References
Adams, A. S., Adams, S. M., Currie, C. R., Gillette, N. E., & Raffa, K.
F. (2010). Geographic variation in bacterial communities associated with
the red turpentine beetle (Coleoptera: Curculionidae).Environmental Entomology , 39 (2), 406–414. doi:
10.1603/EN09221
Adams, A. S., Aylward, F. O., Adams, S. M., Erbilgin, N., Aukema, B. H.,
Currie, C. R., … Raffa, K. F. (2013). Mountain pine beetles
colonizing historical and naïve host trees are associated with a
bacterial community highly enriched in genes contributing to terpene
metabolism. Applied and Environmental Microbiology ,79 (11), 3468–3475. doi: 10.1128/AEM.00068-13
Adams, A. S., Six, D. L., Adams, S. M., & Holben, W. E. (2008). In
vitro interactions between yeasts and bacteria and the fungal symbionts
of the mountain pine beetle (Dendroctonus ponderosae ).Microbial Ecology , 56 (3), 460–466. doi:
10.1007/s00248-008-9364-0
Anand, R., Paul, L., & Chanway, C. (2007). Research on Endophytic
Bacteria: Recent Advances with Forest Trees. Microbial Root
Endophytes , 9 , 89–106. doi: 10.1007/3-540-33526-9_6
Appel, H. M., & Maines, L. W. (1995). The influence of host plant on
gut conditions of gypsy moth (Lymantria dispar) caterpillars. Journal of
Insect Physiology, 41(3), 241–246. doi: 10.1016/0022-1910(94)00106-Q
Ayres, M. P., Wilkens, R. T., Ruel, J. J., Lombardero, M. J., &
Vallery, E. (2000). Nitrogen budgets of phloem-feeding bark beetles with
and without symbiotic fungi. Ecology , 81 (8), 2198. doi:
10.2307/177108
Bang-Andreasen, T., Anwar, M. Z., Lanzén, A., Kjøller, R., Rønn, R.,
Ekelund, F., & Jacobsen, C. S. (2019). Total RNA sequencing reveals
multilevel microbial community changes and functional responses to wood
ash application in agricultural and forest soil. FEMS Microbiology
Ecology , 96 (3), 1–13. doi: 10.1093/femsec/fiaa016
Barcoto, M. O., Carlos-Shanley, C., Fan, H., Ferro, M., Nagamoto, N. S.,
Bacci, M., … Rodrigues, A. (2020). Fungus-growing insects host a
distinctive microbiota apparently adapted to the fungiculture
environment. Scientific Reports, 10(1), 1–13. doi:
10.1038/s41598-020-68448-7
Beck, O. (1922). Eine neue Endomyces-Art, Endomyces bisporus. Annales
Mycologici 20: 219-227
Bentz, B. J., & Six, D. L. (2006). Ergosterol content of fungi
associated with Dendroctonus ponderosae and Dendroctonus rufipennis
(Coleoptera: Curculionidae, Scolytinae). Annals of the
Entomological Society of America , 99 (2), 189–194. doi:
10.1603/0013-8746(2006)099[0189:ECOFAW]2.0.CO;2
Bentz, B. J., Jönsson, A. M., Schroeder, M., Weed, A., Wilcke, R. A. I.,
Larsson, K., … Parker, J. H. (2019). Adaptive traits of bark and
ambrosia beetle-associated fungi. PLoS ONE , 41 (1), 1–14.
doi: 10.1007/978-1-62703-712-9
Berasategui, A., Axelsson, K., Nordlander, G., Schmidt, A.,
Borg-Karlson, A. K., Gershenzon, J., … Kaltenpoth, M. (2016). The
gut microbiota of the pine weevil is similar across Europe and resembles
that of other conifer-feeding beetles. Molecular Ecology ,25 (16), 4014–4031. doi: 10.1111/mec.13702
Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.-C. C.,
Charles, T., … Schloter, M. (2020). Correction to: Microbiome
definition re-visited: old concepts and new challenges.Microbiome , 8 (1), 1–22. doi: 10.1186/s40168-020-00905-x
Biedermann, P. H. W., Müller, J., Grégoire, J. C., Gruppe, A., Hagge,
J., Hammerbacher, A., … Bässler, C. (2019). Bark Beetle
Population Dynamics in the Anthropocene: Challenges and Solutions.Trends in Ecology and Evolution , 34 (10), 914–924. doi:
10.1016/j.tree.2019.06.002
Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E.,
Knight, R., … Gregory Caporaso, J. (2018). Optimizing taxonomic
classification of marker-gene amplicon sequences with QIIME 2’s
q2-feature-classifier plugin. Microbiome , 6 (1), 1–17.
doi: 10.1186/s40168-018-0470-z
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C.
