References
1. Esch T, Stefano GB, Ptacek R, Kream RM. Emerging Roles of Blood-Borne
Intact and Respiring Mitochondria as Bidirectional Mediators of Pro- and
Anti-Inflammatory Processes. Med Sci Monit. 2020;26:e924337.
2. Karuppan MKM, Devadoss D, Nair M, Chand HS, Lakshmana MK. SARS-CoV-2
Infection in the Central and Peripheral Nervous System-Associated
Morbidities and Their Potential Mechanism. Mol Neurobiol.
2021;58(6):2465-80.
3. Keyhanian K, Umeton RP, Mohit B, Davoudi V, Hajighasemi F, Ghasemi M.
SARS-CoV-2 and nervous system: From pathogenesis to clinical
manifestation. J Neuroimmunol. 2020;350:577436.
4. Rhea EM, Logsdon AF, Hansen KM, Williams LM, Reed MJ, Baumann KK, et
al. The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in
mice. Nat Neurosci. 2021;24(3):368-78.
5. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic
manifestations of hospitalized patients with coronavirus disease 2019 in
Wuhan, China. JAMA neurology. 2020;77(6):683-90.
6. Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-month
consequences of COVID-19 in patients discharged from hospital: a cohort
study. The Lancet. 2021;397(10270):220-32.
7. Rogers JP, Chesney E, Oliver D, Pollak TA, McGuire P, Fusar-Poli P,
et al. Psychiatric and neuropsychiatric presentations associated with
severe coronavirus infections: a systematic review and meta-analysis
with comparison to the COVID-19 pandemic. The Lancet Psychiatry.
2020;7(7):611-27.
8. Zhao S, Shibata K, Hellyer PJ, Trender W, Manohar S, Hampshire A, et
al. Rapid vigilance and episodic memory decrements in COVID-19
survivors. Brain Communications. 2022;4(1).
9. Li Z, Tomlinson AC, Wong AH, Zhou D, Desforges M, Talbot PJ, et al.
The human coronavirus HCoV-229E S-protein structure and receptor
binding. Elife. 2019;8:e51230.
10. Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and
functional basis of SARS-CoV-2 entry by using human ACE2. Cell.
2020;181(4):894-904. e9.
11. Sigrist CJ, Bridge A, Le Mercier P. A potential role for integrins
in host cell entry by SARS-CoV-2. Antiviral research. 2020;177:104759.
12. Zalpoor H, Akbari A, Samei A, Forghaniesfidvajani R, Kamali M,
Afzalnia A, et al. The roles of Eph receptors, neuropilin-1, P2X7, and
CD147 in COVID-19-associated neurodegenerative diseases: inflammasome
and JaK inhibitors as potential promising therapies. Cellular &
Molecular Biology Letters. 2022;27(1):10.
13. De Wit E, Van Doremalen N, Falzarano D, Munster VJ. SARS and MERS:
recent insights into emerging coronaviruses. Nature Reviews
Microbiology. 2016;14(8):523-34.
14. Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, et al. Clinical
characteristics of coronavirus disease 2019 in China. New England
journal of medicine. 2020;382(18):1708-20.
15. Wu C, Chen X, Cai Y, Zhou X, Xu S, Huang H, et al. Risk factors
associated with acute respiratory distress syndrome and death in
patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA
internal medicine. 2020;180(7):934-43.
16. Yang X, Yu Y, Xu J, Shu H, Liu H, Wu Y, et al. Clinical course and
outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan,
China: a single-centered, retrospective, observational study. The Lancet
Respiratory Medicine. 2020;8(5):475-81.
17. Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA.
Isolation of a novel coronavirus from a man with pneumonia in Saudi
Arabia. New England Journal of Medicine. 2012;367(19):1814-20.
18. Palm NW, Medzhitov R. Not so fast: adaptive suppression of innate
immunity. Nature medicine. 2007;13(10):1142-4.
19. Alagheband Bahrami A, Azargoonjahromi A, Sadraei S, Aarabi A,
Payandeh Z, Rajabibazl M. An overview of current drugs and prophylactic
vaccines for coronavirus disease 2019 (COVID-19). Cell Mol Biol Lett.
2022;27(1):38.
20. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by
the novel coronavirus from Wuhan: an analysis based on decade-long
structural studies of SARS coronavirus. Journal of virology.
2020;94(7):e00127-20.
21. Bao W, Zhang X, Jin Y, Hao H, Yang F, Yin D, et al. Factors
associated with the expression of ACE2 in human lung tissue:
pathological evidence from patients with Normal FEV1 and FEV1/FVC.
Journal of Inflammation Research. 2021;14:1677.
22. Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA
expression profiling of ACE 2, a novel homologue of angiotensin
converting enzyme. FEBS letters. 2002;532(1-2):107-10.
23. Kehoe PG, Wong S, Al Mulhim N, Palmer LE, Miners JS.
Angiotensin-converting enzyme 2 is reduced in Alzheimer’s disease in
association with increasing amyloid-β and tau pathology. Alzheimer’s
research & therapy. 2016;8(1):1-10.
24. Xu J, Sriramula S, Xia H, Moreno-Walton L, Culicchia F, Domenig O,
et al. Clinical relevance and role of neuronal AT1 receptors in
ADAM17-mediated ACE2 shedding in neurogenic hypertension. Circulation
research. 2017;121(1):43-55.
25. Xiang P, Xu X, Gao L, Wang H, Xiong H, Li R. First case of 2019
novel coronavirus disease with encephalitis. ChinaXiv.
2020;202003:00015.
26. Koyuncu O, Hogue I, Enquist L. Virus infections in the nervous
system. Cell host & microbe. 2013;13(4):379-93.
27. Rhea EM, Banks WA. Role of the Blood-Brain Barrier in Central
Nervous System Insulin Resistance. Frontiers in Neuroscience. 2019;13.
28. Alomari SO, Abou-Mrad Z, Bydon A. COVID-19 and the central nervous
system. Clinical neurology and neurosurgery. 2020;198:106116.
29. Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K, Gong
B, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the
olfactory system suggests mechanisms underlying COVID-19-associated
anosmia. Science advances. 2020;6(31):eabc5801.
30. Briguglio M, Bona A, Porta M, Dell’Osso B, Pregliasco FE, Banfi G.
Disentangling the hypothesis of host dysosmia and SARS-CoV-2: the bait
symptom that hides neglected neurophysiological routes. Frontiers in
physiology. 2020;11:671.
31. Butowt R, Bilinska K. SARS-CoV-2: olfaction, brain infection, and
the urgent need for clinical samples allowing earlier virus detection.
ACS chemical neuroscience. 2020;11(9):1200-3.
32. Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, et
al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central
nervous system entry in individuals with COVID-19. Nature neuroscience.
2021;24(2):168-75.
33. Ding Y, Wang H, Shen H, Li Z, Geng J, Han H, et al. The clinical
pathology of severe acute respiratory syndrome (SARS): a report from
China. The Journal of Pathology: A Journal of the Pathological Society
of Great Britain and Ireland. 2003;200(3):282-9.
34. Manousakis G, Jensen MB, Chacon MR, Sattin JA, Levine RL. The
interface between stroke and infectious disease: infectious diseases
leading to stroke and infections complicating stroke. Current neurology
and neuroscience reports. 2009;9(1):28-34.
35. Starke RM, Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez
LF, et al. The role of oxidative stress in cerebral aneurysm formation
and rupture. Current neurovascular research. 2013;10(3):247-55.
36. Chousterman BG, Swirski FK, Weber GF, editors. Cytokine storm and
sepsis disease pathogenesis. Seminars in immunopathology; 2017:
Springer.
37. Clark IA, Vissel B, editors. The meteorology of cytokine storms, and
the clinical usefulness of this knowledge. Seminars in immunopathology;
2017: Springer.
38. Heneka MT, Golenbock D, Latz E, Morgan D, Brown R. Immediate and
long-term consequences of COVID-19 infections for the development of
neurological disease. Alzheimer’s research & therapy. 2020;12(1):1-3.
39. Poduri R, Joshi G, Jagadeesh G. Drugs targeting various stages of
the SARS-CoV-2 life cycle: Exploring promising drugs for the treatment
of Covid-19. Cellular signalling. 2020;74:109721.
40. Ye Q, Wang B, Mao J. The pathogenesis and treatment of theCytokine
Storm’in COVID-19. Journal of infection. 2020;80(6):607-13.
41. Colombo MG, Andreassi MG, Paradossi U, Botto N, Manfredi S, Masetti
S, et al. Evidence for association of a common variant of the
endothelial nitric oxide synthase gene (Glu298–>Asp
polymorphism) to the presence, extent, and severity of coronary artery
disease. Heart. 2002;87(6):525-8.
42. Lee M, Rey K, Besler K, Wang C, Choy J. Immunobiology of nitric
oxide and regulation of inducible nitric oxide synthase. Macrophages.
2017:181-207.
43. Madhu BP, Singh KP, Saminathan M, Singh R, Shivasharanappa N, Sharma
AK, et al. Role of nitric oxide in the regulation of immune responses
during rabies virus infection in mice. Virusdisease. 2016;27(4):387-99.
