References
Aft, R. L., Zhang, F. W., & Gius, D. (2002). Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death. British Journal of Cancer, 87(7), 805–812. https://doi.org/10.1038/sj.bjc.6600547
Aparicio-Alonso, M., Domínguez-Sánchez, C., & Banuet-Martínez, M. (2021a). A Retrospective Observational Study of Chlorine Dioxide Effectiveness to Covid19-like Symptoms Prophylaxis in Relatives Living with COVID19 Patients. International Journal of Multidisciplinary Research and Analysis, 04(08). https://doi.org/10.47191/ijmra/v4-i8-02
Aparicio-Alonso, M., Domínguez-Sánchez, C., & Banuet-Martínez, M. (2021b). COVID19 Long Term Effects in Patients Treated with Chlorine Dioxide. International Journal of Multidisciplinary Research and Analysis, 04(08). https://doi.org/10.47191/ijmra/v4-i8-14
Aparicio-Alonso, M., Domínguez-Sánchez, C., & Banuet-Martínez, M. (2021c). Determination of the Effectiveness of Oral Chlorine Dioxide in the Treatment of COVID 19. Journal of Infectious Diseases & Therapy.
Aronson. (2016). Dimethylsulfoxide. In Meyler’s Side Effects of Drugs (pp. 992–993). Elsevier. https://doi.org/10.1016/B978-0-444-53717-1.00633-8
Atamna, H., Nguyen, A., Schultz, C., Boyle, K., Newberry, J., Kato, H., & Ames, B. N. (2008). Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways. The FASEB Journal, 22(3), 703–712. https://doi.org/10.1096/fj.07-9610com
Bajor, M., Zych, A. O., Graczyk-Jarzynka, A., Muchowicz, A., Firczuk, M., Trzeciak, L., Gaj, P., Domagala, A., Siernicka, M., Zagozdzon, A., Siedlecki, P., Kniotek, M., O’Leary, P. C., Golab, J., & Zagozdzon, R. (2018). Targeting peroxiredoxin 1 impairs growth of breast cancer cells and potently sensitises these cells to prooxidant agents. British Journal of Cancer, 119(7), 873–884. https://doi.org/10.1038/s41416-018-0263-y
Barbagallo, M., Veronese, N., & Dominguez, L. J. (2021). Magnesium in Aging, Health and Diseases. Nutrients, 13(2), 463. https://doi.org/10.3390/nu13020463
Clifton, K. K., Ma, C. X., Fontana, L., & Peterson, L. L. (2021). Intermittent fasting in the prevention and treatment of cancer. CA: A Cancer Journal for Clinicians, 71(6), 527–546. https://doi.org/10.3322/caac.21694
Davis, M. P., Walsh, D., LeGrand, S. B., & Naughton, M. (2002). Symptom control in cancer patients: the clinical pharmacology and therapeutic role of suppositories and rectal suspensions. Supportive Care in Cancer, 10(2), 117–138. https://doi.org/10.1007/s00520-001-0311-6
DeNicola, G. M., Karreth, F. A., Humpton, T. J., Gopinathan, A., Wei, C., Frese, K., Mangal, D., Yu, K. H., Yeo, C. J., Calhoun, E. S., Scrimieri, F., Winter, J. M., Hruban, R. H., Iacobuzio-Donahue, C., Kern, S. E., Blair, I. A., & Tuveson, D. A. (2011). Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 475(7354), 106–109. https://doi.org/10.1038/nature10189
Dozio, E., Ruscica, M., Passafaro, L., Dogliotti, G., Steffani, L., Pagani, A., Demartini, G., Esposti, D., Fraschini, F., & Magni, P. (2010). The natural antioxidant alpha-lipoic acid induces p27Kip1-dependent cell cycle arrest and apoptosis in MCF-7 human breast cancer cells. European Journal of Pharmacology, 641(1), 29–34. https://doi.org/10.1016/j.ejphar.2010.05.009
Environmental Protection Agency. (2000). Toxicological Review of Chlorine dioxide and Chlorite. CAS Nos. 10049-04-4 and 7758-19-2. In Support of Summary Information on the Integrated Risk Information System.
