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Abstract 13 

Optimization models for minimizing pollutant exposure from groundwater resources require time 14 

and resources that many communities might not have ready access to due to their economic 15 

conditions. In such cases, it might be useful to develop a “rule of thumb” approach for 16 

suggestions in case of uncertainties and inadequate means to address these uncertainties. Monte 17 

Carlo analysis was performed for a simplified groundwater system and the effects of extraction 18 

patterns, distance to pollution source, dispersivity, pollutant pulse period, pore water velocity and 19 

decay were examined for minimizing the high pollutant exposure risk from the extracted 20 

groundwater. Results indicate that, in a high uncertainty scenario, the best bet for minimizing the 21 

risk of high pollutant exposure would be to adopt a frequent extraction pattern and supply the 22 

water as a mixture of extractions from multiple wells spread over an area. These findings can be 23 

used as a “rule of thumb” wherever time and resources might be the limiting factors. 24 

1 Introduction 25 

Groundwater is an important freshwater resource for many people, and groundwater 26 

contamination is a huge problem in many regions of the world (Syafiuddin et al., 2020). 27 

The role of extraction patterns, as different from extraction rates, has been of interest to 28 

researchers for minimizing the exposure of public to pollutants from groundwater (Bagnera et 29 

al., 2004; Das & Datta, 2001; Ren et al., 2016). Such research is surprisingly scarce, and usually 30 

concludes complex suggestions that require rather detailed data on the state of the groundwater 31 

system and pollutants (Bagnera et al., 2004; Das & Datta, 2001; Ren et al., 2016), and proposal 32 

of application of intricate extraction patterns that are out of reach of communities with limited 33 

resources. 34 

Monte Carlo analysis has been frequently employed for solving problems of uncertainty 35 

in groundwater systems (Ren et al., 2016; Ballio & Guadagnini, 2004; Hassan et al., 2009; Jafari 36 

et al, 2016; Jiang et al., 2021; Laloy et al. 2013; Mukherjee & Singh, 2022; Neshat et al., 2015; 37 

Qiu et al., 2021; Seifi et al., 2020; Soleimani et al., 2022). 38 

Therefore, a “rule of thumb” approach for minimizing the exposure risk to pollutants in 39 

groundwater has to be suggested for the communities who lack adequate resources for the 40 

application of complex procedures. To the author’s best knowledge, such “rule of thumb” 41 



manuscript submitted to Water Resources Research 

 

approach has not yet been examined in the scientific literature by using Monte Carlo analysis; 42 

this article addresses this existing gap. 43 

2 Materials and Methods 44 

2.1 Model 45 

Pollutant concentrations at extraction point were calculated by using the 1-dimensional 46 

advection-dispersion equation for groundwater flow in homogenous porous medium in the case 47 

of a confined aquifer. The simplified equation for 1-dimensional groundwater flow in the case of 48 

constant velocity, retardation, dispersion and decay rate is given by the following equation (van 49 

Genuchten, 1981): 50 

                                𝑅 = 𝐷 − 𝑉 − 𝛼𝑅𝐶                                        (i) 51 

where; R is the retardation factor, D is the longitudinal dispersion coefficient, V is the 52 

pore water velocity, α is the first-order decay constant, C is the pollutant concentration, x is the 53 

distance and t is the time. 54 

For simplicity, groundwater extraction assumed to have no effect on the groundwater 55 

velocity or distribution of C in the groundwater; which represents an approximation to cases with 56 

relatively lower amounts of local groundwater extraction compared to the local groundwater 57 

supply (amount and flow rate). 58 

In equation (i), D is given by the following equation (ii) (Al-Tabbaa et al., 2000): 59 

                                                     𝐷 = 𝛼 𝑉 + 𝐷∗                                                    (ii) 60 

where; αL is the longitudinal dispersivity and D* is the molecular diffusion coefficient. 61 

