input parameter values becomes an issue. The input data demands rise with model complexity which usually is in contrast to actual (soil) data availability. While some of the soil characteristics needed for erosion modelling may be assumed static for many considerations, others, such as soil water content, are highly dynamic locally and temporarily and cannot be estimated by such simple means, though appropriate methods exist, as shown by Hu et al. (2015) or De Lannoy et al. (2006). Because of the limited data availability, selecting parameter values is often done by choosing appropriate pedotransfer functions (PTF) that allow, for instance, estimating saturated hydraulic conductivity (ksat), from basic soil parameters silt, sand and clay content (Patil and Singh (2016). 
For parameterisation of the models of the MMF family, different approaches have been followed: Feng et al. (2014), in a Chinese karst environment on a catchment with an area of some 10 km², collected undisturbed soil samples and transferred them into model parameters using literature values of Morgan (2005), Morgan and Duzant (2008) and PTFs from Saxton et al. (2006). Vieira et al. (2014b), on burned forest in Portugal at the plot scale, used rainfall experiments for calibration and validation, and soil water content measured with time-domain reflectometry. López-Vicente et al. (2008) worked on cropland in the Pyrenees at a field scale, using their laboratory measurements of ksat and relying on parameters from Morgan (2001). Vigiak et al. (2005), in the East African Highlands in two catchments of few km2 mainly used field and laboratory measurements. Smith et al. (2018) applied their model version to four catchments in Scotland up to a an area of 27 km2 area. On a centennial timescale, they used plant and soil water-related inputs calculated with the SWAT model (Gassman et al. (2007)) and PTF’s from Hollis et al. (2015). Batista et al. (2019) used plot data within a Generalized Likelihood Uncertainty Estimation (GLUE) framework, as described by Beven and Binley (1992). They mainly focused on the provision of appropriate input parameters. Apart from that, large-scale applications in catchments of size 750-10,000 km2 by Pandey et al. (2009), Li et al. (2010), Lilhare et al. (2015) and Eekhout et al. (2018) exist. They mainly relied on guide values taken from Morgan et al. (1984), Morgan (2001), Morgan and Duzant (2008), Morgan et al. (1998), but also e.g., applied PTFs from Saxton and Rawls (2006) to the global SoilGrids dataset of Hengl et al. (2017).
Concluding from the studies listed above, most relied at least partly on using PTFs, which seems to be a widespread way of deriving input parameters. The broad geographic and contextual range of applications also suggests a high flexibility of the RMMF family of models. Looking at the large catchment sizes in some of these studies, one also has to bear in mind that some authors, such as Auerswald et al. (2003); De Vente et al. (2013); de Vente and Poesen (2005) or Perrin et al. (2001), claim that model validation of distributed models sensu strictu is not possible except for comparatively small spatial scales. This raises the question of how to go forward about model parametrization, calibration and validation with inevitably imperfect measurements of input parameters available and bearing in mind that no “best practice approach” exists, although the GLUE framework probably comes close to such an idea
[bookmark: _Toc95314339][bookmark: _Toc95314376][bookmark: _Toc95728713][bookmark: _Toc95741773][bookmark: _Toc95314342][bookmark: _Toc95314379][bookmark: _Toc95728716][bookmark: _Toc95741776]Most models with multiple parameters can reproduce measured values, but the parameter values used for this might not agree with basic soil physical or hydrological understanding, a phenomenon that has been termed “getting the right answer for the wrong reasons” (Beven (2012); Govers (2011); Jetten et al. (2003); Quinton (1994). Thus, special attention needs to be paid at checking calibrated parameter values for plausibility.
Following these considerations, the research questions we wanted to contribute to were 
1) What options exist to parametrize, calibrate and validate a parsimonious soil erosion model exemplified using the RMMF model?
2) After calibration and validation, how do the resulting parameter values agree with basic soil physical principles, literature values and other parameter estimation methods?
To this end, a dataset of high-intensity rainfall experiments at the plot scale serves as the basis for this task, a widely-used technique in hydrology and soil erosion research, e.g. Morgan (2005) or Fiener et al. (2011b). To utilize a high-resolution rainfall data set that is needed for event based model application, we replaced the original runoff calculation of the RMMF model with an infiltration sub-model. To account for spatial heterogeneity in general, we replaced the spatially lumped RMMF approach with a distributed raster grid version. 
2. [bookmark: _Toc120008865]MATERIALS & METHODS
[bookmark: _Toc95314347][bookmark: _Toc95314384][bookmark: _Toc95728721][bookmark: _Toc95741781]Conceptually, we used a model structure based on the revised Morgan-Morgan-Finney model (RMMF), as presented by Morgan (2001). Because of some modifications described subsequently, the model version proposed in this study is termed CASE (CAlculator for Soil Erosion) to distinguish it from the numerous other modifications of the original RMMF model. 
2.1. [bookmark: _Toc120008866]CASE model structure
Figure 1 provides a schematic overview of the CASE model structure. While the RMMF model was designed for predicting total annual soil loss from field-sized areas on hillslopes, CASE is spatially applied to a raster grid with 1 m cell size and temporarily applied at the scale of individual rainfall events. Thus, CASE may be considered spatially distributed but temporally lumped at the rainfall event scale. 
[image: ]
[bookmark: _Ref96415438]Figure 1: Schematic of the CASE model for a single grid cell, separated into water and sediment phase
2.2. [bookmark: _Toc95314349][bookmark: _Toc95314386][bookmark: _Toc95728723][bookmark: _Toc95741783][bookmark: _Toc120008867]CASE WATER PHASE
[bookmark: _Toc95314350][bookmark: _Toc95314387][bookmark: _Toc95728724][bookmark: _Toc95741784][bookmark: _Toc95314351][bookmark: _Toc95314388][bookmark: _Toc95728725][bookmark: _Toc95741785][bookmark: _Toc95314352][bookmark: _Toc95314389][bookmark: _Toc95728726][bookmark: _Toc95741786][bookmark: _Toc95314353][bookmark: _Toc95314390][bookmark: _Toc95728727][bookmark: _Toc95741787]For runoff calculation, the RMMF and MMMF models rely on a calculation of soil water storage capacity with annual timesteps in combination with an empirical parameter of effective hydrological depth of the soil (EHD). In Central Europe, the main period for heavy erosion is springtime after seedbed preparation, before a sufficient soil cover has developed. We hypothesize that for the climatic conditions of Central Europe, and particularly when focusing on high-intensity rainfall events with a high risk of soil loss, infiltration excess runoff may reasonably be considered as predominant process in surface runoff generation, where surface depression storage becomes insignificant at high slopes, see Reaney et al. (2014). There has been an ongoing debate about the relative significance of infiltration excess (“Hortonian”) and saturation excess (Cappus (1960); Dunne and Black (1970)) as the dominant process of overland flow generation within a catchment, see e.g. Beven (2012) and Beven (2020). These purely hydrological considerations do not share our focus on sediment detachment and transport, which is why they seem of limited applicability. Apart from that, the debate does not seem to have concluded to choose one concept over the other. Given these considerations, we regard our arbitrary model choice as justified. Entekhabi and Eagleson (1989) investigated the relative importance of infiltration excess (“Hortonian” in their work) and saturation excess runoff (“Dunne” in their work). While the ratios of infiltration rate to precipitation intensity (“I” in their work) were usually above 1 in their study, a ratio of I = ksat/I (ksat and right hand I from CASE) is in our dataset at a maximum of around 1 (one site), but usually well below 1 and even < 0.1. Entekhabi and Eagleson (1989) do not cover these parameter combinations, but an extrapolation of their figure 2 suggests the increased importance of infiltration excess runoff with I < 1.
To better account for this, the infiltration model of Smith and Parlange (1978), according to equations (1) - (3) provided by Woolhiser et al. (1990), was implemented. Beven (2020) notes the usefulness of this particular infiltration equation for use with varying rainfall rates, as is the case for part of the dataset used in this study, and even more so for natural rainfall.
[bookmark: _Ref83822335]						 ( 1 )
						( 2 )
					( 3 )
Parameters are infiltration capacity fc (mm h-1), saturated hydraulic conductivity ksat (mm h-1), effective net capillary drive G (mm), initial soil water content θi (%), saturation soil water content θs (%), the product of effective net capillary drive and the remaining soil water storage capacity between saturation and current soil water contents B (mm), the amount of rainfall already absorbed in the soil at the current timestep F (mm), the soil matric potential  (mm WC) and the hydraulic conductivity function  (mm h-1). Rainfall input is required in the form of instantaneous time-intensity pairs, for which we fixed a temporal resolution of 5 min. This was used to compromise between typically available data and model computational demand.
2.3. [bookmark: _Toc83636416][bookmark: _Toc83636451][bookmark: _Toc83636417][bookmark: _Toc83636452][bookmark: _Toc83636419][bookmark: _Toc83636454][bookmark: _Toc83636420][bookmark: _Toc83636455][bookmark: _Toc83636421][bookmark: _Toc83636456][bookmark: _Toc120008868]CASE SEDIMENT PHASE
In CASE, the default relationship between the kinetic energy of direct throughfall DT (KE(DT), J m-2 mm-1) and rainfall intensity (I, mm h-1) is that of Van Dijk et al. (2002). This relationship is used following Johannsen et al. (2020), who suggested its feasibility for Central European conditions. Other equations may be used if they are considered more feasible for the conditions.
Equations (4) – (10) describe the relationships used to describe the behaviour of the sediment phase. KE(DT) is the kinetic energy of direct throughfall (J m-2), DT is the rainfall proportion of direct throughfall (mm), I is instantaneous rainfall intensity (mm h-1). KE(LD) is the kinetic energy of leaf drainage (J m-2), and PH is plant height (m). F is the total soil detachment by rainfall (kg), and K is the soil erodibility index (g J-1). H is the soil detachment by runoff (kg), Z is the soil resistance (kPa), GC is the fraction of ground cover (-), slope is the slope of a particular grid element (°), DET (kg) is the total detachment as the sum of rainfall and runoff detachment, TC is transport capacity of the runoff (kg), C is the USLE management factor C (-), Q is runoff (mm).
 				( 4 )
 			( 5 )
				( 6 )
			( 7 )
						( 8 ) 
						( 9 )
				( 10 )
The RMMF model does not consider the deposition of eroded soil, in contrast to the more recent MMMF and DMMF model versions (Choi et al. (2017). In the CASE model, a simplified sediment budget calculation was implemented based on the assumption that deposition (DEP) occurs if the total detachment of a grid element (=sediment available for transport) exceeds its transport capacity (Equation 11), including surface runoff and sediment that the grid element has received from upslope elements.
 					( 11 )
Model parameters are summarized in Table 1– parameters not present in the RMMF and MMMF models are indicated. These are described in more detail in the sections on the water and sediment phases of the model. For the remaining model parameters, guide values and descriptions can be found in Morgan (2001) and Morgan and Duzant (2008). Other suitable sources to derive model parameters may be used, as some are commensurate with parameters used in other erosion models - for instance, Renard et al. (1997), Woolhiser et al. (1990), Beven (2012); Morgan (2005); Seibert and Auerswald (2020).
[bookmark: _Ref112068680]Table 1: Model parameter definitions for the CASE model – grey shaded rows are parameters that are not present in the original RMMF model
	Factor
	Parameter
	Definition