Farhat, D., & Lincet, H. (2020). Lipoic acid a multi-level molecular inhibitor of tumorigenesis. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1873(1), 188317. https://doi.org/10.1016/j.bbcan.2019.188317
Frajese, G., Benvenuto, M., Fantini, M., Ambrosin, E., Sacchetti, P., Masuelli, L., Gigati, M. G., Modesti, A., & Bei, R. (2016). Potassium increases the antitumor effects of ascorbic acid in breast cancer cell lines in vitro. Oncology Letters, 11(6), 4224–4234. https://doi.org/10.3892/ol.2016.4506
Freund, E., Miebach, L., Stope, M., & Bekeschus, S. (2021). Hypochlorous acid selectively promotes toxicity and the expression of danger signals in human abdominal cancer cells. Oncology Reports, 45(5), 71. https://doi.org/10.3892/or.2021.8022
Gad, S. E., & Sullivan, D. W. (2014). Dimethyl Sulfoxide (DMSO). In Encyclopedia of Toxicology (pp. 166–168). Elsevier. https://doi.org/10.1016/B978-0-12-386454-3.00839-3
Galadari, S., Rahman, A., Pallichankandy, S., & Thayyullathil, F. (2017). Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radical Biology and Medicine, 104, 144–164. https://doi.org/10.1016/j.freeradbiomed.2017.01.004
Grant, W. B., Juzeniene, A., & Moan, J. E. (2011). Review Article: Health benefit of increased serum 25(OH)D levels from oral intake and ultraviolet-B irradiance in the Nordic countries. Scandinavian Journal of Public Health, 39(1), 70–78. https://doi.org/10.1177/1403494810382473
Grant, W. B., & Mohr, S. B. (2009). Ecological Studies Of Ultraviolet B, Vitamin D And Cancer Since 2000. Annals of Epidemiology, 19(7), 446–454. https://doi.org/10.1016/j.annepidem.2008.12.014
Hua, S. (2019). Physiological and Pharmaceutical Considerations for Rectal Drug Formulations. Frontiers in Pharmacology, 10. https://doi.org/10.3389/fphar.2019.01196
Huang, J., Wang, L., Ren, N., Ma, F., & Juli. (1997). Disinfection effect of chlorine dioxide on bacteria in water. Water Research, 31(3), 607–613. https://doi.org/10.1016/S0043-1354(96)00275-8
Huang, Y., Zhang, P., Gao, M., Zeng, F., Qin, A., Wu, S., & Tang, B. Z. (2016). Ratiometric detection and imaging of endogenous hypochlorite in live cells and in vivo achieved by using an aggregation induced emission (AIE)-based nanoprobe. Chemical Communications, 52(45), 7288–7291. https://doi.org/10.1039/C6CC03415B
Insignares-Carrione, E., Bolano Gómez, B., Andrade, Y., Callisperis, P., Suxo, A. M., Ajata San Martín, A. B., & Ostria Gonzales, C. (2021). Determination of the Effectiveness of Chlorine Dioxide in the Treatment of COVID 19. Journal of Molecular and Genetic Medicine, 15.
Kály-Kullai, K., Wittmann, M., Noszticzius, Z., & Rosivall, L. (2020). Can chlorine dioxide prevent the spreading of coronavirus or other viral infections? Medical hypotheses. Physiology International, 107(1), 1–11. https://doi.org/10.1556/2060.2020.00015
Katic, M. (2006). A clinoptilolite effect on cell media and the consequent effects on tumor cells in vitro. Frontiers in Bioscience, 11(1), 1722. https://doi.org/10.2741/1918
Kim, K.-H., Lee, B., Kim, Y.-R., Kim, M.-A., Ryu, N., Jung, D. J., Kim, U.-K., Baek, J.-I., & Lee, K.-Y. (2018). Evaluating protective and therapeutic effects of alpha-lipoic acid on cisplatin-induced ototoxicity. Cell Death & Disease, 9(8), 827. https://doi.org/10.1038/s41419-018-0888-z
Kim, Y., Kumar, S., Cheon, W., Eo, H., Kwon, H., Jeon, Y., Jung, J., & Kim, W. (2016). Anticancer and Antiviral Activity of Chlorine Dioxide by Its Induction of the Reactive Oxygen Species. Journal of Applied Biological Chemistry, 59(1), 31–36. https://doi.org/10.3839/jabc.2016.007
Láng, O., Nagy, K. S., Láng, J., Perczel-Kovách, K., Herczegh, A., Lohinai, Z., Varga, G., & Kőhidai, L. (2021). Comparative study of hyperpure chlorine dioxide with two other irrigants regarding the viability of periodontal ligament stem cells. Clinical Oral Investigations, 25(5), 2981–2992. https://doi.org/10.1007/s00784-020-03618-5