D* can be further defined by the following equation (iii) (Murphy, 2015): 62 

                                                    𝐷∗ = 𝜃𝐷 ( / )                                                (iii) 63 

where; θ is the porosity of the medium, Dm is the molecular diffusion coefficient in case 64 

of θ=1, and θEff is the effective porosity of the medium. 65 

Peclet number for the examination of the contribution of molecular diffusion was 66 

calculated by the following equation (iv) (Huysmans & Dassargues 2005): 67 
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                                                          𝑃𝑒 = 𝑥𝑉/𝐷∗                                                    (iv) 68 

Pollutant source type was assumed to be a step pulse source type, and the solution for this 69 

specific case was obtained from Case B1 in van Genuchten’s work (van Genuchten, 1981). 70 

Monte-Carlo analysis, with 10,000 runs, was performed for the variables of D, V, α, x, T 71 

(step pulse period) and t by using the Microsoft Excel 2016 software. R was ignored, as changing 72 

V and D can mimic changes in R (See equation (i)); such as, increasing R would be equivalent to 73 

decreasing D and V by the same factor. This can simply be accomplished by changing V, 74 

considering that D is directly proportional with V when molecular diffusion is ignored (See 75 

equation (ii)). 76 

Matrix multiplication was performed, as in equation (v), to find the total amount of 77 

pollutants extracted for each extraction pattern (E). As the total amount of groundwater extracted 78 

in a given period of time is expected to be the same regardless of the extraction pattern (by using 79 

some sort of storage system as necessary), the results of equation (v) were later calibrated to 80 

obtain the total extracted pollutant amounts for a fixed amount of groundwater extracted. As the 81 

amount of the extracted groundwater is considered to be fixed for each extraction pattern after 82 

this calibration, these calibrated results can be considered as pollutant concentrations in the 83 

extracted groundwater. 84 

                       𝐶 , , , , , × 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑚𝑜𝑢𝑛𝑡 , =  𝐶 , , , , ,                     (v) 85 

Results were plotted by using the PSPP 1.6.2 statistics software. 86 

2.2 Parameters 87 

Units throughout this article are given in kilograms (kg), meters (m) and days (d). 88 

The scale of the system under examination was determined to be 100 m, as the most 89 

reliable data on αL for porous media in the scientific literature exist for distances shorter than 250 90 

m; and at shorter distances (below 40 m), αL values are more consistent among themselves 91 

(Gelhar et al., 1992). x to αL ratios (x/αL) were taken to be 8 and 29 by considering these findings 92 

(Gelhar et al., 1992). 93 

The maximum time scale was assumed to be 1000 d. An acceptable time resolution had 94 

to be determined with practical limitations in mind; 20 time segments deemed to be suitable for 95 
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the purposes of this analysis (leading to 382 extraction patterns and a resolution of 5.3% of the 96 

maximum time scale of the study). 97 

Pulse concentration (Co) was adjusted to give a constant pollutant emission amount under 98 

varying pulse period conditions; Example: Co=100 kg/m3 when T=1 d, and Co=1 kg/m3 when 99 

T=100 d. 100 

While determining the range of V, the mentioned system scales had to be taken into 101 

account. Very slow and fast velocities were no interest as they are expected to give negligible 102 

pollutant extraction; it is obvious that if the pore water velocity is too slow, pollutants will not 103 

have time to reach to the extraction well within the time frame of the simulation, and if the pore 104 

water velocity is too fast, the pollutants will be mostly washed away from the system without 105 

being extracted at the well. Minimum V (1st possible value in Table 1) was determined to be the 106 

velocity at which the pore water would travel half the distance (travel 5 m) to the minimum 107 

extraction point from the pollution source in 1000 d (maximum time scale). 2nd possible value for 108 

V ensured that the pore water would travel to the midpoint of the maximum distance (100 m) and 109 

the pollution source within 1000 d. 3rd possible value for V ensured that the pore water would 110 

travel twice the maximum distance (travel 200 m) in 1000 d. The rest of the velocities were 111 

selected to cover the range of relevant velocities documented in the literature; from 0.09 m/d to 112 

