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Abstract: State of charge (SOC) estimation of lithium-ion batteries is the most important role of a battery management system. to
improve the SOC estimation speed and accuracy in the operational environment, a novel method is proposed by combining a gated
recurrent unit (GRU) neural network and a least mean square (LMS) adaptive filter. First a GRU network is used to estimate the
SOC based on the battery measurement data. Then the LMS filter is used for online error reduction through unpredicted operation
conditions, the LMS is a lite adaptive filter that updates its coefficient based on operation conditions with low computation cost. To
verify the method robustness, its performance was checked under constant and varying temperature for standard drive cycles like
UDDS and LA92. The proposed method is able to estimate SOC with less than 10-min discharge voltage, current and temperature
data as the input with an error of less than 0.6% during working hour. Therefore, compared with conventional methods like LSTM

and GRU the proposed GRU-LMS method has better speed and accuracy in the SOC estimation.

1 Introduction

energy storage devices play a key role in a wide range of applications
like smart grids, electric vehicles, and portable electronics, and they
are used to enhance operations, reliability, and efficiency of systems
[1].Lithium-ion batteries are widely used as energy storage due to
their high-power density, high-energy density and long life [2]. In
order to ensure safe and reliable battery operation, the battery man-
agement system (BMS) is necessary. BMS manages all the control
and management facilities related to the battery like state monitoring
and estimation, charge and discharge control, temperature control,
battery protection, and cell balancing.

The most important task of BMS is accurate SOC estimation
because it helps to improve the battery’s life and safety by avoid-
ing overcharge and over-discharge of the battery[3]. It defines as a
ratio of the available capacity of the battery to its rated capacity [4].
SOC is like the fuel gauge in a car and is necessary for the reliable
operation of the system, it provides the current state of the battery
and helps the BMS to charge and discharge the battery at the best
level for battery life increase. Estimating SOC is challenging and it
is impossible to measure it directly. Furthermore, the uncertainty of a
battery’s performance under different operational and environmental
conditions causes a challenge to the estimation of SOC [5].

According to the literature SOC estimation methods can be cat-
egorized into four categories, amp-Hour integration method, open
circuit voltage method, model-based estimation method, and data-
driven estimation method [6]. amp-Hour integration method is an
easy and fast method but this method is dependent to initial SOC
which is challengeable, equally it suffers from error accumulation
which leads to inaccurate estimation. open circuit voltage method
uses the OCV-SOC (Open Circuit Voltage State) table for SOC esti-
mation [7]. although this method is simple and reliable it is too slow
so it is not appropriate for online applications.

Model-based estimation methods like Kalman Filter produce a
highly reliable estimation as they can mitigate the inaccuracies
caused by measurement errors or changing work conditions because
this method implements closed-loop feedback control [8,9]. Never-
theless, this method depends on the characteristics of battery models,
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and any error in calculating battery parameters _which is pre-
dictable in operational conditions_ will affect this method’s accuracy
[6,10].data-driven estimation method is independent of any battery
model because it assumes the battery as a black box, nonetheless the
training data and method is very important in this method.

In recent years, deep learning methods becomes extremely pop-
ular, Nowadays, machine learning algorithms play a key role in our
lives, Advances in deep learning models, especially recurrent neural
networks and long short-term memory, offer some effective ways to
predict battery SOC [11-17]. a deep learning method can adaptively
learn the battery parameters by itself based on measured signals like
voltage and current [7], Since the SOC is not only dependent on
the current measured variables but also related to the historically
measured information, the recurrent neural network (RNN) has been
widely used for SOC estimation [18].

In [19] authors introduce an RNN with LSTM to perform accu-
rate SOC estimation for Li-ion batteries. In [6] Ren et al. use the
particle swarm optimization algorithm in order to optimize the key
parameters of LSTM, results show that the network can tolerate
noises. In [7] a convolution-gated recurrent unit (CNN-GRU) net-
work is proposed for the SOC estimation of lithium-ion batteries.
Chen et al. [18] introduced the novel neural network method by com-
bining an autoencoder neural network with the conventional gated
recurrent unit, this network is noise resistant and shows a better
nonlinear mapping relation between the measurement data and the
SOC. Kang et al. [20] proposed Radial Basis Function Neural Net-
work which eliminates the battery degradation’s effect on the SOC
estimation accuracy. Some researchers combine the amp-Hour inte-
gration method and Kalman filter with the deep learning method in
order to use their advantages Simultaneously. In [21], a deep neural
network (DNN) is constructed to estimate the SOC in the charging
process and the estimation results can be used as the initial SoC of
the ampere-hour counting method. Yang et al. [22] use an unscented
Kalman filter to filter out the noises and reduce LSTM estimation
error. In [23], a combination of the Coulomb counting method with
the deep neural network method is proposed which enables fast and
accurate SOC estimation with an error of less than 2.03% over the
entire battery SOC range.