C., Al-Ghalith, G. A., … Caporaso, J. G. (2019). Reproducible,
interactive, scalable and extensible microbiome data science using QIIME
2. Nature Biotechnology , 37 (8), 852–857. doi:
10.1038/s41587-019-0209-9
Briones-Roblero, C. I., Rodríguez-Díaz, R., Santiago-Cruz, J. A.,
Zúñiga, G., & Rivera-Orduña, F. N. (2017). Degradation capacities of
bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus
(Curculionidae: Scolytinae). Folia Microbiologica , 62 (1),
1–9. doi: 10.1007/s12223-016-0469-4
Buchfink, B., Xie, C., & Huson, D. H. (2014). Fast and sensitive
protein alignment using DIAMOND. Nature Methods , 12 (1),
59–60. doi: 10.1038/nmeth.3176
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A.
J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference
from Illumina amplicon data. Nature Methods , 13 (7),
581–583. doi: 10.1038/nmeth.3869
Cardoza, Y. J., Klepzig, K. D., & Raffa, K. F. (2006). Bacteria in oral
secretions of an endophytic insect inhibit antagonistic fungi.Ecological Entomology , 31 (6), 636–645. doi:
10.1111/j.1365-2311.2006.00829.x
Carey, H. V., Walters, W. A., & Knight, R. (2013). Seasonal
restructuring of the ground squirrel gut microbiota over the annual
hibernation cycle. American Journal of Physiology - Regulatory
Integrative and Comparative Physiology , 304 (1). doi:
10.1152/ajpregu.00387.2012
Caspi, R., Billington, R., Keseler, I. M., Kothari, A., Krummenacker,
M., Midford, P. E., … Karp, P. D. (2020). The MetaCyc database of
metabolic pathways and enzymes-a 2019 update. Nucleic Acids Research,
48(D1), D455–D453. doi: 10.1093/nar/gkz862
Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E.
W. (2016). GenBank. Nucleic Acids Research , 44 (D1),
D67–D72. doi: 10.1093/nar/gkv1276
Conord, C., Despres, L., Vallier, A., Balmand, S., Miquel, C., Zundel,
S., … Heddi, A. (2008). Long-term evolutionary stability of
bacterial endosymbiosis in Curculionoidea: Additional evidence of
symbiont replacement in the Dryophthoridae family. Molecular
Biology and Evolution , 25 (5), 859–868. doi:
10.1093/molbev/msn027
Doug Hyatt, Gwo-Liang Chen, Philip F LoCascio, Miriam L Land, , Frank W
Larimer, L. J. H. (2010). Integrated nr database in protein annotation
system and its localization. Nature Communications , 6 (1),
1–8. doi: /10.1016/B978-0-12-407863-5.00023-X
Douglas, A. E. (1998). Aphids and their symbiotic bacteria Buchnera.
Annual Reviews in Entomology, 43, 17–37.
Douglas, A. E. (2015). Multiorganismal insects: diversity and function
of resident microorganisms. Annual Review of Entomology ,60 (1), 17–34. doi:
10.1146/annurev-ento-010814-020822.Multiorganismal
Eddy, S. R. (2009). A new generation of homology search tools based on
probabilistic inference. Genome Informatics. International Conference on
Genome Informatics, 23(1), 205–211. doi: 10.1142/9781848165632_0019
Engel, P., & Moran, N. A. (2013). The gut microbiota of insects -
diversity in structure and function. FEMS Microbiology Reviews ,37 (5), 699–735. doi: 10.1111/1574-6976.12025
Fabryová, A., Kostovčík, M., Díez-Méndez, A., Jiménez-Gómez, A.,
Celador-Lera, L., Saati-Santamaría, Z., … García-Fraile, P.
(2018). On the bright side of a forest pest-the metabolic potential of
bark beetles’ bacterial associates. Science of the Total
Environment , 619 –620 , 9–17. doi:
10.1016/j.scitotenv.2017.11.074
Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J.,
Mitchell, A. L., … Bateman, A. (2016). The Pfam protein families
database: Towards a more sustainable future. Nucleic Acids Research,
44(D1), D279–D285. doi: 10.1093/nar/gkv1344
François LIEUTIERa, b*, Annie YARTb, Hui YEc, Daniel SAUVARDb, V.
Gallois. (2007). Variations in growth and virulence ofLeptographium wingfieldii Morelet, a fungus associated with the
bark beetle Tomicus piniperda L. Annals of Forest Science ,64 , 219–228. doi: 10.1051/forest
Ganter, P. F. (2006). Yeast and invertebrate associations.Biodiversity and Ecophysiology of Yeasts , 303–370. doi:
10.1007/3-540-30985-3_14
García-Fraile, P. (2018). Roles of bacteria in the bark beetle holobiont
– how do they shape this forest pest? Annals of Applied Biology ,172 (2), 111–125. doi: 10.1111/aab.12406
Gifford, S. M., Sharma, S., Booth, M., & Moran, M. A. (2013).
Expression patterns reveal niche diversification in a marine microbial
assemblage. ISME Journal , 7 (2), 281–298. doi:
10.1038/ismej.2012.96
Giordano, L., Garbelotto, M., Nicolotti, G., & Gonthier, P. (2013).
