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Supplementary Documentation for ”Inferring the Mean1

Effective Elastic Thickness of the Outer Ice Shell of2

Enceladus from Diurnal Crustal Deformation”3

In S1, we describe the governing equations for our tidal loading boundary value prob-4

lem and our solution method (1.1), benchmark our solutions against analytic and nu-5

merical tidal loading models (1.2), and verify that results on models with heterogeneities6

are not subject to inaccuracy due to our choice of mesh sizing parameters (1.3) or our7

choice of weak-zone elastic moduli (1.4).8

S19

1.1 Tidal Loading Formulation10

Following Aagaard et al. (2007), we formulate and solve a boundary value prob-11

lem appropriate for tidal loading. We solve the weak form the quasi-static equation of12

motion in cartesian directions i for a body subject to stresses σij and specific forces fi13

over the volume W and a weighting function ϕi (the symbol , denotes derivative with14

respect to a direction):15

∫
W

(σij,j + fi) ϕi dW = 0 (1)16

Following the Galerkin approach, we formulate our weighting function ϕi as an n-

dimensional linear combination of linear basis (i.e., shape) functions Nn scaled by co-

efficients cni and our trial solution (i.e., for displacement ui) as an m-dimensional linear

combination of linear basis functions Nm scaled by coefficients ami :

ϕi =
∑
n

cni N
n (2a)

ui =
∑
m

ami Nm (2b)

17

Considering the divergence theorem for stresses in W , substituting our formula-18

tion for the weighting function, and recognizing that the equation of motion’s weak form19

is equivalent to the strong form for arbitrary weighting function coefficients cni allows20

us to rewrite Equation 1 as a sum of integrals over surfaces S subject to tractions Ti and21

over W subject to specific forces fi:22
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−
∫
W

σijN
n
,jdW +

∫
S

TiN
ndS +

∫
W

fiN
ndW = 0 (3)23

We expand each term in Equation 3 according to our tidal loading formulation. We rewrite24

the first term (from the left) as a combination of shape functions scaled by a rank-4 stiff-25

ness tensor Cijqw. We select parameters in Cijqw appropriate for a linear isotropic ma-26

terial with a shear modulus G and bulk modulus µ:27

−
∫
W

σijN
n
,jdW =

∫
W

∑
m

1

4
Cijqw(N

m
,w +Nm

,q )(N
n
,j +Nn

,i )a
m
i dW (4)28

We subdivide the second term of Equation 3 to treat tractions at the outer surface29

S0 (i.e., T 0
i ) and the inner surface Sint (i.e., T int

i ) of our geometry. For small displace-30

ments induced by a loading potential V (See Equation 2 of the main text), we can write31

T int
i and T 0

i as dependent upon radial displacements at the boundaries of our geome-32

try
∑

m ami Nm(ei·es) (see Equation 2; ei and es respectively denote unit vectors per-33

pendicular to the surface of the geometry and the evaluated direction), the density of34

ice ρice and ocean water ρw, gravitational acceleration at the inner and outer surfaces35

gint and g0 (see Table 2 in the main text), and self-gravitation induced by radial displace-36

ments throughout our geometry V sg. Here, we treat self-gravitational potential V sg as37

resulting from small perturbations to the driving potential V and therefore as a sepa-38

rate (i.e., uncoupled) term as per Taylor’s approximation theorem:39

∫
S0

T 0
i N

ndS =

∫
S0

∑
m

ami Nm(ei · es)ρiceg0(es · ei)NndS (5a)∫
Sint

T int
i NndS =

∫
Sint

(
∑
m

ami Nm(ei · es)(ρice − ρw)gint + ρwV + ρwV
sg)(es · ei)NndS

(5b)

40

The specific force (i.e., third) term in Equation 3 is rewritten as the gradient of the41

driving and self-gravitational potentials scaled by ice density as per Newton’s second law:42

∫
W

fiN
ndW =

∫
W

(ρice∇(V + V sg) · ei)NndW (6)43

Terms from Equations 6, 5a, and 5b constitute the ‘body’ F b, ‘ocean traction’ F o,44

and ‘topographic’ F t forces discussed in Section 2.2 of the main text (see supplementary45

equation S5 of Souček et al. 2016):46
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F b =

∫
W

(ρice∇(V + V sg) · ei)NndW (7a)

F o =

∫
Sint

(ρwV + ρwV
sg)(es · ei)NndS (7b)

F t =

∫
S0

∑
m

ami Nm(ei · es)ρiceg0(es · ei)NndS

+

∫
Sint

(
∑
m

ami Nm(ei · es)(ρice − ρw)gint)(es · ei)NndS

(7c)

47

To compute V sg, we combine solutions to the Poisson’s equation (i.e., potentials)48

evaluated at nodes with radial locations rn arising from displacements linearly mapped49

into spherical harmonics at inner V sg
0 and outer surfaces V sg

int (i.e., via the rank-4 ten-50

sors H0
lknm and Hint

lknm evaluated at mean radial locations Rint and R0 respectively with51

degree l and order k) and universal gravitational constant G (i.e., as discussed in Hem-52

ingway & Mittal (2019) cf. Equation 4). We assume V sg arises purely from the move-53

ment of mass at the boundaries of our domain (i.e., the inner and outer surfaces of the54

crust) and so ignore effects due to the changes in density on V sg:55

V sg = V sg
int + V sg

0 (8)56

V sg
int =

∑
l

∑
k

4πGrn

2l + 1
(ρw − ρice)

∑
m

H0
lknmami Nm(ei · es)

(R0

rn
)l+2

(9a)