44. Lindlau A, Widmann C, Putensen C, Jessen F, Semmler A, Heneka M.
Predictors of hippocampal atrophy in critically ill patients. European
Journal of Neurology. 2015;22(2):410-5.
45. Alagheband Bahrami A, Azargoonjahromi A, Sadraei S, Aarabi A,
Payandeh Z, Rajabibazl M. An overview of current drugs and prophylactic
vaccines for coronavirus disease 2019 (COVID-19). Cellular & Molecular
Biology Letters. 2022;27(1):38.
46. Kuhn JH, Radoshitzky SR, Li W, Wong SK, Choe H, Farzan M. The SARS
Coronavirus receptor ACE 2 A potential target for antiviral therapy. New
Concepts of Antiviral Therapy. 2006:397-418.
47. Zheng JL, Li GZ, Chen SZ, Wang JJ, Olson JE, Xia HJ, et al.
Angiotensin Converting Enzyme 2/Ang‐(1–7)/Mas Axis Protects Brain from
Ischemic Injury with a Tendency of Age‐dependence. CNS neuroscience &
therapeutics. 2014;20(5):452-9.
48. Joosten E, Houweling D. Local acute application of BDNF in the
lesioned spinal cord anti-inflammatory and anti-oxidant effects.
Neuroreport. 2004;15(7):1163-6.
49. Wu S-Y, Pan B-S, Tsai S-F, Chiang Y-T, Huang B-M, Mo F-E, et al.
BDNF reverses aging-related microglial activation. Journal of
Neuroinflammation. 2020;17(1):1-18.
50. de Pins B, Cifuentes-Díaz C, Farah AT, López-Molina L, Montalban E,
Sancho-Balsells A, et al. Conditional BDNF delivery from astrocytes
rescues memory deficits, spine density, and synaptic properties in the
5xFAD mouse model of Alzheimer disease. Journal of Neuroscience.
2019;39(13):2441-58.
51. Ng TKS, Ho CSH, Tam WWS, Kua EH, Ho RC-M. Decreased serum
brain-derived neurotrophic factor (BDNF) levels in patients with
Alzheimer’s disease (AD): a systematic review and meta-analysis.
International journal of molecular sciences. 2019;20(2):257.
52. Akrout N, Sharshar T, Annane D. Mechanisms of brain signaling during
sepsis. Current Neuropharmacology. 2009;7(4):296-301.
53. Gardoni F, Boraso M, Zianni E, Corsini E, Galli CL, Cattabeni F, et
al. Distribution of interleukin-1 receptor complex at the synaptic
membrane driven by interleukin-1β and NMDA stimulation. Journal of
neuroinflammation. 2011;8(1):1-6.
54. Prieto GA, Tong L, Smith ED, Cotman CW. TNFα and IL-1β but not IL-18
suppresses hippocampal long-term potentiation directly at the synapse.
Neurochemical research. 2019;44(1):49-60.
55. Zanin L, Saraceno G, Panciani PP, Renisi G, Signorini L, Migliorati
K, et al. SARS-CoV-2 can induce brain and spine demyelinating lesions.
Acta Neurochir (Wien). 2020;162(7):1491-4.
56. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ.
COVID-19: consider cytokine storm syndromes and immunosuppression.
Lancet. 2020;395(10229):1033-4.
57. Zoghi A, Ramezani M, Roozbeh M, Darazam IA, Sahraian MA. A case of
possible atypical demyelinating event of the central nervous system
following COVID-19. Mult Scler Relat Disord. 2020;44:102324.
58. Brun G, Hak JF, Coze S, Kaphan E, Carvelli J, Girard N, et al.
COVID-19-White matter and globus pallidum lesions: Demyelination or
small-vessel vasculitis? Neurol Neuroimmunol Neuroinflamm. 2020;7(4).
59. Agarwal A, Pinho M, Raj K, Yu FF, Bathla G, Achilleos M, et al.
Neurological emergencies associated with COVID-19: stroke and beyond.
Emerg Radiol. 2020;27(6):747-54.
60. Karapanayiotides T, Geka E, Prassopoulos P, Koutroulou I, Kollaras
P, Kiourtzieva E, et al. Concentric demyelination pattern in
COVID-19-associated acute haemorrhagic leukoencephalitis: a lurking
catastrophe? Brain. 2020;143(12):e100.
61. Huang S, Fishell G. In SARS-CoV-2, astrocytes are in it for the long
haul. Proceedings of the National Academy of Sciences.
2022;119(30):e2209130119.
62. Andrews MG, Mukhtar T, Eze UC, Simoneau CR, Ross J, Parikshak N, et
al. Tropism of SARS-CoV-2 for human cortical astrocytes. Proceedings of
the National Academy of Sciences. 2022;119(30):e2122236119.
63. Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C.
Astrocytes as key regulators of brain energy metabolism: new therapeutic
perspectives. Frontiers in Physiology. 2022:2503.
64. Chao C-C, Gutiérrez-Vázquez C, Rothhammer V, Mayo L, Wheeler MA,
Tjon EC, et al. Metabolic control of astrocyte pathogenic activity via
cPLA2-MAVS. Cell. 2019;179(7):1483-98. e22.
65. Andrews MG, Mukhtar T, Eze UC, Simoneau CR, Perez Y, Mostajo-Radji
MA, et al. Tropism of SARS-CoV-2 for Developing Human Cortical
Astrocytes. bioRxiv. 2021:2021.01.17.427024.
66. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity:
uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57-69.
67. Fetler L, Amigorena S. Neuroscience. Brain under surveillance: the
microglia patrol. Science. 2005;309(5733):392-3.
68. Kim YS, Joh TH. Microglia, major player in the brain inflammation:
their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med.
2006;38(4):333-47.
69. Polazzi E, Contestabile A. Reciprocal interactions between microglia
and neurons: from survival to neuropathology. Rev Neurosci.
2002;13(3):221-42.
70. Zecca L, Zucca FA, Albertini A, Rizzio E, Fariello RG. A proposed
dual role of neuromelanin in the pathogenesis of Parkinson’s disease.
Neurology. 2006;67(7 Suppl 2):S8-11.
71. Tremblay M. A Diversity of Cell Types, Subtypes and Phenotypes in
the Central Nervous System: The Importance of Studying Their Complex
Relationships. Front Cell Neurosci. 2020;14:628347.
72. Tay TL, Béchade C, D’Andrea I, St-Pierre MK, Henry MS, Roumier A, et
al. Microglia Gone Rogue: Impacts on Psychiatric Disorders across the
Lifespan. Front Mol Neurosci. 2017;10:421.
73. Jeong GU, Lyu J, Kim K-D, Chung YC, Yoon GY, Lee S, et al.
SARS-CoV-2 Infection of Microglia Elicits Proinflammatory Activation and
Apoptotic Cell Death. Microbiology Spectrum. 2022;10(3):e01091-22.
74. Jeong GU, Lyu J, Kim K-D, Chung YC, Yoon GY, Lee S, et al.
SARS-CoV-2 Infection of Microglia Elicits Pro-inflammatory Activation
and Apoptotic Cell Death. bioRxiv. 2022:2022.01.04.475015.
75. Becker JH, Lin JJ, Doernberg M, Stone K, Navis A, Festa JR, et al.
Assessment of Cognitive Function in Patients After COVID-19 Infection.
JAMA Network Open. 2021;4(10):e2130645-e.
76. Baig AM. Chronic COVID syndrome: Need for an appropriate medical
terminology for long-COVID and COVID long-haulers. Journal of medical
virology. 2020.
77. Callard F, Perego E. How and why patients made Long Covid. Social
science & medicine. 2021;268:113426.
78. Perego E, Callard F, Stras L, Melville-Jóhannesson B, Pope R, Alwan
NA. Why the patient-made term’long Covid’is needed. Wellcome Open
Research. 2020;5(224):224.
79. Al-Aly Z, Bowe B, Xie Y. Long COVID after breakthrough SARS-CoV-2
infection. Nat Med. 2022;28(7):1461-7.
80. Nehme M, Braillard O, Chappuis F, Courvoisier DS, Guessous I, Team
CS. Prevalence of symptoms more than seven months after diagnosis of
symptomatic COVID-19 in an outpatient setting. Annals of internal
medicine. 2021;174(9):1252-60.
81. Zeng N, Zhao Y-M, Yan W, Li C, Lu Q-D, Liu L, et al. A systematic
review and meta-analysis of long term physical and mental sequelae of
COVID-19 pandemic: call for research priority and action. Molecular
Psychiatry. 2022:1-11.
82. Theoharides TC, Cholevas C, Polyzoidis K, Politis A. Long‐COVID
syndrome‐associated brain fog and chemofog: Luteolin to the rescue.
Biofactors. 2021;47(2):232-41.
83. Mahase E. Covid-19: Pfizer’s paxlovid is 89% effective in patients
at risk of serious illness, company reports. BMJ. 2021;375:n2713.
84. Dyer O. Covid-19: Doctors will refuse to limit use of antiviral drug
to unvaccinated patients, say ethicists. BMJ. 2021;375:n2855.
85. Xie Y, Choi T, Al-Aly Z. Nirmatrelvir and the Risk of Post-Acute
Sequelae of COVID-19. medRxiv. 2022:2022.11.03.22281783.