	Rainfall
	I
	instantaneous rainfall intensity (mm h-1)

	Soil (top layer)
	BD
	bulk density (t m3)

	
	swcinit
	initial soil water content (% m/m)

	
	swcsat
	soil water content at saturation (% m/m)

	
	ksat
	saturated hydraulic conductivity (mm h-1)

	
	G
	effective net capillary drive (mm)

	
	K
	erodibility (g J-1)

	
	COH
	cohesion (kPa)

	Slope
	SLP
	slope (°)

	Land cover 
	CC
	canopy cover (-)

	
	GC
	ground cover (-)

	
	PH
	plant height (m)

	
	A
	interception of the rainfall by vegetation cover (-)


2.4. [bookmark: _Toc95741790][bookmark: _Toc108770632][bookmark: _Toc108785145][bookmark: _Toc108786311][bookmark: _Toc108789343][bookmark: _Toc108790719][bookmark: _Toc108790785][bookmark: _Toc108791012][bookmark: _Toc95741791][bookmark: _Toc108770633][bookmark: _Toc108785146][bookmark: _Toc108786312][bookmark: _Toc108789344][bookmark: _Toc108790720][bookmark: _Toc108790786][bookmark: _Toc108791013][bookmark: _Toc120008869]CASE model parameters and where to find them
Table 2 provides an example of input parameters and their expected ranges taken from different sources. 
[bookmark: _Ref117165310]Table 2: List of CASE model parameters, likely ranges for Central European conditions, non-exhaustive list of possible sources for parameter values
	Parameter
	Label
	Typical range
	Unit
	Source (example)