Fig. 1: Proposed method architecture

Adaptive filters have been widely used in various applications
like prediction, noise canceling, and system identification due to
their simplicity and robustness [24]. Authors in [10] tried to spec-
ify the conditions for implementing real-time adaptive prediction
filters. Huang et al. [7] provide a predictor which combines LMS
and LSTM-RNN in Wireless Sensor Network.

These filters can automatically change their coefficient to adapt
to new conditions. Although these filters are easy to use and need a
little memory, they have significant speed and accuracy. On the other
hand, data-driven methods especially deep learning-based meth-
ods become popular for SOC estimation. Despite many advantages,
these methods require numerous and accurate training data that have
a reasonable similarity with the test data. It is practically impossi-
ble to simulate all events during working hours so the method which
adapts to operational conditions through working hours seems to be
necessary. Hence a hybrid method that uses the advantages of adap-
tive filters and deep learning simultaneously has been introduced in
this paper.

The remainder of this paper is organized as follows; section 2
introduced the architecture of the proposed method. In Section 3
the battery specification and data experiment were introduced and
in section 4 the simulation result was discussed.

2 SOC ESTIMATION METHOD

In order to cover the gap between the laboratory and operational
environment, a SOC estimation method has been introduced in this
paper. The schematic of the proposed method is shown in Fig.1. A
string of cell voltage, current and temperature in m time steps has
fed into the GRU-RNN network and the estimated capacity as the
network’s output will pass through the LMS filter. The principles of
the LMS filter and the GRU network are presented below.

d(n)

+
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Fig. 2: LMS filter archtecture

2.1 LMS filter

The adaptive filter has been used in various applications[25]. Among
different types of the adaptive filter, the LMS is a simple predictor
and needs low computational complexity and memory. It also has a
good performance in predicting time-series data. Unlike other alter-
native methods like the Kalman filter, the LMS doesn’t need any
information on the statistics of the environment [26]. The structure
of the LMS algorithm is illustrated in Fig.2.

as an autoregressive process, the LMS filter is able to change
its coefficient matrix quickly in operational conditions. During the
training process, the LMS filter compares the prediction outputs with
the desired outputs and tries to minimize the error between the pre-
diction and desired by updating the weights of the coefficient matrix.
A detailed presentation of the algorithm is given next.

y(k) = W (k) X" (k) )

Where X T(k) is transposition of input vector in time step k, and
for a filter of size N, X (k) is represented as follow:

X(k) =[xk —1),2(k —2),z(k—3),...,z(k—N)] (2

The initial vector of W is set to 0, which obviously is not a good
choice, Anyway the weights can be updated as follow:

W(k+1) =W(k)+nX(k)e(k) 3)

where 7 is the learning rate, which determines the performance
of the algorithm. The large value of 7 boosts the convergence speed
however it decreases the accuracy while the small value of 7 certifies
the accuracy of the algorithm. e(k) is an error which defined as:

e(k) = d(k) —y(k) ©)

In this paper, the input vector is the SOC which is estimated using
the GRU algorithm and the desired output outlined from the coulomb
counting (CC) method. Although The CC method is a simple and
fast method, it suffers from cumulative error. here we used the CC
method just for modeling the SOC changes so this issue can’t cause
a problem in the proposed method.

2.2 GRU Algorithm

RNN network has an excellent performance on time series data,
hence it can be a good candidate for SOC estimation [19]. Unlike
other neural networks, the RNN network consists of some copies of
a unique unit that are connected like a chain, this structure allows
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Fig. 3: a recurrent neural network schematic

information to be passed from one step of the network to the next
[27]. The RNN schematic is shown in Fig.3.

Simple RNN network suffers from gradient vanishing and gradi-
ent explosion, in order to solve these problems LSTM and GRU are
established[11,12]. In compression with LSTM, the GRU cell has a
simpler structure due to one less gate [28]. Therefore, the number of
parameters under the same network structure in GRU is less than in
LSTM, which can reduce the risk of overfitting and boost the con-
vergence rate while its performance is just like LSTM cell [18]. So,
in this paper, GRU-RNN is chosen for SOC estimation.