27 m/d (Gelhar et al., 1992). 113 

α was calculated by using the assumed maximum and minimum half-lives, 365,000 d and 114 

1 d, respectively, to cover the extremes of decay. 115 

The range of θEff for porous media in the reference study, where the longitudinal 116 

dispersivities were obtained from, varied from 0.233 to 0.39 (Gelhar et al., 1992). In the case of 117 

sandy media, this range was from 0.33 to 0.39. In this study, θEff was taken to be equal to 0.3875 118 

(closer to the upper limit for sandy medium) to ensure that the Peclet number would give 119 

conservative results regarding the contribution of the molecular diffusion coefficient. Selection 120 

of θEff did not play a role in the determination of V, as the values for V were not derived but 121 

rather determined from the literature. 122 

Peclet number was calculated to be greater than 20 by using a molecular diffusion 123 

coefficient 30 to 50 times greater than the values suggested by Brian L. Murphy (Murphy, 2015); 124 

hence the molecular diffusion was ignored. 125 



manuscript submitted to Water Resources Research 

 

Table 1 lists the variables and their possible values that were used in the Monte Carlo 126 

analysis. 127 

 128 

Table 1. Variables and their possible values that were used in the Monte Carlo analysis 129 

 Possible values 

1 2 3 4 5 6 … 18 19 20 

V
ar

ia
bl

e 
[u

ni
t] 

V 
[m/d] 

0.005 0.05 0.2 3 10 30     

α [d-1] 1.9E-6 0.693         

x*V/D 
[-] 

8 29         

T [d] 1 100         

x [m] 10 100         

t [d] 1 53.6 106.2 158.7 211.3 263.9 … 894.8 947.4 1000
 130 

 131 

 132 

Extraction patterns were formed by taking into account different extraction frequencies 133 

over 20 time segments. As an example, extraction patterns 1 and 2 have the extraction frequency 134 

of 1 d, and extraction patterns 3, 4, 5 and 6 have the extraction frequency of 2 d, and so on. A 135 

sample of the 382 extraction patterns can be seen in Table 2. 136 

 137 

Table 2. A limited sample of extraction patterns (1 represents uniform extraction and 0 138 

represents no extraction) 139 

 

Extraction pattern (E) 

1 2 3 4 5 6 7 8 9 … 375 376 377 378 379 380 381 382

Ti
m

e t

1 1 0 1 1 0 0 1 1 1 … 0 0 0 0 0 0 0 1 

2 0 1 1 0 0 1 1 1 0 … 0 0 0 0 0 0 1 1 

3 1 0 0 0 1 1 1 0 0 … 0 0 0 0 0 1 1 1 

4 0 1 0 1 1 0 0 0 0 … 0 0 0 0 1 1 1 1 
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5 1 0 1 1 0 0 0 0 1 … 0 0 0 1 1 1 1 1 

6 0 1 1 0 0 1 0 1 1 … 0 0 1 1 1 1 1 1 

7 1 0 0 0 1 1 1 1 1 … 0 1 1 1 1 1 1 1 

8 0 1 0 1 1 0 1 1 0 … 1 1 1 1 1 1 1 1 

9 1 0 1 1 0 0 1 0 0 … 1 1 1 1 1 1 1 1 

10 0 1 1 0 0 1 0 0 0 … 1 1 1 1 1 1 1 1 

11 1 0 0 0 1 1 0 0 1 … 1 1 1 1 1 1 1 1 

12 0 1 0 1 1 0 0 1 1 … 1 1 1 1 1 1 1 1 

13 1 0 1 1 0 0 1 1 1 … 1 1 1 1 1 1 1 1 

14 0 1 1 0 0 1 1 1 0 … 1 1 1 1 1 1 1 1 

15 1 0 0 0 1 1 1 0 0 … 1 1 1 1 1 1 1 1 

16 0 1 0 1 1 0 0 0 0 … 1 1 1 1 1 1 1 1 

17 1 0 1 1 0 0 0 0 1 … 1 1 1 1 1 1 1 1 

18 0 1 1 0 0 1 0 1 1 … 1 1 1 1 1 1 1 1 

19 1 0 0 0 1 1 1 1 1 … 1 1 1 1 1 1 1 1 

20 0 1 0 1 1 0 1 1 0 … 1 1 1 1 1 1 1 1 

 140 

 141 

4 Results and Discussion 142 

Concentrations of exposure to pollutant found to be negatively correlated with distance 143 