Characterization of fungal communities associated with the bark beetleIps typographus varies depending on detection method, location,
and beetle population levels. Mycological Progress , 12(1),
127–140. doi: 10.1007/s11557-012-0822-1
Giron, D., Dedeine, F., Dubreuil, G., Huguet, E., Mouton, L., Outreman,
Y., … Simon, J. C. (2017). Influence of microbial symbionts on
plant–insect interactions. In Advances in Botanical Research(Vol. 81). Elsevier Ltd. doi: 10.1016/bs.abr.2016.09.007
González-Serrano, F., Pérez-Cobas, A. E., Rosas, T., Baixeras, J.,
Latorre, A., & Moya, A. (2020). The gut microbiota composition of the
moth Brithys crini reflects insect metamorphosis. Microbial
Ecology , 79 (4), 960–970. doi: 10.1007/s00248-019-01460-1
Grosmann, H. (1930). Beiträge zur Kenntnis der Lebensgemeinschaft
zwischen Borkenkäfern und Pilzen. Zeitschrift für Parasitenkunde3 (1): 56-102.
Hammerbacher, A., Schmidt, A., Wadke, N., Wright, L. P., Schneider, B.,
Bohlmann, J., … Paetz, C. (2013). A common fungal associate of
the spruce bark beetle metabolizes the stilbene defenses of Norway
spruce. Plant Physiology , 162 (3), 1324–1336. doi:
10.1104/pp.113.218610
Harrington, T. C. (2005). Ecology and evolution of mycophagous bark
beetles and their fungal partners. Insect-Fungal Associations: Ecology
and Evolution, (Norris 1979), 257–291.
Hayat, M. (2000). Principles and techniques of electron microscopy:
biological applications. 4th edn. 543pp. Cambridge: Cambridge University
Press. £65 (hardback). Annals of Botany, 87(4), 546–548. doi:
10.1006/anbo.2001.1367
Hernández-García, M., Pérez-Viso, B., Carmen Turrientes, M., Díaz-Agero,
C., López-Fresneña, N., Bonten, M., … Cantón, R. (2018).
Characterization of carbapenemase-producing Enterobacteriaceae from
colonized patients in a university hospital in Madrid, Spain, during the
R-GNOSIS project depicts increased clonal diversity over time with
maintenance of high-risk clones. Journal of Antimicrobial
Chemotherapy , 73 (11), 3039–3043. doi: 10.1093/jac/dky284
Hicke, J. A., Meddens, A. J. H., & Kolden, C. A. (2016). Recent tree
mortality in the Western United States from bark beetles and forest
fires. Forest Science, 62(2), 141–153. doi: 10.5849/forsci.15-086
Hicke, J. A., Meddens, A. J. H., Allen, C. D., & Kolden, C. A. (2013).
Carbon stocks of trees killed by bark beetles and wildfire in the
western United States. Environmental Research Letters ,8 (3). doi: 10.1088/1748-9326/8/3/035032
Hiergeist, A., Gläsner, J., Reischl, U., & Gessner, A. (2015). Analyses
of intestinal microbiota: culture versus sequencing. ILAR Journal,
56(2), 228–240. doi: 10.1093/ilar/ilv017
Hlásny, T., König, L., Krokene, P., Lindner, M., Montagné-Huck, C.,
Müller, J., … Seidl, R. (2021). Bark beetle outbreaks in europe:
state of knowledge and ways forward for management. Current
Forestry Reports , 7 (3), 138–165. doi:
10.1007/s40725-021-00142-x
Hoang, K. L., Morran, L. T., Gerardo, N. M., Lou, Q. Z., Lu, M., Sun, J.
H., … Zúñiga, G. (2020). Yeasts in natural ecosystems: Diversity.PLoS ONE , 10 (2), 1–499. doi: 10.1371/journal.pone.0175470
Hofstetter, R. W., Dinkins-Bookwalter, J., Davis, T. S., & Klepzig, K.
D. (2015). Symbiotic associations of bark beetles. In bark beetles:
biology and ecology of native and invasive species. Elsevier Inc. doi:
10.1016/B978-0-12-417156-5.00006-X
Hou, X. Q., Zhang, D. D., Powell, D., Wang, H. L., Andersson, M. N., &
Löfstedt, C. (2022). Ionotropic receptors in the turnip moth Agrotis
segetum respond to repellent medium-chain fatty acids. BMC
Biology , 20 (1). doi: 10.1186/s12915-022-01235-0
Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D.,
Walter, M. C., … Bork, P. (2016). EGGNOG 4.5: A hierarchical
orthology framework with improved functional annotations for eukaryotic,
prokaryotic and viral sequences. Nucleic Acids Research ,44 (D1), D286–D293. doi: 10.1093/nar/gkv1248
Hui, F. L., Chen, L., Chu, X. Y., Niu, Q. H., & Ke, T. (2013).Wickerhamomyces mori sp. nov., an anamorphic yeast species found
in the guts of wood-boring insect larvae. International Journal of
Systematic and Evolutionary Microbiology, 63 (PART3), 1174–1178. doi:
10.1099/ijs.0.048637-0
Hunt, D. W. A., & Borden, J. H. (1990). Conversion of verbenols to
verbenone by yeasts isolated from Dendroctonus ponderosae (Coleoptera:
Scolytidae). Journal of Chemical Ecology , 16 (4),
1385–1397. doi: 10.1007/BF01021034
Chakraborty, A., Ashraf, M. Z., Modlinger, R., Synek, J., Schlyter, F.,
& Roy, A. (2020). Unravelling the gut bacteriome of Ips(Coleoptera: Curculionidae: Scolytinae): identifying core bacterial
assemblage and their ecological relevance. Scientific Reports ,10 (1), 1–17. doi: 10.1038/s41598-020-75203-5
Chakraborty, A., Modlinger, R., Ashraf, M. Z., Synek, J., Schlyter, F.,
& Roy, A. (2020). Core mycobiome and their ecological relevance in the
gut of five Ips bark beetles (Coleoptera: Curculionidae:
Scolytinae). Frontiers in Microbiology , 11 (September),
1–16. doi: 10.3389/fmicb.2020.568853
Chelius, M. K., & Triplett, E. W. (2001). The diversity of archaea and
bacteria in association with the roots of Zea mays L. Microbial
Ecology, 41(3), 252–263. doi: 10.1007/s002480000087
Ibarra-Juarez, L. A., Burton, M. A. J., Biedermann, P. H. W., Cruz, L.,
Desgarennes, D., Ibarra-Laclette, E., … Lamelas, A. (2020).