	K
	Erodibility
	0.05 - 1.2
	g J-1
	Morgan (2001)

	COH
	Cohesion
	2 - 12
	kPa
	

	BD
	Bulk density
	1.1 - 15
	g cm-3
	Morgan (2008),                                      PTF from Hollis et al. (2012)

	CC
	Canopy cover
	0 - 1
	(-)
	Morgan (2008), Renard et al. (1997)

	GC
	Ground cover
	0 - 1
	(-)
	

	PH
	Plant height
	0 - 1
	(-)
	Morgan (2005), Renard et al. (1997)

	C
	C-factor
	0 - 1
	(-)
	

	swcinit
	Initial SWC
	0.1 - 0.6
	(-)
	-

	swcsat
	Saturation SWC
	0.3 - 0.6
	(-)
	PTF from Szabó et al. (2021),           Woolhiser et al. (1990)

	ksat
	Saturated hydraulic conductivity
	0.1 - 500
	mm h-1
	

	g
	Effective net capillary drive
	0 - 2000
	mm
	Woolhiser et al. (1990)



Before calibration of the water phase, parameter G was linked to ksat based on literature values taken from Woolhiser et al. (1990), using equation 12 (R2 = 0.96, n=11). When available, G may be derived directly from the soil retention characteristics as Woolhiser et al. (1990) described. However, this information is usually not available, as is the case with the dataset used in this study.
					( 12 )
2.5. [bookmark: _Toc108789346][bookmark: _Toc108790722][bookmark: _Toc108790788][bookmark: _Toc108791015][bookmark: _Toc95314356][bookmark: _Toc95314393][bookmark: _Toc95728730][bookmark: _Toc95741793][bookmark: _Toc108770635][bookmark: _Toc108785148][bookmark: _Toc108786314][bookmark: _Toc108789347][bookmark: _Toc108790723][bookmark: _Toc108790789][bookmark: _Toc108791016][bookmark: _Toc120008870][bookmark: _Toc83636431][bookmark: _Toc83636466][bookmark: _Toc83636432][bookmark: _Toc83636467][bookmark: _Toc83636433][bookmark: _Toc83636468][bookmark: _Toc83636434][bookmark: _Toc83636469]Spatial representation of the CASE model
The CASE model has been implemented on a grid basis. All calculations are carried out sequentially, starting with the water phase, followed by the downstream accumulation of the runoff and the calculations of the sediment phase. For the sequence of downstream routing, the D8 algorithm by Jenson and Dominque (1988) was implemented, i.e. all of the runoff entering a cell is routed to that of the eight neighbouring cells with the highest difference in elevation (“steepest descent”). During runoff routing, no additional infiltration of surface runoff takes place. Therefore, the runoff routing procedure has to be considered as temporally lumped, despite the high temporal resolution of the input rainfall data, and runoff volumes calculated by the model represent the total event runoff volume condensed into a single timestep.
2.6. [bookmark: _Toc120008871]Dataset
The dataset used for this study consists of 142 individual rainfall experiments carried out in CZ, I, AT and HU. In all experiments, a rainfall simulator described by Strauss et al. (2000) or a similar setup described by Kavka et al. (2015) was used. They represent a range of different rainfall intensities, rainfall durations, slopes, initial soil water contents and soil textures. The general characteristics of the experiments/sites are shown in Table 5. In all experiments, rainfall intensities > 50 mm/h were applied. These intensities represent rainfall events with return intervals > 1 yr. It seems reasonable for our purpose to concentrate on them to model “most” of the expected sediment yield. Kinnell (2016) provides valuable insights into plot design in general and the benefit of performing replicated experiments.
The experiments can be divided into four different groups A-D, based on the respective experimental design (bottom row in Table 5):
A) Experiments at sites SOMO, NAGY, RIVA, TETF, ROTT and RIT (n =92) were performed to evaluate the effect of repeated high-intensity rainfall on runoff and soil loss. Experiments started on initially seedbed-prepared plots and were repeated after 5, 10 and 15 days on the same plot. A constant rainfall intensity of 60 mm h-1 was used until steady-state runoff conditions were obtained, which resulted in typical experiment durations of 40 – 90 min. Presumably due to increasing aggregate dispersion, silting, surface sealing and deteriorating soil resistance, an increased inclination to higher surface runoff and soil loss were experienced with each repeated experiment. Experiments at site SOMO showed some of the highest totals of soil loss of the whole dataset, having been performed on highly erodible Loess soil, with significant rill erosion visible during the simulation. On the other hand, experiments at site RIT showed the lowest total soil loss.
B) At the STRA site (n=6), experiments were carried out to test the effect of intra-storm varying rainfall intensities on runoff and soil loss. Different rainfall intensity patterns with a peak of 100 mm.h-1 shifted between the beginning, middle and end of the rainfall simulation were used. The duration of these experiments was kept constant at ca. 70 min. Due to the high peak rainfall intensity applied, STRA experiments are among the highest in total observed soil loss.
C) Experiments at site AN (n=6) are part of a more significant experimental effort with the main focus on the protective effect of cover crops and different tillage/cultivator technologies Hösl and Strauss (2016). From this larger original dataset, only those experiments performed with seedbed conditions for conventional tillage were used. The experiments were carried out until steady state runoff conditions were obtained, with typical durations of 60 – 90 min and a constant rainfall intensity of 60 mm h-1. Experiments here resulted in comparatively low rates of soil loss, probably due to the soil’s high clay content.
D)  Experiments at site RI (n=38) are part of a long-term experiment covering a range of crops and crop development stages for calculating the USLE management factors. From this large dataset, only the bare soil reference plots maintained in parallel with the cropped plots were used. These experiments each consisted of a “dry” and “wet” run, which were done in sequence on the same day. Typical durations for the experiments were 30 – 60 min. Rainfall intensity for these experiments was constant at 60 mm h-1.
Apart from the experiments at site RI, all experiments were performed in triplicates. The experiments were grouped at three levels for the model application: Site – Experiment – Replicate. Experiment ID is important where the experiments were performed in sequence. 
Instead of using a function to calculate kinetic energy, for the dataset of rainfall experiments used in this work, the equation was substituted with a constant value of 17 J m-2 mm-1 known for the device used (Strauss et al., 2001). 
Concerning the spatial representation of the dataset, all plots were realized as rectangles made of 1x1m elements, assuming uniform slope, rainfall, and land use conditions.
2.7. [bookmark: _Toc120008872]Sensitivity analysis of input parameters
A sensitivity analysis was performed to identify highly sensitive input parameters for model calibration. To assess the parameter sensitivity onto the model outputs (total Q and E), a first estimate of parameter values based on literature for each experiment was varied individually by +/- 20 % while the remaining parameters were held constant. The average linear sensitivity index (ALS) was calculated using Equation 13 from Nearing et al. (1990).
					( 13 )
2.8. [bookmark: _Toc120008873]Calibration and validation methodology
The calibration procedure was done in the form of a “guided” Monte Carlo simulation and can be considered a simplification of the GLUE method, initially presented by Beven and Binley (1992). A similar procedure is described by Brazier et al. (2001) and Brazier et al. (2000) for the WEPP model. Calibration was performed in sequence, first for the water phase and then using the resulting parameter values in the calibration of the sediment phase - the procedure is shown in Figure 2 and can be described as follows:
1) decide on the relevant calibration parameters for the soil and water phase based on sensitivity analysis and available measurements – ksat, COH and K.
2) restrict the parameter space for each calibration parameter to a meaningful range based on model constraints and the location of the experiments
3) set up “expected” parameter values for each experimental site based on expert judgment
4) generate a continuous uniform distribution of parameter values within the designated ranges (Table 2), randomly select parameter values out of these distributions and run the model (n=5000-10000, this was done separately for different ranges of the parameter distributions). 
6) process model outputs and compare modelled with measured Q and E
7) choose a parameter combination that gives a) sufficiently high Nash-Sutcliffe efficiency per site (NSE >0.5), b) the best fit between modelled and measured total Q and E (+/- 20%), and c) is closest to the “expected” parameter value (by sorting and ranking based on mean relative error MRE).