Longo, V. D., & Fontana, L. (2010). Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends in Pharmacological Sciences, 31(2), 89–98. https://doi.org/10.1016/j.tips.2009.11.004
Ma, J.-W., Huang, B.-S., Hsu, C.-W., Peng, C.-W., Cheng, M.-L., Kao, J.-Y., Way, T.-D., Yin, H.-C., & Wang, S.-S. (2017). Efficacy and Safety Evaluation of a Chlorine Dioxide Solution. International Journal of Environmental Research and Public Health, 14(3), 329. https://doi.org/10.3390/ijerph14030329
Mitchell, B. L. (2021). The chlorine dioxide controversy: A deadly poison or a cure for COVID-19? International Journal of Medicine and Medical Sciences, 13(2), 13–21. https://doi.org/10.5897/IJMMS2021.1461
Mytilineou, C., Kramer, B. C., & Yabut, J. A. (2002). Glutathione depletion and oxidative stress. Parkinsonism & Related Disorders, 8(6), 385–387. https://doi.org/10.1016/S1353-8020(02)00018-4
Ngo, B., van Riper, J. M., Cantley, L. C., & Yun, J. (2019). Targeting cancer vulnerabilities with high-dose vitamin C. Nature Reviews Cancer, 19(5), 271–282. https://doi.org/10.1038/s41568-019-0135-7
O Young, R. (2016). Chlorine Dioxide (CLO2) As a Non-Toxic Antimicrobial Agent for Virus, Bacteria and Yeast (Candida Albicans). International Journal of Vaccines & Vaccination, 2(6). https://doi.org/10.15406/ijvv.2016.02.00052
Ogata, N. (2007). Denaturation of Protein by Chlorine Dioxide: Oxidative Modification of Tryptophan and Tyrosine Residues. Biochemistry, 46(16), 4898–4911. https://doi.org/10.1021/bi061827u
Ogata, N. (2012). Inactivation of influenza virus haemagglutinin by chlorine dioxide: oxidation of the conserved tryptophan 153 residue in the receptor-binding site. Journal of General Virology, 93(12), 2558–2563. https://doi.org/10.1099/vir.0.044263-0
Park, H. Y., Hong, Y.-C., Lee, K., & Koh, J. (2019). Vitamin D status and risk of non-Hodgkin lymphoma: An updated meta-analysis. PLOS ONE, 14(4), e0216284. https://doi.org/10.1371/journal.pone.0216284
Pavelić, K., Hadžija, M., Bedrica, L., Pavelić, J., Ðikić, I., Katić, M., Kralj, M., Bosnar, M. H., Kapitanović, S., Poljak-Blaži, M., Križanac, Š., Stojković, R., Jurin, M., Subotić, B., & Čolić, M. (2001). Natural zeolite clinoptilolite: new adjuvant in anticancer therapy. Journal of Molecular Medicine, 78(12), 708–720. https://doi.org/10.1007/s001090000176
Pelgrims, J., De Vos, F., Van den Brande, J., Schrijvers, D., Prové, A., & Vermorken, J. B. (2000). Methylene blue in the treatment and prevention of ifosfamide-induced encephalopathy: report of 12 cases and a review of the literature. British Journal of Cancer, 82(2), 291–294. https://doi.org/10.1054/bjoc.1999.0917
Perillo, B., di Donato, M., Pezone, A., di Zazzo, E., Giovannelli, P., Galasso, G., Castoria, G., & Migliaccio, A. (2020). ROS in cancer therapy: the bright side of the moon. Experimental & Molecular Medicine, 52(2), 192–203. https://doi.org/10.1038/s12276-020-0384-2
Petronek, M. S., Stolwijk, J. M., Murray, S. D., Steinbach, E. J., Zakharia, Y., Buettner, G. R., Spitz, D. R., & Allen, B. G. (2021). Utilization of redox modulating small molecules that selectively act as pro-oxidants in cancer cells to open a therapeutic window for improving cancer therapy. Redox Biology, 42, 101864. https://doi.org/10.1016/j.redox.2021.101864
Phiboonchaiyanan, P. P., & Chanvorachote, P. (2017). Suppression of a cancer stem-like phenotype mediated by alpha-lipoic acid in human lung cancer cells through down-regulation of β-catenin and Oct-4. Cellular Oncology, 40(5), 497–510. https://doi.org/10.1007/s13402-017-0339-3