Evidence for succession and putative metabolic roles of fungi and
bacteria in the farming mutualism of the ambrosia beetle Xyleborus
affinis . MSystems , 5 (5). doi: 10.1128/msystems.00541-20
Jakoby, O., Lischke, H., & Wermelinger, B. (2019). Climate change
alters elevational phenology patterns of the European spruce bark beetle
(Ips typographus ). Global Change Biology , 25 (12),
4048–4063. doi: 10.1111/gcb.14766
Jankowiak, R. (2005). Fungi associated with Ips typographus onPicea abies in southern Poland and their succession into the
phloem and sapwood of beetle-infested trees and logs. Forest
Pathology , 35 (1), 37–55. doi: 10.1111/j.1439-0329.2004.00395.x
Jankowiak, R., Kacprzyk, M., & Młynarczyk, M. (2009). Diversity of
ophiostomatoid fungi associated with bark beetles (Coleoptera:
Scolytidae) colonizing branches of Norway spruce (picea abies) in
southern Poland. Biologia , 64 (6), 1170–1177. doi:
10.2478/s11756-009-0188-2
Jones, A. G., Mason, C. J., Felton, G. W., & Hoover, K. (2019). Host
plant and population source drive diversity of microbial gut communities
in two polyphagous insects. Scientific Reports , 9 (1),
1–11. doi: 10.1038/s41598-019-39163-9
Kikuchi, Y., Hosokawa, T., & Fukatsu, T. (2007). Insect-microbe
mutualism without vertical transmission: a stinkbug acquires a
beneficial gut symbiont from the environment every generation.Applied and environmental microbiology , 73(13 ), 4308-4316.
Kikuchi, Y. (2009). Endosymbiotic bacteria in insects: Their diversity
and culturability. Microbes and Environments , 24 (3),
195–204. doi: 10.1264/jsme2.ME09140S
Kirisits, T. (2004). Fungal associates of European bark beetles with
special emphasis on the ophiostomatoid fungi. Bark and Wood Boring
Insects in Living Trees in Europe. , 181–235. doi:
10.1007/s13398-014-0173-7.2
Kirkendall, L. R., & Faccoli, M. (2010). Bark beetles and pinhole
borers (Curculionidae, Scolytinae, Platypodinae) alien to Europe.ZooKeys , 56 (SPEC. ISSUE), 227–251. doi:
10.3897/zookeys.56.529
Kirkendall, L. R., Biedermann, P. H. W., & Jordal, B. H. (2015).
Evolution and diversity of bark and ambrosia beetles. In Bark
Beetles: Biology and Ecology of Native and Invasive Species . doi:
10.1016/B978-0-12-417156-5.00003-4
Kulakowski, D. (2016). Managing bark beetle outbreaks (Ips
typographus , Dendroctonus spp.) in conservation areas in the
21st century. Forest Research Papers , 77 (4), 352–357.
doi: 10.1515/frp-2016-0036
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with
Bowtie 2. Nature Methods, 9(4), 357–359. doi: 10.1038/nmeth.1923
Laslett, D., & Canback, B. (2004). ARAGORN, a program to detect tRNA
genes and tmRNA genes in nucleotide sequences. Nucleic Acids
Research , 32 (1), 11–16. doi: 10.1093/nar/gkh152
Leufvén, A., Bergström, G., & Falsen, E. (1984). Interconversion of
verbenols and verbenone by identified yeasts isolated from the spruce
bark beetle Ips typographus . Journal of Chemical Ecology ,10 (9), 1349–1361. doi: 10.1007/BF00988116
Li, D., Liu, C. M., Luo, R., Sadakane, K., & Lam, T. W. (2015).
MEGAHIT: An ultra-fast single-node solution for large and complex
metagenomics assembly via succinct de Bruijn graph.Bioinformatics , 31 (10), 1674–1676. doi:
10.1093/bioinformatics/btv033
Li, H., Young, S. E., Poulsen, M., & Currie, C. R. (2021).