To compare the model outputs to the natural variation within, e.g. three experiments performed at the same site, the mean total Q and E per experimental site, consisting of several experiments and replicates, was used as Xmean in equation 14 from Nearing (2000) to calculate NSE.
				( 14 )
For subsequent model validation, a split-sampling procedure was applied to the dataset. Due to the interrelations between the individual experiments (consecutive rainfall, dry and wet runs – see different experiment groups), it was considered unfeasible to perform a random splitting of the sample, so they were split manually, as considered reasonable for the respective experiment group. The dataset was split per experiment site into 50% of the experiments being used for calibration, and the remaining 50% for validation.
[image: ]
[bookmark: _Ref111214822]Figure 2: Schematic of the CASE calibration procedure for an individual rainfall experiment of the dataset. Parameter abbreviations are given in Table 2, NSE is Nash-Sutcliffe-Efficiency; Q and E are runoff and erosion; parameters on the left and right margins are those chosen for calibration
Introduction of parameter concentration factor CF
After the first tests on model calibration, it became clear that some of the highest measured sediment losses could not be reached with the default parameters staying within their suggested ranges, as stated in Table 2. This mainly concerned two sites with high susceptibility to rill formation. 
At scales such as unit widths of 1 m, the assumption of a homogeneous, uniform sheet of runoff cannot be expected, but full coverage of the cross-section only takes place after a sufficiently large amount of runoff has been generated, as demonstrated, e.g. by Peñuela et al. (2013), Appels et al. (2011) or Wang et al. (2018). 
A conceptually similar problem was treated by Choi et al. (2017) for the DMMF model, using the relation of the actual runoff velocity to that of an element with standard surface conditions to scale transport capacity accordingly. 
To solve this issue, we propose a conceptional “concentration factor” (CF) that represents the geometrical relation of the used grid size (typically 1 m) to the total width of a concentrated surface flow path or rills that form during a runoff event. For a cross-section perpendicular to the flow direction, parameter values translate to a runoff volume either extending uniformly across the width of a cell (CF = 1) or concentrating within microtopographic features, with the surface being only partly inundated (CF > 1) – see Lawrence (1997) for hydraulic considerations. A close relation to various measures of surface roughness can be assumed (Luo et al. (2020); Govers et al. (2000b)).
Conceptually, CF is also similar to the reciprocal value of a simplification of the Relative Surface Connection (RSC) function proposed by Antoine et al. (2009) and the subsequent work on it by Peñuela et al. (2013), the latter describing it as an aspect of “functional connectivity”. 
Introduction of the calibration parameter CF changes Equations 7 and 10 for runoff detachment and transport capacity into Equations 15 and 16.
		( 15 )
				( 16 )
3. [bookmark: _Toc108770640][bookmark: _Toc108785153][bookmark: _Toc108786319][bookmark: _Toc108789352][bookmark: _Toc108790728][bookmark: _Toc108790794][bookmark: _Toc108791021][bookmark: _Toc108770641][bookmark: _Toc108785154][bookmark: _Toc108786320][bookmark: _Toc108789353][bookmark: _Toc108790729][bookmark: _Toc108790795][bookmark: _Toc108791022][bookmark: _Toc108770642][bookmark: _Toc108785155][bookmark: _Toc108786321][bookmark: _Toc108789354][bookmark: _Toc108790730][bookmark: _Toc108790796][bookmark: _Toc108791023][bookmark: _Toc120008874]RESULTS
3.1. [bookmark: _Toc120008875]Sensitivity analysis of input parameters
ALS calculation was performed for all 142 experiments of the calibration dataset (Figure 3). Sensitivities of runoff (Q) and soil loss (E) were calculated separately for each parameter. Some parameters are not relevant in the calibration setting with bare soil plots but are still used for the sensitivity analysis– i.e. CC, A, GC, PH, C. Others are highly sensitive but were measured or estimated in each of the calibration experiments (swcinit, swcsat). 
Nearing (2000) suggested high parameter sensitivity for ALS values ≥ 1, moderate sensitivity between 0.5 and 1, and low sensitivity for ALS values ≤ 0.5. These thresholds would translate into high sensitivity concerning Q for parameters swcsat, swcinit, ksat, and G, and low sensitivity for the remaining parameters of the sediment phase. Concerning E, parameters swcsat, swcinit, ksat, and G show high sensitivity by increasing runoff and therefore increasing runoff detachment and transport capacity. Parameter CF is highly sensitive as well. Parameters C, K and CC show moderate sensitivity, and the remaining parameters COH, GC, A and PH show low sensitivity. This supports our preliminary assumption of choosing parameter ksat for further calibration of the water phase and COH and CF for calibrating the sediment phase. The individual results for Q and E show which parameters affect both outputs or only one. Very low sensitivity of plant height (PH) was observed, which casts doubt on the value added by this parameter, at least with low to moderate plant heights < 1.5 m.
[image: ]
[bookmark: _Ref88910723]Figure 3: Calculation of sensitivity indicator ALS for the CASE model parameters concerning resulting total runoff (Q) and erosion (E) separately. Each data point is the resulting ALS value for one rainfall experiment; Parameter abbreviations are given in Table 2
3.2. [bookmark: _Toc120008876]Model calibration and validation
The main output of the calibration procedure is shown in Figure 4. The split-off subsetting of the data set was not done randomly but manually because the individual experiments are not independent, as described in the calibration and validation methodology. For validation, R2adj of 0.89 (for Q) and 0.76 (for E) could be reached (Figure 4b). Morgan (2005), based on Zhang et al. (1996) and Nearing (1998), notes that R2 over 0.76 can generally only be reached with highly sophisticated models, and thus, models that yield R2 > 0.5 are deemed acceptable. The results of the calibration that form the basis of Figure 4 and the subsequent figures on individual parameter values are summarized in the appendix in Table 6. To elucidate more individual aspects of the calibration/validation procedure, we concentrate on individual model parameters calibrated in the following sections. This is done with the idea that physically implausible parameter values or combinations can still lead to satisfying model outputs. This phenomenon is frequently termed the “equifinality thesis”, e.g., in Beven (2006).
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[bookmark: _Ref117174134]Figure 4: Calibration/validation results of the CASE model used on the dataset of 142 rainfall experiments. Top row a) shows the results of pure calibration for 53 % of the dataset; row b) shows validation for the whole dataset; in both rows, the left figure shows modelled (Qmod) vs measured runoff (Qmeas), the right figure shows modelled (Emod) vs measured erosion (Emeas), both Q and E are total sums; thick dashed black line is the 1:1 line; solid black line is the resulting linear regression with the stated equation;thick dashed grey lines are the 95% confidence interval of the mean;thin dashed grey lines are the 95% prediction interval
Saturated hydraulic conductivity ksat – agreement with PTFs
Representative values for saturated hydraulic conductivity are notoriously difficult to obtain - measurements are time-consuming, the parameter can be spatially highly variable, and therefore difficult to scale up, as described, e.g. by Picciafuoco et al. (2019b). Since a significant change of CASE compared to the original RMMF model consists of the changes in the water phase, it seems appropriate to test the calibrated ksat values for plausibility. In a first attempt, we compared the calibrated ksat values with information suggested by a set of selected PTFs.
Figure 5 shows the calibrated ksat values grouped per experimental site (grey boxplots) and compared to values calculated with 14 different PTFs by Puckett et al. (1985), Dane and Puckett (1994), Ferrer Julià et al. (2004), Cosby et al. (1984), Saxton et al. (1986) Brakensiek et al. (1984), Jabro (1992), Wösten et al. (2001), Vereecken et al. (1990), Weynants et al. (2009), Wösten et al. (1999), Li et al. (2007) and Szabó et al. (2021). The results of these individual PTF calculations were lumped together to achieve a range of possible ksat values per experimental site, as typically, only one set of input parameters per site is available. Figure 5 shows that the ksat values obtained with the PTFs exhibit more than 2 orders of magnitude variation. The ksat values obtained with calibration either fall directly within the interquartile range of the PTF calculations (sites ROTT, NAGY, AN11, AN12, STRA, RIVA, SOMO) or are within one order of magnitude of the mean predicted by the PTFs (all remaining sites).
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[bookmark: _Ref112070431]Figure 5: ksat values calibrated with the CASE model (”calibrated”, grey boxplots) vs. ksat values derived from 14 different PTFs (”PTF”, white boxplots) for the experimental sites of the rainfall simulation dataset. Each boxplot represents one experimental site, each data point represents one experiment. The outliers visible are almost exclusively among the PTF values. The y-axis is cut off at 200 mm h-1, there are some outliers from the PTFs above this value
To evaluate which of the PTFs performs best at predicting the calibrated values, we compared root mean square error (RMSE) and mean relative error (MRE) for each of the PTFs as discussed by Nasta et al. (2021), which are shown in Table 4. The numbers of observations differ for several reasons (data availability, negative predicted ksat values). These are shown as well as the parameters used in the prediction.