Reset gate
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Fig. 4: a recurrent neural network schematic

GRU architecture is shown in Fig.4, in compression with simple
RNN, the GRU-RNN has a relevance gate which is responsible for
controlling the retention of historical information, and an update gate
which controls the effect of the previous cell state and the current
input on the new cell state [28]. information from the current input
and Information from the previous hidden state which can be con-
sidered as the memory of the network is passed through the sigmoid
function, so the Values come out between 0 and 1. The closer to 0
means to forget, and the closer to 1 means to keep. the sigmoid func-
tion is shown in Equation (9). The mathematical calculation process
of GRU can be represented by the following equations.

&< = tanh(We Dy % <71 2] + ) Q)
Ty = o(wu[c~71 25 + by) (0)

Ty = o(wr[c<t 1 <] + by) @
¢ =Ty % &7 4 (1=Ty) x> ®)

where Ty, T, <27, ¢<*> are the reset gate, the update gate,
the candidate cell state, and the current new cell state, respectively;
<t is the input; network weights and bias are denoted by W and b
Respectively; o is the sigmoid function shown in Equation (9), and
tanh function shown in Equation (10).
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tanh(z) = poranE) (10)

In this paper, the input dataset for training the network is given
by D= {(1/]17 SOCT)? (1/)27 5005)7 ceey (wNv SOCR{)}’ where
SOCY; and ¢y, are the observable state-of-charge value and the vec-
tor of inputs at time step k, respectively. the vector of inputs is
defined as [V (k), I(k), T'(k)], where V(k), I(k) and T'(k) are the
voltage, current and temperature of the battery measured at time step
k, respectively. As you can see for considering any other parameter
for SOC estimation, we can just add it to the input vector and retrain
the network.

In order to obtain a single estimated SOC value at time step k the
hidden state ¢<!> passes to a fully-connected layer, the equation is
as follows:

SOCy, = Wpe+ e~ + by, (11)

Wiy, and by, are the fully-connected layer’s weight matrix and
biases, respectively. during the training process, the weight matrixes
and biases are updated based on the difference between estimated
and measured SOC. the mean absolute error is a good candidate for
a loss function, which its equation is as follows:

>, 180C; — SOCT |
n
Where SOC;, SOC; are the estimated and measured value of
SOC at time step 4.
The Adam optimizer is implemented for updating the weight and
bias matrixes based on the gradient of the loss function.

MAE = 12)

3 Battery specification and data experiment

machine learning methods need large amounts of data for training,
and perform weakly when the test data differ greatly from train data.
Batteries are used in a wide range of operating conditions. hence
data covering these conditions is essential to build accurate models
[29]. In this paper, the datasets are collected by the tests on a lithium
nickel cobalt aluminum oxide (NCA) battery manufactured by Pana-
sonic company. The main parameters of the battery are presented in
Table 1.

These datasets are collected by the battery research group at the
University of Wisconsin-Madison, and consist of a random combi-
nation of different typical drive cycles like US06, HWFET, UDDS,
and LA92. Using these unique datasets which consist of several drive
cycles, provides an extended range of realistic operating conditions
for training the GRU network. In order to generate the train and test
data for the GRU network, the battery was subjected to a selection
of drive cycles. For each discharge test, the battery had fully charged
with a constant current rate of 2.9 A (1C) and constant voltage (4.2
V), and the charging process terminated when the current fell below
the cut-off current (50 mA). the details of the battery testing method
are explained in [19].

The voltage, current, and capacity of a battery under four drive
cycles are shown in Fig.5. The negative current causes the battery to
discharge, so the voltage varies from 4.2 V to an empty state at 2.5 V.

Table 1 Panasonic 18650PF cell parameters

Parameter Value

Nominal Open Circuit Voltage 3.6V

Min / Max Voltage 2.5V /4.2V

Capacity Min. 2.75 Ah / Typ. 2.9 Ah
Minimum Charging Temperature 10°C

Mass / Energy Storage 489 /9.9Wh

Cycles to 80% Capacity 500 (100% DOD,25° C)
dc resistance 43 mQ
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Fig. 5: voltage, current and amp-hour for standard drive cycles: a)HWFT, b)US06, c)UDDS, d)LA92

positive current (charge current) refers to regenerative braking which
causes some growth in voltage amplitude within driving cycles. The
capacity value is calculated by the Coulomb counting method. In

_[Xi (s0C; - socy)?