Symbiont-Mediated Digestion of Plant Biomass in Fungus-Farming Insects.Annual Review of Entomology , 66 , 297–316. doi:
10.1146/annurev-ento-040920-061140
Linnakoski, R., Jankowiak, R., Villari, C., Kirisits, T., Solheim, H.,
de Beer, Z. W., & Wingfield, M. J. (2016). The Ophiostoma clavatum
species complex: a newly defined group in the Ophiostomatales including
three novel taxa. Antonie van Leeuwenhoek, International Journal
of General and Molecular Microbiology , 109 (7), 987–1018. doi:
10.1007/s10482-016-0700-y
Linnakoski, R., Lasarov, I., Veteli, P., Tikkanen, O. P., Viiri, H.,
Jyske, T., … Wingfield, M. J. (2021). Filamentous fungi and
yeasts associated with mites phoretic on Ips typographus in
Eastern Finland. Forests , Vol. 12. doi: 10.3390/f12060743
Linnakoski, R., Mahilainen, S., Harrington, A., Vanhanen, H., Eriksson,
M., Mehtatalo, L., … Wingfield, M. J. (2016). Seasonal succession
of fungi associated with Ips typographus beetles and their
Phoretic mites in an outbreak region of Finland. PLoS ONE ,11 (5). doi: 10.1371/journal.pone.0155622
Linnakoski, R., Wilhelm de Beer, Z. B., Niemelä, P., & Wingfield, M. J.
(2012). Associations of conifer-infesting bark beetles and fungi in
Fennoscandia. Insects , 3 (1), 200–227. doi:
10.3390/insects3010200
Linnakoski, R., Wilhelm de Beer, Z. B., Niemelä, P., & Wingfield, M. J.
(2012). Associations of conifer-infesting bark beetles and fungi in
Fennoscandia. Insects , 3 (1), 200–227. doi:
10.3390/insects3010200
López-García, D. M. and P., Jaillon, O., Massana, R., Sebastián, M.,
Vaqué, D., Labarre, A., … Worden, A. Z. (2020). Review TRENDSin
Microbiology Vol.10 No.1 January 2002 The molecular ecology of microbial
eukaryotes unveils a hidden world. ISME Journal , 8 (1),
1–14. doi: 10.1186/s13059-016-0960
Lou, Q. Z., Lu, M., & Sun, J. H. (2014). Yeast diversity associated
with invasive Dendroctonus valens killing Pinus
tabuliformis in China using culturing and molecular methods.Microbial Ecology , 68 (2), 397–415. doi:
10.1007/s00248-014-0413-6
Louca, S., Jacques, S. M. S., Pires, A. P. F., Leal, J. S., Srivastava,
D. S., Parfrey, L. W., … Doebeli, M. (2017). High taxonomic
variability despite stable functional structure across microbial
communities. Nature Ecology & Evolution , 1 (1), 1–12.
doi: 10.1038/s41559-016-0015
Matsuura, Y., Moriyama, M., Łukasik, P., Vanderpool, D., Tanahashi, M.,
Meng, X. Y., … Fukatsu, T. (2018). Recurrent symbiont recruitment
from fungal parasites in cicadas. Proceedings of the National
Academy of Sciences of the United States of America , 115 (26),
E5970–E5979. doi: 10.1073/pnas.1803245115
McCutcheon, J., & Southam, G. (2018). Advanced biofilm staining
techniques for TEM and SEM in geomicrobiology: Implications for
visualizing EPS architecture, mineral nucleation, and microfossil
generation. Chemical Geology , 498 , 115–127. doi:
10.1016/j.chemgeo.2018.09.016
McMurdie PJ, Holmes S (2013). phyloseq: An R Package for reproducible
interactive analysis and graphics of microbiome census data. PLOS
ONE, 8 , e61217.https://doi.org/10.1371/journal.pone.0061217
Mezei, P., Blaženec, M., Grodzki, W., Škvarenina, J., & Jakuš, R.
(2017). Influence of different forest protection strategies on spruce
tree mortality during a bark beetle outbreak. Annals of Forest
Science , 74 (4). doi: 10.1007/s13595-017-0663-9
Mikkelson, K. M., Bearup, L. A., Maxwell, R. M., Stednick, J. D.,
McCray, J. E., & Sharp, J. O. (2013). Bark beetle infestation impacts
on nutrient cycling, water quality and interdependent hydrological
effects. Biogeochemistry , 115 (1–3), 1–21. doi:
10.1007/s10533-013-9875-8
Miller, K. E., Inward, D. J., Gomez-Rodriguez, C., Baselga, A., &
Vogler, A. P. (2019). Predicting the unpredictable: How host specific is
the mycobiota of bark and ambrosia beetles? Fungal Ecology ,42 , 100854. doi: 10.1016/j.funeco.2019.07.008
Morales-Jiménez, J., Zúñiga, G., Ramírez-Saad, H. C., &
Hernández-Rodríguez, C. (2012). Gut-associated bacteria throughout the
life cycle of the bark beetle Dendroctonus rhizophagus Thomas and
Bright (Curculionidae: Scolytinae) and Their Cellulolytic Activities.Microbial Ecology , 64 (1), 268–278. doi:
10.1007/s00248-011-9999-0
Moran, N. A. (n.d.). Symbiosis . 16 (20), 866–871. doi:
doi:10.1016/j.cub.2006.09.019
Motta, J. P., Wallace, J. L., Buret, A. G., Deraison, C., & Vergnolle,
N. (2021). Gastrointestinal biofilms in health and disease. Nature
Reviews Gastroenterology and Hepatology , 18 (5), 314–334. doi:
10.1038/s41575-020-00397-y
Ninomiya, S., Mikata, K., Kajimura, H., & Kawasaki, H. (2013). Two
novel ascomycetous yeast species, Wickerhamomyces scolytoplatypi sp.