[bookmark: _Ref117856891]Table 3: Error measures root mean square error (RMSE) and mean relative error (MRE) for the selected PTFs when predicting the ksat values calibrated with the CASE model for the dataset of rainfall experiments; error measures were calculated using log10 of ksat (mm h-1); different numbers of observations are partly due to data availability, partly due to resulting negative ksat predictions; Abbreviations used: C = clay, SA = sand, SI = silt, SWCsat = saturation soil water content, BD = bulk density, OM = organic matter, D= sampling depth
	Label
	Reference
	RMSE (log10 ksat in mm h-1)
	MRE (%)
	observations
	parameters

	
	
	
	
	
	

	F7
	Puckett et al. (1985)
	0.95
	-6.6
	142
	C

	F8
	Dane & Puckett (1994)
	0.73
	-151.0
	
	C

	F9
	Ferrer Julià et al. (2004)
	0.83
	-40.0
	
	SA

	F10
	Cosby et al. (1984)
	0.60
	-116.7
	
	C, SA

	F12
	Brakensiek et al. (1984)
	0.81
	-131.0
	
	C, SA, SWCsat

	F13
	Jabro (1992)
	1.16
	-292.1
	
	C, SI, BD

	F16
	Ferrer Julià et al. (2004)
	0.97
	-129.9
	115
	C, SA, OM

	F19
	Wösten et al. (2001)
	0.94
	-241.9
	142
	C, OM, BD

	F20
	Vereecken et al. (1990)
	0.93
	-225.5
	
	C, SA, OM, BD

	F21
	Weynants et al. (2009)
	0.90
	3.4
	
	SA, OM, BD

	F24
	Y. Li et al. (2007)
	0.88
	-164.8
	
	C, SA, SI, OM, BD

	KS01
	Szabó et al. (2021)
	0.48
	-80.3
	
	C, SA, SI, D

	KS02
	Szabó et al. (2021)
	0.54
	-56.1
	
	C, SA, SI, D, OM

	KS05
	Szabó et al. (2021)
	0.67
	31.3
	88
	C, SA, SI, D, pH H2O


Saturated hydraulic conductivity ksat – repeated rainfall experiments group A
In the next step we were interested in the effect of the different groups of experiments on ksat values (bottom row in Table 5). Figure 6a provides calibrated ksat values for experiments of group A in the sequence of the repeated rainfall applied. Results for sites SOMO, RIVA, TETF, RIT5, and NAGY show lower ksat values for each last experiment (sequential number 3 or 4). The remaining sites RIT4 and ROTT show similar ksat values for the first and last experiments, albeit with high variations.