this method, the SOC value is obtained by integrating the current, as RMSE n (14)
shown in e.g. (13).
dt - o *
SOC = SOCy + J"Cf 13 MAX = max (SOC; — SOC}) (15)
n

where SOCy is the initial value of SOC, C), corresponds to the
nominal capacity, ¢ represents the battery current and ¢ is the time.

the datasets for machine learning are susceptible to being incon-
sistent, missing, and noisy. Applying a deep-learning algorithm to
this data would not lead to quality results because the algorithm
could not identify the features effectively. So, data processing is
essential to train an efficient model. missing or Duplicate values may
give an incorrect view of the overall statistics of data, therefore in the
first step, we eliminate these values from the dataset. In the next step,
we normalize the input values, Normalization gives equal impor-
tance to each variable by scaling the value of numeric columns in
the dataset to a common scale, so that variables with bigger numbers
could not steer model performance in one direction.

4 Modeling and simulation

As mentioned in previous sections, the input vector is defined as
[V(k),I(k), T (k)] where the V (k), I(k), and T'(k) are the mea-
sured voltage, current and, temperature of the cell at time step k,
respectively. the network has trained on 7 mixed drive cycles and the
performance of the network was tested by different data. The MAE,
RMSE, and MAX errors have been used as network performance
metrics. The formulation of MAE was presented in e.g. (12).The
formulation of RMSE and MAX are as follows:

The next two subsections show the proposed method’s robust-
ness and accuracy when performed on a dataset recorded at a fixed
temperature and at variable temperatures, respectively.

4.1  SOC estimation at constant ambient temperature

The RNN layer consists of 500 neurons. the number of the net-
work’s parameters is 756000 in the GRU network while the LSTM
network has 1006000 trainable parameters, so the computation cost
and the train time will be fewer in the GRU network. The results
in Table 3 show that with an equal number of epochs and computa-
tional nodes the GRU has even better performance than LSTM. In
RNN networks, the length of the input vector can directly affect the
network performance, because in time series data the previous time
steps are important in the current time, there is always a tradeoff
between the network’s accuracy and training cost in order to elect
the proper input sequence length. here the length of each sequence
was 500 during training time which means this network will need
less than 10 minutes for SOC estimation. it is necessary to men-
tion the network is able to predict SOC with fewer input data but its
accuracy will decrease. The comparison between different sequence
length accuracy is presented in Table 2. As you can see, by increas-
ing the input length, the error decreases. Anyway, the decrease in
estimation error is not linearly proportional to input length because
going from 250 to 500 decreases MAE by about 40% while, going
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Table 2 SOC estimation accuracy of GRU with various input sequence length

Sequence length MAE % RMSE % MAX %
250 1.19 1.39 6.14
500 0.74 0.96 4.57
1000 0.54 0.69 3.94

0.075
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0.025

0.000

SOC error

—— N =250
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—— N =1000

—0.025 1

—0.050

—— N =1000
—— N =500
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Capacity (Ah)
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Fig. 6: Different sequence length SOC error and estimated Capacity

Table 3 SOC estimation accuracy of the proposed method compared with
GRU and LSTM

Method MAE % RMSE % MAX %
LST™M 0.88 1.06 5.1
GRU 0.74 0.96 4.57
GRU+LMS 0.53 0.68 23

from 500 to 1000 offers only a 15% enhancement in MEA. The esti-
mated error and results of different depths of input vector over time
are shown in Fig.6.

The LMS filter was used in this paper in order to real-time correc-
tion of GRU’s estimated SOC. The predicted SOC fed to the filter of
size 5 and its learning rate was 0.0017.

The MAE, RMS, and MAX performance metrics for LSTM,
GRU, and the proposed method are outlined in Table 3. Despite more
accuracy, the GRU has less computational cost than LSTM. As the
results in Table 3 show, GRU offers about 15% improvement under
the same condition. It is also trained in less time. So, it is reason-
able to elect GRU as the SOC estimator. In order to improve GRU
accuracy and robustness we used LMS filter in this paper. By filter-
ing the GRU output using LMS filter the estimation error decreases
from 0.74% to 0.53% which offers about a 30% reduction in MAE
error, which is more accurate than a trained network with 1000 input
vector length. It means that by adding a lite adaptive filter like LMS
we can Cut the estimation time in half. Which is really important in
real-time applications. Fig.7 shows the proposed method and GRU
result over time.