nov. and Cyberlindnera xylebori sp. nov., isolated from ambrosia beetle
galleries. International Journal of Systematic and Evolutionary
Microbiology, 63(PART7), 2706–2711. doi: 10.1099/ijs.0.050195-0
Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P.,
Minchin, P., O’Hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner,
H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G.,
Chirico, M., De Caceres, M., Durand, S., Evangelista, H., FitzJohn, R.,
Friendly, M., Furneaux, B., Hannigan, G., Hill, M., Lahti, L., McGlinn,
D., Ouellette, M., Ribeiro, Cunha, E., Smith, T., Stier, A., Ter Braak,
C. & Weedon, J. (2022). Vegan: Community Ecology Package,
<https://CRAN.R-project.org/package=vegan>.
Pace, N. R. (1997). A molecular view of microbial diversity and the
biosphere. Science , 276 (5313), 734–740. doi:
10.1126/science.276.5313.734
Parfrey, L. W., Moreau, C. S., & Russell, J. A. (2018). Introduction:
The host-associated microbiome: Pattern, process and function.Molecular Ecology , 27 (8), 1749–1765. doi:
10.1111/mec.14706
Pepori, A. L., Bettini, P. P., Comparini, C., Sarrocco, S., Bonini, A.,
Frascella, A., … Santini, A. (2018). Geosmithia-Ophiostoma: a New
Fungus-Fungus Association. Microbial Ecology , 75 (3),
632–646. doi: 10.1007/s00248-017-1062-3
Peral-Aranega, E., Saati-Santamaría, Z., Kolařik, M., Rivas, R., &
García-Fraile, P. (2020). Bacteria belonging to Pseudomonas
typographi sp. Nov. from the bark beetle Ips typographus have
genomic potential to aid in the host ecology. Insects ,11 (9), 1–22. doi: 10.3390/insects11090593
Persson, Y., Vasaitis, R., Långström, B., Öhrn, P., Ihrmark, K., &
Stenlid, J. (2009). Fungi vectored by the bark beetle Ips
typographus following hibernation under the bark of standing trees and
in the forest litter. Microbial Ecology , 58 (3), 651–659.
doi: 10.1007/s00248-009-9520-1
Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y., & Fierer, N.
(2010). The ecology of the phyllosphere: Geographic and phylogenetic
variability in the distribution of bacteria on tree leaves.Environmental Microbiology , 12 (11), 2885–2893. doi:
10.1111/j.1462-2920.2010.02258.x
Repe, A., Kirisits, T., Piškur, B., De Groot, M., Kump, B., & Jurc, M.
(2013). Ophiostomatoid fungi associated with three spruce-infesting bark
beetles in Slovenia. Annals of Forest Science , 70 (7),
717–727. doi: 10.1007/s13595-013-0311-y
Repe, A., Kirisits, T., Piškur, B., De Groot, M., Kump, B., & Jurc, M.
(2013). Ophiostomatoid fungi associated with three spruce-infesting bark
beetles in Slovenia. Annals of Forest Science , 70 (7),
717–727. doi: 10.1007/s13595-013-0311-y
Risely, A. (2020). Applying the core microbiome to understand
host–microbe systems. Journal of Animal Ecology , 89 (7),
1549–1558. doi: 10.1111/1365-2656.13229
Risely, A. (2020). Applying the core microbiome to understand
host–microbe systems. Journal of Animal Ecology , 89 (7),
1549–1558. doi: 10.1111/1365-2656.13229
Rivera, F. N., GonzÁlez, E., GÓmez, Z., LÓpez, N., Hernández-Rodríguez,
C., Berkov, A., & Zúñiga, G. (2009). Gut-associated yeast in bark
beetles of the genus Dendroctonus Erichson (Coleoptera:
Curculionidae: Scolytinae). Biological Journal of the Linnean Society,
98(2), 325–342. doi: 10.1111/j.1095-8312.2009.01289.x
Rivers, A. R., Weber, K. C., Gardner, T. G., Liu, S., & Armstrong, S.
D. (2018). ITSxpress: Software to rapidly trim internally transcribed
spacer sequences with quality scores for marker gene analysis [version
1; peer review: 2 approved]. F1000Research , 7 (0). doi:
10.12688/F1000RESEARCH.15704.1
Rohlfs, M., & Kürschner, L. (2010). Saprophagous insect larvae,Drosophila melanogaster , profit from increased species richness
in beneficial microbes. Journal of Applied Entomology ,134 (8), 667–671. doi: 10.1111/j.1439-0418.2009.01458.x
Saati-Santamaría, Z., López-Mondéjar, R., Jiménez-Gómez, A.,
Díez-Méndez, A., Vetrovský, T., Igual, J. M., … García-Fraile, P.