[image: ]
[bookmark: _Ref117178908]Figure 6: ksat values calibrated with the CASE model for specific groups of the rainfall experiments; a) experiments from group A, with repeated rainfall simulations b) experiments from group D, with dry (light grey) and wet (dark grey) initial soil water status, aggregated per year for the period 2016-2019; NAGY is the only site where 4 consecutive experiments were performed
Saturated hydraulic conductivity ksat – dry and wet rainfall experiments group D
Experiments from group D (site RI16-19) each consisted of a dry and corresponding wet experiment. The different swcinit and the calibrated ksat values are shown in Table 6. Experiments at site RI stretch over several years and are aggregated to the annual level in Figure 6b. The dry experiments generally show ksat values 2-3 times higher than the wet experiments. When comparing the calibrated ksat values for every two associated experiments without aggregating them further, each pair shows higher ksat for the dry than for the wet experiment.
Cohesion COH for all sites vs literature and measured values
Figure 7a provides the calibrated COH values compared with data from Morgan et al. (1998) and torvane measurements for group A experiments. The COH values for the remaining sites where no torvane measurements are available are shown in Figure 7b. There is good agreement at the lower end of the COH range for sites SOMO, STRA, RIT4, RIT5. Sites RI17, RI18, NAGY AN11, AN12 and ROTT show some agreement, while sites RI19, RI16, RIVA, TETF and RIT6 do not seem to fit together. Some agreement exists between measured and calibrated values for sites ROTT and NAGY, where the interquartile ranges overlap. The measurements for the remaining sites RIT6, TETF, RIVA, RIT5, RIT4 and SOMO do neither agree with the calibrated values nor with the ranges from Morgan et al. (1998). Measured values are larger than 12 kPa, the maximum value for COH suggested by Morgan (2001) at sites TETF, RIVA, and SOMO.[image: ]
[bookmark: _Ref108785773]Figure 7: COH values calibrated with the CASE model for all rainfall experiments grouped by site (grey boxplots, “calibrated”); light grey shaded boxes are the ranges for COH given in Morgan et al. (1998); measured COH values(white boxplots) are only available for experiments from group A; COH values between 2 and 12 were the range used in calibration/validation; each data point represents one experiment; y-axis cut off at 18 kPa


Concentration factor CF for all sites
The calibrated values for parameter CF are shown in Figure 8, with about half of the sites ranging close to values of around 1-2. The highest values were attained for sites SOMO and RI16-19, and moderately high values were received at sites RIVA, TETF, and STRA.
[image: ]
[bookmark: _Ref108785791]Figure 8: CF values calibrated with the CASE model for all rainfall experiments grouped per site; solid black line represents the default value of CF = 1
4. [bookmark: _Toc108789359][bookmark: _Toc108790735][bookmark: _Toc108790801][bookmark: _Toc108791028][bookmark: _Toc108789360][bookmark: _Toc108790736][bookmark: _Toc108790802][bookmark: _Toc108791029][bookmark: _Toc120008877]DISCUSSION
Sensitivity analysis
Overall, the attained positive/negative values of ALS for the different parameters shown in Figure 3 seem sensible from a process point of view. Positive ALS values for swcinit, CF, C, K and PH indicate an increase for Q or E with increasing parameter values. Negative ALS values result for A, GC, COH, CC, G, ksat and swcsat. They indicate a decrease of Q and E with increasing parameter values.
We identified three studies using models from the MMF family that performed a dedicated sensitivity analysis for all model parameters. While Morgan and Duzant (2008) and Jain and Ramsankaran (2018) used the ALS index for rating the parameter sensitivities as we did, Choi et al. (2017) used Sobol’ total indices as described by Sobol’ (2001). To contrast the different results, we only used those equivalent to the parameters used in our study. Table 4 provides a comparison of the different sensitivities that were obtained.
[bookmark: _Ref117777608]Table 4: Comparison of parameter sensitivities for different studies of the MMF model family; “++” = high sensitivity, “+” = moderate sensitivity and “o” = low sensitivity; sensitivities are rated as absolute values; detailed parameter definitions may be looked up in the respective studies; suffices†, ‡, § indicate parameter abbreviations as used by different studies, the first parameter abbreviation in each row is that used in the CASE model
	
	parameter sensitivity

	               spatial scale

  parameter       
	CASE
	Morgan et al. (2008) †
	Jain et al. (2018) ‡
	Choi et al. 
(2017) §