Pietrocola, F., Pol, J., Vacchelli, E., Rao, S., Enot, D. P., Baracco, E. E., Levesque, S., Castoldi, F., Jacquelot, N., Yamazaki, T., Senovilla, L., Marino, G., Aranda, F., Durand, S., Sica, V., Chery, A., Lachkar, S., Sigl, V., Bloy, N., … Kroemer, G. (2016). Caloric Restriction Mimetics Enhance Anticancer Immunosurveillance. Cancer Cell, 30(1), 147–160. https://doi.org/10.1016/j.ccell.2016.05.016
Poteet, E., Choudhury, G. R., Winters, A., Li, W., Ryou, M.-G., Liu, R., Tang, L., Ghorpade, A., Wen, Y., Yuan, F., Keir, S. T., Yan, H., Bigner, D. D., Simpkins, J. W., & Yang, S.-H. (2013). Reversing the Warburg Effect as a Treatment for Glioblastoma. Journal of Biological Chemistry, 288(13), 9153–9164. https://doi.org/10.1074/jbc.M112.440354
Poteet, E., Winters, A., Yan, L.-J., Shufelt, K., Green, K. N., Simpkins, J. W., Wen, Y., & Yang, S.-H. (2012). Neuroprotective Actions of Methylene Blue and Its Derivatives. PLoS ONE, 7(10), e48279. https://doi.org/10.1371/journal.pone.0048279
Purohit, T. J., Hanning, S. M., & Wu, Z. (2018). Advances in rectal drug delivery systems. Pharmaceutical Development and Technology, 23(10), 942–952. https://doi.org/10.1080/10837450.2018.1484766
Roos, D., & Winterbourn, C. C. (2002). Lethal Weapons. Science, 296(5568), 669–671. https://doi.org/10.1126/science.1071271
Ryoo, I., Lee, S., & Kwak, M.-K. (2016). Redox Modulating NRF2: A Potential Mediator of Cancer Stem Cell Resistance. Oxidative Medicine and Cellular Longevity, 2016, 1–14. https://doi.org/10.1155/2016/2428153
Schwartz, L. (2017). Chlorine dioxide as a possible adjunct to metabolic treatment. Journal of Cancer Treatment and Diagnosis, 1(1), 6–10. https://doi.org/10.29245/2578-2967/2018/1.1107
Svenson, D., Kadla, J., Chang, H., & Jameel, H. (2002). Effect of pH on the Inorganic Species Involved in a Chlorine Dioxide Reaction System. Industrial & Engineering Chemistry Research, 41.
Tripathy, J., Tripathy, A., Thangaraju, M., Suar, M., & Elangovan, S. (2018). α-Lipoic acid inhibits the migration and invasion of breast cancer cells through inhibition of TGFβ signaling. Life Sciences, 207, 15–22. https://doi.org/10.1016/j.lfs.2018.05.039
van Loenhout, J., Peeters, M., Bogaerts, A., Smits, E., & Deben, C. (2020). Oxidative Stress-Inducing Anticancer Therapies: Taking a Closer Look at Their Immunomodulating Effects. Antioxidants, 9(12), 1188. https://doi.org/10.3390/antiox9121188
Vuolo, L., di Somma, C., Faggiano, A., & Colao, A. (2012). Vitamin D and Cancer. Frontiers in Endocrinology, 3. https://doi.org/10.3389/fendo.2012.00058
Wen, Y., Li, W., Poteet, E. C., Xie, L., Tan, C., Yan, L.-J., Ju, X., Liu, R., Qian, H., Marvin, M. A., Goldberg, M. S., She, H., Mao, Z., Simpkins, J. W., & Yang, S.-H. (2011). Alternative Mitochondrial Electron Transfer as a Novel Strategy for Neuroprotection. Journal of Biological Chemistry, 286(18), 16504–16515. https://doi.org/10.1074/jbc.M110.208447
Yang, H., Villani, R. M., Wang, H., Simpson, M. J., Roberts, M. S., Tang, M., & Liang, X. (2018). The role of cellular reactive oxygen species in cancer chemotherapy. Journal of Experimental & Clinical Cancer Research, 37(1), 266. https://doi.org/10.1186/s13046-018-0909-x
Yıldız, S. Z., Bilir, C., Eskiler, G. G., & Bilir, F. (2022). The Anticancer Potential of Chlorine Dioxide in Small-Cell Lung Cancer Cells. Cureus. https://doi.org/10.7759/cureus.29989
Yokoyama, C., Sueyoshi, Y., Ema, M., Mori, Y., Takaishi, K., & Hisatomi, H. (2017). Induction of oxidative stress by anticancer drugs in the presence and absence of cells. Oncology Letters. https://doi.org/10.3892/ol.2017.6931
Zhang, D., Li, J., Wang, F., Hu, J., Wang, S., & Sun, Y. (2014). 2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer Letters, 355(2), 176–183. https://doi.org/10.1016/j.canlet.2014.09.003