(2018). Discovery of phloeophagus beetles as a source of pseudomonas
strains that produce potentially new bioactive substances and
description of pseudomonas bohemica sp. nov. Frontiers in
Microbiology , 9 (MAY). doi: 10.3389/fmicb.2018.00913
Saati-Santamaría, Z., Peral-Aranega, E., Velázquez, E., Rivas, R., &
García-Fraile, P. (2021). Phylogenomic analyses of the genus pseudomonas
lead to the rearrangement of several species and the definition of new
genera. Biology, 10(8). doi: 10.3390/biology10080782
Sagova-Mareckova, M., Cermak, L., Novotna, J., Plhackova, K., Forstova,
J., & Kopecky, J. (2008). Innovative methods for soil DNA purification
tested in soils with widely differing characteristics. Applied and
Environmental Microbiology , 74 (9), 2902–2907. doi:
10.1128/AEM.02161-07
Sallé, A., Monclus, R., Yart, A., Garcia, J., Romary, P., & Lieutier,
F. (2005). Fungal flora associated with Ips typographus: Frequency,
virulence, and ability to stimulate the host defence reaction in
relation to insect population levels. Canadian Journal of Forest
Research , 35 (2), 365–373. doi: 10.1139/x04-186
Seemann T. 2013. Barrnap 0.7: rapid ribosomal RNA prediction
Shifrine, A. M., & Phaff, H. J. (1956). The association of yeasts with
certain bark beetles. Mycologia , 48 (1), 41–55.
Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing
of metagenomic datasets. Bioinformatics , 27 (6), 863–864.
doi: 10.1093/bioinformatics/btr026
Siemaszko, W. (1939). Zepoly grzybow towarzyszacych kornikom polskim
[Fungi associated with barkbeetles in Poland]. Pianta polonica, 7,
I-54
Six, D. L. (2003). Bark beetle-fungus symbiosis. In K. Bourtzis & T. A.
Miller (Eds.), Insect Symbiosis (pp. 99-116). CRC Press.
Six, D. L. (2012). Ecological and evolutionary determinants of bark
beetle - Fungus symbioses. Insects , 3 (1), 339–366. doi:
10.3390/insects3010339
Six, D. L. (2013). The Bark Beetle Holobiont: Why Microbes
Matter . 989–1002. doi: 10.1007/s10886-013-0318-8
Six, D. L. (2020). Niche construction theory can link bark beetle-fungus
symbiosis type and colonization behavior to large scale causal
chain-effects. Current Opinion in Insect Science , 39 ,
27–34. doi: 10.1016/j.cois.2019.12.005
Skrodenytee-Arbaciauskiene, V., Radziute, S., Stunzenas, V., & Buda, V.
(2012). Erwinia typographi sp. nov., isolated from bark beetle
(Ips typographus ) gut. International Journal of Systematic
and Evolutionary Microbiology , 62 (4), 942–948. doi:
10.1099/ijs.0.030304-0
Solheim, H. (1992). Fungal succession in sapwood of Norway spruce
infested by the bark beetle Ips typographus. European Journal of
Forest Pathology , 22 (3), 136–148. doi:
10.1111/j.1439-0329.1992.tb01440.x
Strid, Y. M. E. (2012). Bark beetles facilitate the establishment
of wood decay fungi .
Sun, B. F., Xiao, J. H., He, S. M., Liu, L., Murphy, R. W., & Huang, D.
W. (2013). Multiple ancient horizontal gene transfers and duplications
in lepidopteran species. Insect Molecular Biology , 22 (1),
72–87. doi: 10.1111/imb.12004
Šigut, M., Pyszko, P., Šigutová, H., Višňovská, D., Kostovčík, M.,
Kotásková, N., … Drozd, P. (2022). Fungi are more transient than
bacteria in caterpillar gut microbiomes. Scientific Reports, 12(1),
1–12. doi: 10.1038/s41598-022-19855-5
Takov, D. I., Doychev, D. D., Linde, A., Atanasova Draganova, S., &
Kirilova Pilarska, D. (2012). Pathogens of bark beetles (Curculionidae:
Scolytinae) and other beetles in Bulgaria. Biologia ,67 (5), 966–972. doi: 10.2478/s11756-012-0086-x
Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-coverage
ITS primers for the DNA-based identification of ascomycetes and
basidiomycetes in environmental samples. PLoS ONE , 7 (7).
doi: 10.1371/journal.pone.0040863
Van Moll, L., De Smet, J., Cos, P., & Van Campenhout, L. (2021).