	
	plot
	element
	catchment
	field
	element

	swcsat / θsat §
	+ +
	n/a
	n/a
	+
	+ +

	swcinit / θinit §
	+ +
	n/a
	n/a
	n /a
	+ +

	ksat / K §
	+ +
	n/a
	n/a
	+
	o

	G
	+ +
	n/a
	n/a
	n /a
	n /a

	CF
	+ +
	n/a
	n/a
	n /a
	n /a

	K ‡ / RD † / DK §
	+
	+ +
	o
	o
	o

	C
	+
	n /a
	+
	n /a
	n /a

	CC
	+
	+ +
	+ +
	n /a
	o

	GC
	o
	o
	+ +
	o
	+

	PH
	o
	+
	o
	n /a
	o

	A / PI † ‡ §
	o
	o
	o
	o
	+

	COH / OD † / DR ‡ §
	o
	o
	+
	+ +
	o

	remaining non-comparable parameters not included



Not surprisingly, the sensitivity of the parameters controlling splash (K/RD/DK) and runoff detachment (COH/OD/DR) show high variability among the different studies since different spatial scales were considered. The size of the study area is presumably the dominant factor in the relative importance of splash or runoff detachment due to surface runoff accumulation following a nonlinear increase in typical landscapes. Similarly, CC (affecting only splash detachment) and GC (affecting only runoff detachment) show high variability too. Parameters A/PI and PH show mostly low sensitivities, which might be a reason to doubt the value added by these parameters.
Choi et al. (2017) performed sensitivity analyses for a single calculation element and two potato fields with slightly different results. θsat (swcsat) and θinit (swcinit) show high sensitivity in their single-element setting but only moderate sensitivity in the field setting. DR (equivalent to our COH) shows high sensitivity in the field setting but low sensitivity for the single element. K (equivalent to our ksat) shows moderate sensitivity in the field setting and low sensitivity for the single element. GC and PI (our A) show moderate sensitivity for the single element and low sensitivity in the field setting. DK (our K) and GC show low sensitivity in both settings. PH and CC were only investigated for the single element and showed low sensitivity.
From Table 4, we may deduce that even though all studies deal with a similar modelling approach, the parameter sensitivities may differ considerably. It is also interesting to see that K (ksat) sensitivity even varies within the same study when changing the spatial scale from a single element to a field (Choi et al., 2017). The differences in parameter sensitivities between these studies are supposedly due to different characteristics and experimental setups within the input data that were not varied in the sensitivity analysis. Even when comparing the sensitivities for the same model, individual parameter sensitivities might vary substantially for comparatively homogeneous datasets, as shown by the distributions of our ALS values for the CASE model in Figure 3. Thus, we suggest that the merit of directly comparing different sensitivity indicators for different models with different datasets remains limited. An analysis following the framework described by Cheviron et al. (2010) would be more appropriate (different models applied to the same virtual catchment) but out of scope for this study. However, it allows for basic statements about the conceptual validity of parameter relations to output (e.g. increased runoff with decreased ksat). These general process mechanics and parameter relationships are lined out in hydrological and soil erosion textbooks like Morgan (2005) or Beven (2012).
General calibration
While there is some tradition starting with Morgan et al. (1984) to use the same dataset of 67 sites for comparative model validation, as continued and expanded in Morgan (2001), this was already abandoned in the Morgan and Duzant (2008) model version, though Sterk (2021) still refers to a part of this dataset. Since the temporal resolution of these data (rainfall, swcinit) is insufficient for use with the CASE model, we abstained from testing the model with this dataset. In contrast, we relied on our dataset of 142 high-intensity rainfall simulations with essential measurements available and the remaining parameters produced by calibration. 
Saturated hydraulic conductivity ksat
The calibrated ksat values generally show satisfactory agreement with ksat values calculated by a range of 14 different PTFs, as shown in Figure 5. Differences are small given the high spatial and temporal variability and problems typically involved in the measurement and upscaling of this parameter, see, e.g. Picciafuoco et al. (2019a), Alletto and Coquet (2009) or Baiamonte et al. (2017). The selection of the PTFs was guided by data availability and closely followed a compilation of PTFs given by Abdelbaki et al. (2009). These are probably somewhat biased towards U.S. soils. We tried to balance this by introducing the PTFs from Szabó et al. (2021) with a clear focus on European conditions. The performance of these PTFs in predicting the ksat values calibrated with the CASE model is shown in Table 3. One of the two error measures we used is the mean relative error (MRE), which allows rating a general tendency of under- or over-estimation. Both evaluation criteria were selected following Nasta et al. (2021). The three PTFs labelled KS01, KS03 and KS05 in Table 3 show the lowest RMSE and MRE values in predicting the calibrated ksat values, which leads us to recommend their use. Some of the more straightforward PTFs, i.e. Puckett et al. (1985), Ferrer Julià et al. (2004) and Weynants et al. (2009), show small error values as well and can be recommended.
Moreover, calibrated ksat values were shown to behave as expected for two special cases that are covered by our dataset: decreasing ksat with repeatedly applied rainfall and experiments with varying initial soil moisture states (“dry” and “wet”). Concerning repeated rainfall, one would expect decreasing ksat values with each additional rainfall applied due to increased aggregate disintegration and surface sealing. Figure 6a shows that this is the case for most of the experiments from group A. Similar behaviour was found with rainfall experiments, e.g. by Zambon et al. (2021) and Bedaiwy (2008). Fiener et al. (2011a) note that several studies model the reduction in infiltration rate due to sealing using negative exponential equations that commonly depend on either total rainfall or rainfall kinetic energy. Zambon et al. (2021) investigated the effect using rainfall experiments on splash cups and derived regressions for ksat depending on the accumulated kinetic energy of rainfall for specific soils. 
Concerning different initial soil moisture states for the experiments of group D, as shown in Figure 6b, lower ksat values with higher values of swcinit are the necessary outcome when calculating infiltration according to Smith and Parlange (1978) and Woolhiser et al. (1990), as it happens in the CASE water phase.
COH
Direct use of the topsoil cohesion, or its reciprocal value (Equation 8), appears to be limited to the MMF model family and the EUROSEM model. Other models mostly rely either on more empirical runoff erodibility values (similar to the rainfall erodibility K in MMF models) or on hydraulic calculations based on some critical shear resistance of the soil that the runoff might exceed. For example, the WEPP model uses interrill erodibility, rill erodibility and critical shear (Flanagan and Livingston (1995)). Peñuela et al. (2017), (2018) raised concern over the differentiation between K (only affecting splash detachment) and COH (only affecting runoff detachment) in the MMF model family, while Tan et al. (2018) interpret this as a valid way to differentiate between rill (=runoff detachment) and interrill (=splash detachment) erosion. Only when actual discrete runoff volumes per timestep can be calculated satisfactorily, as is done in models relying on the critical shear stress concept, it seems reasonable to use this approach. The runoff calculations in all MMF models are temporally lumped, e.g. in the CASE model, only the total event runoff is provided. Therefore some degree of empiricism when applying the MMF model family is unavoidable.
Morgan (2001) suggests measurement of the parameter COH using a torvane shear device, which is a standard measurement technique in geotechnical engineering but has also been used with soil erosion, e.g. by Zimbone et al. (1996), Vigiak et al. (2005), and Torri and Poesen (2014). For that part of our dataset (experiments of group A), where replicated torvane measurements are available, they show poor agreement with the COH values calibrated with the CASE model and values for COH taken from Morgan et al. (1998), as shown in Figure 7a. This is also supported by the findings of Léonard and Richard (2004), who state the difficulty in deriving measured values for COH. Also, Morgan et al. (1998) note the difficulty involved in performing direct measurements of COH especially when plant roots are present and suggest adjustments of COH for various types of vegetation. Mainly because of the known difficulties around directly measuring the parameter, it was used for calibration in this study – instead of relying on the measured values that are available at least for part of the dataset. COH shows only low sensitivity in the CASE model (Figure 3).
For these reasons, we suggest considering the parameters in the different models as “effective parameters” based on physical considerations rather than directly measurable physical properties, as Beven (2012) discussed.
Concentration factor CF
Results for the calibrated CF parameter show the highest values for sites SOMO and RI, which both have Loess as the parent material. The results suggest that the default value of 1 would be an acceptable estimate for most cases we investigated. Changing the value of CF would thus be justified for two reasons: 1) for comparison with measured data, 2) when the parent material of a site is Loess, or it is especially prone to rill formation. Other studies employed similar modifications to the runoff or transport capacity calculations as we made by introducing the parameter CF. Prosser and Rustomji (2004) give an overview of sediment transport capacity relations for overland flow, some of which are formulated similarly to the transport capacity relation from Morgan (2001) (Equation 3). Wang et al. (2019) categorize this type of transport capacity calculation as empirical. It has to be noted that Q calculated in our model represents the lumped cumulative runoff at the end of the event and, therefore, cannot directly be used in hydraulic calculations like instantaneous runoff – this is even more true for the temporally much coarser Q calculated by Morgan (2001). This is why the exponents used for H and Q in Equation 3 and Equation 9 have a somewhat arbitrary character in our context. Sterk (2021), for example, used this exponent in the TC calculation as a calibration factor. During calibration of the model, it became clear that it could not reproduce some of the highest measured soil loss rates in the dataset of this study using the default H calculation from Morgan (2001), while the lower or medium rates did not pose a problem. Some reference to this issue can also be found in Renard et al. (1997), where it is addressed with modifying the RUSLE LS factor according to rill/interrill erosion classes.
Results for the different parameters were mixed: Calibrated ksat values appear behavioural, and the estimation of ksat employing PTF proved unproblematic. For the sediment phase on the other hand, calibrated parameter values for COH showed poor agreement with both literature values and measurements, while the introduction of a new parameter CF was necessary for the model to reproduce some of the highest measured soil loss values in the dataset.
5. [bookmark: _Toc120008878]CONCLUSIONS & OUTLOOK
In this study, changes to an erosion model based on the RMMF and MMMF models are proposed to enable the calculation of runoff and soil loss for individual rainfall events. The model was calibrated and validated with a dataset consisting of 142 high-intensity rainfall experiments on bare soil plots. For climatic conditions in Central Europe, the information about soil loss during periods of high rainfall intensities and low soil or canopy cover is of high interest. This usually refers to the spring period with single heavy rainstorms occurring immediately after seedbed preparation and seeding of summer crops. These considerations are reflected in our choice of data set and the model we employed. The model reproduced the measured runoff volumes and soil loss masses observed during the experiments with a satisfactory agreement.
Results for the plausibility of the different calibrated parameters were mixed: ksat values appear behavioural, and the estimation of ksat employing PTF suggests that our values lie within a plausible range of results. For the sediment phase, on the other hand, calibrated parameter values for COH showed poor agreement with both literature values and measurements, and the introduction of a new parameter CF was necessary for the model to reproduce some of the highest measured soil loss values in the dataset.
Our results also demonstrate that different experiment preconditions, such as repeated rainfall or soil wetness, are logically reflected in the parameter values of our model. This provides confidence that the calibrated parameter values may be helpful in further model applications for the validated conditions and may give some guidance for similar conditions.
The results of our procedure are limited to the soil conditions after seedbed preparation and seeding until a sufficient soil cover has developed. Along with the higher procedural detail associated with the introduction of an infiltration model into the water phase of the model comes an increased dependence on parameters that are difficult to measure or predict (especially ksat and swcinit). Also, additional inputs like soil water balance would be needed to apply the model in real-world settings with more than one event. In its current state, the model has do be considered a model for research purposes (parameter calibration, scenario comparison) and not a model to be applied e.g. by farmers or the general public.
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[bookmark: _Ref117499879]Table 5: Site characteristics of the rainfall experiments contained in the dataset
	[bookmark: _Toc34138831]Site
	Hungary
	 