(x), decay rate (α) (stronger correlation observed at lower velocities), pulse period (T) (stronger 144 

correlation observed at higher velocities), and positively correlated with the pore water velocity 145 

(V) within the scale of the model (Table 3). 146 

 147 

Table 3. Bivariate correlation of C with other relevant variables  148 

  E x T x/αL α V 

Low V C -0.004 -0.16 -0.018 0.006 -0.387 0.291 

High V C 0.040 -0.226 -0.217 -0.005 -0.041 0.176 

 149 

 150 
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unknown origin and timing of emission; which this study showed that the adoption of frequent 202 

extraction patterns is the best policy for such situations. 203 

It should be noted that the time scale of the model can affect the findings for x, V and D 204 

in certain cases; low D might lead to lower exposure risk when V and the model time scale are 205 

small enough; similarly, high V might lead to lower exposure risk when V and the model time 206 

scale are large enough, however this was not observed within the scale of the model (100 m, 207 

1000 d). 208 

The finding that a frequent extraction pattern is the best policy in case of uncertainty in 209 

variables concerning the pollutant source and transport can be extended beyond the model scale 210 

of 100 m by recognizing that the plume of pollutants at around 100 m can be considered as a sum 211 

of unsynchronized pulse pollutant sources (just like in the case of decay products). Hence, the 212 

best policy at the 200 m distance (or at any other distance as we have just proved) would be, 213 

once again, to adopt a frequent extraction policy. 214 

It can also be argued that, for pollutants with toxicity thresholds, in the case in which the 215 

pollution source location is uncertain, meeting the water demand by water obtained from 216 

multiple wells would further reduce the high exposure risk. In Figures 1 and 2, it is clear that the 217 

average concentration of pollutants obtained at x=10 m and x=100 m would be less than the 218 

concentration obtained solely from the well at x=10 m. 219 

As the exposure concentrations to pollutant were positively correlated with V, from the 220 

previous argument about the reason for the omission of R in the Monte Carlo analysis and 221 

considering that x/αL (or xV/D) is more weakly correlated with C than V is correlated with C 222 

(Table 3), it can be argued that R is negatively correlated with C, especially at higher values of 223 

V. 224 

5 Conclusions 225 

When the timing of the pollution is not known (such as in the case of undetected 226 

accidents or lack of information in which the extraction pattern cannot be adjusted to obtain a 227 

minimum exposure), to minimize the exposure risk; the best policy is to maximize distance, 228 

maximize decay with considering the decay products if any, maximize dispersion, maximize 229 

pulse period, and employ a frequent extraction pattern. 230 
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In a situation where all the variables are uncertain or cannot be controlled, which might 231 

be the case for communities with limited resources, the best bet for minimizing the risk of high 232 

pollutant exposure would be to adopt a frequent extraction pattern such as in the case of 233 

extraction patterns 1 or 2, and supply the water as a mixture of extractions from multiple wells 234 

spread over an area. 235 

As this study excludes the formation of harmful decay products and removal (either by 236 

decay or other means) of pollutants during the storage after extraction, results should be 237 

interpreted with caution. Similarly, the findings may not apply to situations that are not covered 238 

in this study; such as varying water velocity or non-homogenous or fractured media. 239 

Suggestions for further research might be the examination of the effects of extraction and 240 

the effects of storage conditions on exposure risk to pollutants in different extraction pattern 241 

scenarios. 242 
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