In order to verify the estimation performance of the proposed
method for covering different drive cycles, we tested the result for
specific drive cycles and trained the network using the rest of the
datasets. Here, we choose US06 and LA92 drive cycles for verify-
ing the performance and generalization. Obviously, any other drive
cycle can be chosen. The SOC estimation result and error for these
drive cycles are shown in Fig.8. Besides, The MAE, RMS, and MAX
performance metrics for these drive cycles are outlined in Table 4.

4.2 SOC estimation at varying ambient temperatures

During working hours, the ambient temperature can change due to
the climate or the geographical location within which the battery
operates. In order to validate the proposed method’s performance
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Fig. 7: Results of SOC estimation and SOC error at constant ambi-
ent temperature

Table 4 SOC estimation accuracy of the proposed method for US06 and LA92
drive cycle

Drive cycle Method MAE % RMSE % MAX %

usoeé GRU 1.24 1.64 713
GRU+LMS 0.91 1.19 4.23

LA92 GRU 0.95 1.16 10.72
GRU+LMS 0.73 0.94 3.78
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Fig. 8: Results of SOC estimation and error for a)US06 drive cycle
and b)LA92 drive cycle

under varying ambient temperatures, the GRU-LMS network was
trained using a larger dataset consisting of 20 drive cycles which
were recorded under fixed (10°C, 25°C) and variable ambient
temperatures. In variable ambient temperature, the drive cycles are
recorded with a starting chamber temperature of 10°C', which is then
allowed to drift upwards such that the battery temperature rises up
to 25°C' during the drive cycle. The SOC, voltage, current, and tem-
perature of a sample drive cycle is illustrated in Fig.9. The GRU
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Fig. 9: SOC, voltage, current and temperature of a sample drive cycle under variable temperature

network used in this part is unrolled for 500 time steps and con-
tains 500 nodes. The performance of the GRU-LMS network is
shown in Fig.10. The MAE, RMS, and MAX metrics achieved over
varying ambient temperatures are 0.66, 3.69, and 0.89 respectively.
so, the performance of the proposed method is good over varying
temperatures.
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Fig. 10: Results of SOC estimation and SOC error in Varying Tem-
perature

5 Comparative performance analysis

To illustrate the proposed method’s efficiency against other meth-
ods we compared the results with other works in the literature. The
proposed method offers competitive SOC estimation performance
when compared to other algorithms in the literature which are illus-
trated in Table 5. In [19] the authors introduced a LSTM network
to estimate the SOC for four standard drive cycles with an error of
0.77%, although this method has good accuracy for standard con-
ditions, the error increases when the operating condition changes.
In [18], an auto-encoder network combined with GRU network for
boosting the robustness of the GRU against the noise, the introduced
method’s error is 1.19% for noisy data. the auto-encoder network
has a good performance for noise canceling but its calculation cost is
high. To improve the accuracy and the robustness of the LSTM net-
work against the noise the authors in [22] combined the unscented
Kalman filter with LSTM, and they succeeded to decrease the error
to 0.82%. in [21], a deep neural network composed of two convo-
lutional, max pooling, and GRU layers have been introduced. The
estimation error is 0.8% but this deep neural network needs a huge

4.25

Table 5 Comparation results of SOC estimation error for six studies

Method MAE % RMSE % MAX %
Reference [18] 1.19 1.51 -
Reference [19] 0.77 1.1 3.69
Reference [21] - 0.8 25
Reference [22] 0.82 0.93 -

This paper 0.53 0.68 23

data for training and is prone to overfitting. However, the proposed
GRU-LMS offers the following advantages:

o The LMS filter has a low computational cost so the hardware cost
and the calculation time decreases.

e As an adaptive filter, the LMS filter can adapt its coefficient
based on operational conditions, therefore the estimation error will
decrease through the unpredicted condition.

e Compared with other methods in the literature the proposed
method offers about 30% enhancement in SOC estimation.

6 Conclusion

to introduce an accurate and fast method for mapping between
the battery state of charge and measurement variables like current,
voltage and temperature, the GRU-LMS method is proposed by com-
bining the GRU-RNN and the LMS filter. The GRU has a good
performance to obtain an accurate mapping between the battery SOC
and measured variable, it also needs less computation compared to
LSTM so it trains faster and it is resistant to overfitting. The esti-
mated SOC was fed into the LMS filter to reduce estimation error
during the operational condition. The LMS filter is a lite predictor
which adjusts its coefficient online based on environmental condi-
tions so it can improve the algorithm’s robustness against unhandled
working conditions. The simulation results show this hybrid method
is more accurate than a single GRU, and filtering the GRU’s out-
put using LMS filter offers about 30% improvement in estimation
results.
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