	Italy
	 
	Austria
	 
	Czech Republic

	characteristics
	Nagyhorváti
	Somogybabod
	 
	Riva
	Tetto Frati
	 
	Ritzlhof
	Rottenhaus
	Stranzendorf
	Antiesen
	 
	Risuty

	Short name
	NAGY
	SOMO
	 
	RIVA
	TETF
	 
	RIT4
	RIT5,6
	ROTT
	STRA
	AN11, 12
	 
	RI16, 17, 18 ,19

	Coordinates 
(EPSG: 4326)
	46°41'27.9" N 17°05'13.3" E
	46°40'22.1" N 17°44'43.8" E
	 
	44°58'41.3" N 7°53'19.8" E
	44°53'16.7" N 7°41'12.4" E
	 
	48°11'03.8" N 
14°14'52.5" E
	48°07'00.5"N 
15°09'01.9"E
	48°26'32.4'' N 16°04'10.7'' E
	48°19'35.7'' N 13°28'43.34'' E
	 
	50°13'01.2'' N 14°01'01.2'' E

	Mean annual 
rainfall sum (mm)
	687
	751
	 
	755
	 
	753
	744
	500
	1051
	 
	690

	Mean annual
temperature (°)
	11.6
	 
	12.0
	 
	8.8
	9.1
	8.8
	7.8
	 
	8.7

	Soil type (WRB)
	haplic luvisol
	calcaric regosol
	 
	eutric fluvisol
	 
	dystric cambisol
	stagni-calcaric cambisol
	dystric planosol
	humic gleysol
	 
	calcic chernozem

	Topsoil particle 
size fractions
(% Sand/Silt/Clay)
	30 / 50 / 20
	27 / 56 / 17
	 
	11 / 69 / 20
	27 / 61 / 12
	 
	17 / 60 / 23
	16 / 61 / 23
	7 / 60 / 33
	17 / 70 / 13
	11 / 21 / 68
	 
	46 / 19 / 35

	TOC content (%)
	1.0
	0.9
	 
	0.9
	1.1
	 
	1.3
	1.7
	1.6
	0.6
	1.3
	 
	1.2

	Slope (°)
	7.5
	13.0
	 
	0.5
	0.5
	 
	8.0
	8.1
	15.0 - 18.0
	10.0
	7.9
	 
	5.1

	Experiment group
	A
	A
	 
	A
	A
	 
	A
	A
	A
	B
	C
	 
	D
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