Microbial symbionts of insects as a source of new antimicrobials: a
review. Critical Reviews in Microbiology , 47 (5), 562–579.
doi: 10.1080/1040841X.2021.1907302
Vega, F. E., Hofstetter, R. W. (2015) Bark beetles: biology and ecology
of native and invasive species. Elsevier Academic Press ISBN:
9780124171565
Veselská, T., Skelton, J., Kostovčík, M., Hulcr, J., Baldrian, P.,
Chudíčková, M., … Kolařík, M. (2019). Adaptive traits of bark and
ambrosia beetle-associated fungi. Fungal Ecology ,41 (July), 165–176. doi: 10.1016/j.funeco.2019.06.005
Višňovska, D., Pyszko, P., Šigut, M., Kostovčik, M., Kolařik, M.,
Kotaskova, N., & Drozd, P. (2020). Caterpillar gut and host plant
phylloplane mycobiomes differ: A new perspective on fungal involvement
in insect guts. FEMS Microbiology Ecology , 96 (9). doi:
10.1093/femsec/fiaa116
von Dohlen, C. D., Spaulding, U., Patch, K. B., Weglarz, K. M., Foottit,
R. G., Havill, N. P., & Burke, G. R. (2017). Dynamic acquisition and
loss of dual-obligate symbionts in the plant-sap-feeding adelgidae
(Hemiptera: Sternorrhyncha: Aphidoidea). Frontiers in
Microbiology , 8 (JUN), 1–15. doi: 10.3389/fmicb.2017.01037
Wang, F., Li, M., Huang, L., & Zhang, X. H. (2021). Cultivation of
uncultured marine microorganisms. Marine Life Science and
Technology , 3 (2), 117–120. doi: 10.1007/s42995-021-00093-z
Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve
Bayesian classifier for rapid assignment of rRNA sequences into the new
bacterial taxonomy. Applied and Environmental Microbiology ,73 (16), 5261–5267. doi: 10.1128/AEM.00062-07
Wermelinger, B. (2004). Ecology and management of the spruce bark beetle
Ips typographus — a review of recent research. Forest Ecology
and Management 202 , 67–82. doi: 10.1016/j.foreco.2004.07.018
Xu, L., Shi, Z., Wang, B., Lu, M., & Sun, J. (2016). Pine defensive
monoterpene α-pinene influences the feeding behavior ofDendroctonus valens and its gut bacterial community structure.International Journal of Molecular Sciences , 17 (11). doi:
10.3390/ijms17111734
Xue, J., Zhou, X., Zhang, C. X., Yu, L. L., Fan, H. W., Wang, Z.,
… Cheng, J. A. (2014). Genomes of the rice pest brown planthopper
and its endosymbionts reveal complex complementary contributions for
host adaptation. Genome Biology , 15 (12). doi:
10.1186/s13059-014-0521-0
Yaman, M., Ertürk, Ö., & Aslan, I. (2010). Isolation of some pathogenic
bacteria from the great spruce bark beetle, Dendroctonus micansand its specific predator, Rhizophagus grandis . Folia
Microbiologica , 55 (1), 35–38. doi: 10.1007/s12223-010-0006-9
Yamaoka, Y., Wingfield, M. J., Takahashi, I., & Solheim, H. (1997).
Ophiostomatoid fungi associated with the spruce bark beetle Ips
typographus f. japonicus in Japan. Mycological Research ,101 (10), 1215–1227. doi: 10.1017/S0953756297003924
Ye, Y., & Doak, T. G. (2009). A parsimony approach to biological
pathway reconstruction/inference for genomes and metagenomes. PLoS
Computational Biology , 5 (8), 1–8. doi:
10.1371/journal.pcbi.1000465
Yi, Y., Fang, Y., Wu, K., Liu, Y., & Zhang, W. (2020). Comprehensive
gene and pathway analysis of cervical cancer progression. Oncology
Letters , 19 (4), 3316–3332. doi: 10.3892/ol.2020.11439
Yun, Y. H., Suh, D. Y., Yoo, H. D., Oh, M. H., & Kim, S. H. (2015).
Yeast associated with the ambrosia beetle, Platypus koryoensis ,
the pest of oak trees in Korea. Mycobiology , 43(4), 458–466.
doi: 10.5941/MYCO.2015.43.4.458
Zhao, T., Kandasamy, D., Krokene, P., Chen, J., Gershenzon, J., &
Hammerbacher, A. (2019). Fungal associates of the tree-killing bark
beetle, Ips typographus , vary in virulence, ability to degrade
conifer phenolics and influence bark beetle tunneling behavior. Fungal
Ecology, 38, 71-79. doi: 10.1016/j.chom.2019.03.007
Zhao, T., Kandasamy, D., Krokene, P., Chen, J., Gershenzon, J., &
Hammerbacher, A. (2018). Fungal associates of the tree-killing bark
beetle, Ips typographus , vary in virulence, ability to degrade
conifer phenolics and in fluence bark beetle tunneling behavior.Fungal Ecology , 1–9. doi: 10.1016/j.funeco.2018.06.003
Zhao, T., Ganji, S., Schiebe, C., Bohman, B., Weinstein, P., Krokene,
P., Borg-Karlson, A.-K., & Unelius, C. R. (2019). Convergent evolution
of semiochemicals across Kingdoms: bark beetles and their fungal
symbionts. The ISME journal, 13 (6), 1535-1545. doi:
10.1038/s41396-019-0370-7