V sg
0 =

∑
l

∑
k

4πGrn

2l + 1
ρice

∑
m

Hint
lknmami Nm(ei · es)

( rn

Rint

)l−1
(9b)

57

We combine terms from Equations 4, 5a, 5b, 6, 8, and 9 to formulate a Jacobian Anm
ij58

as a superposition of tensors integrated over our domain volume
W
Anm

ij , outer surface59

S0A
nm
ij , and inner surface

SintA
nm
ij .60

Anm
ij =

W
Anm

ij +
S0A

nm
ij +

SintA
nm
ij (10)61
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W
Anm

ij =

∫
V

(
1

4
Cijqw(N

m
,w +Nm

,q )(N
n
,j +Nn

,i ) + (ρice∇(
∑
l

∑
k

4πGrn

2l + 1
((ρw − ρice)

H0
lknm(ei · es)

(R0

rn
)l+2

+ ρiceH
int
lknm(ei · es)

( rn

Rint

)l−1
)) · ei)NnNm)dW

(11a)

SintA
nm
ij =

∫
Sint

((ρw
∑
l

∑
k

4πGrn

2l + 1
((ρw − ρice)H

0
lknm(ei · es)

(R0

rn
)l+2

+ ρiceH
int
lknm

(ei · es)
( rn

Rint

)l−1
))(es · ei) + (ei · es)(ρice − ρw)gint(es · ei))NnNmdS

(11b)

S0A
nm
ij =

∫
S0

(ei · es)ρiceg0(es · ei)NnNmdS (11c)

62

We can also combine terms from Equations 5a, 5b, and 6 to write a force vector bni :63

bni = −
∫
W

(ρice∇V · ei)NndW −
∫
Sint

ρwV (es · ei)NndS (12)64

Finally, we assemble Equations 10, 11, and 12 to form a linear system and solve65

for displacement coefficients ami .66

Anm
ij ami = bni (13)67

1.2 Benchmarking68

We benchmark our tidal loading formulation on Base models against analytic so-69

lutions using the spectral solver software package SATStress, a widely used tool within70

the planetary science community to predict diurnal (and fluid) Love number values and71

stress fields on planetary bodies (Wahr et al., 2009). SATStress solves the equation of72

motion for tidally-loaded multi-layered spherically symmetric bodies accounting for self-73

gravitation and viscous effects. Figure 1 shows predictions of Love number values from74

SATStress across our range of modelled d̃el values. Within SATStress, we specify a multi-75

layered body with an outer ice layer and underlying ocean consistent with the rheolog-76

ical parameters in Table 2 (see main text), an ice viscosity ν = 1e16 Pa-s (Friedson &77

Stevenson, 1983), an ocean shear modulus Go = 1e-20 GPa, and an ocean viscosity νo78

= 1e-20 Pa-s. Love number values between numerical and analytical models agree to within79

<0.1% across all d̃el values. Possible additional minor differences between predictions80
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Figure 1. Comparison of analytic and FEM Love number results for several values of d̃el on

spherically symmetric (Base) models. Love numbers plotted against d̃el for analytic models using

SATStress (blue dots) and using the FEM formulated here (yellow dots).

from either set of results may result from our lack of accounting for changes in ice shell81

rheology due to volumetric expansion/contraction or viscous effects within the ice shell82

during tidal loading (See Wahr et al. (2006), for details).83

We additionally compare model results from this work with results from Souček84

et al. (2016). Figure 2 shows displacement magnitude fields at three different time in-85

dices in the tidal cycle (t=0.0 T (periapse) , 0.2 T , and 0.4 T , where T is the orbital pe-86

riod T = 33 hrs) for models in Souček et al. (2016) (top row) and this work (bottom).87

We deactivate self-gravitation on Base models assign weak zones (with assigned bulk mod-88

ulus µWZ = 10−5µ and shear modulus GWZ = 10−5G) to regions surrounding the Tiger89

Stripes for model comparisons. We find we are able to largely reproduce results from Souček90

et al., (2016) both quantitatively (i.e., peak displacement magnitude values correspond91

to within <10%) and qualitatively. Slight differences in displacement field characteris-92

tics persist surrounding the weak zone regions due to methodological differences in the93

implementation of adaptive mesh sizing, the assignment of reduced elastic moduli (i.e.,94

the location of the Tiger Stripes and the shear modulus reduction away from fault planes),95

or the use of different shape functions (i.e., linear vs. quadratic) between models.96

1.3 Mesh Convergence Test97

We perform a mesh convergence test to confirm that Love number results from mod-98

els with structural heterogeneities are not sensitive to chosen mesh sizing parameters.99

Figure 3 shows Love number values evaluated from models with only weak zones at chasma,100

–5–



manuscript submitted to JGR

Figure 2. Qualitative comparison of our FEM results with results from Souček et al. (2016)

(top row) and this work (bottom row) for models with weak zones at Tiger Stripe locations

viewed facing the South Pole. Fields denote the magnitude of the displacement vector evaluated

at the outer surface of deformed geometries. The top row and colorbar of this Figure adapted

from top row of Figure 3 of Souček et al. (2016). We assign weak zone bulk moduli µWZ/µ=10−5

and shear moduli GWZ/G=10−5 for our simulations in accordance with the formulation of weak

zones described in Souček et al. (2016).
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Tiger Stripe, and circum-tectonic boundary locations (i.e., WZ models) and d̃el = 15 km101

meshed with specified minimum cell side lengths Smin= 6, 5, 4, 3, 2, and 1 km. We ad-102

ditionally show example snapshots of the radial displacement fields between our WZ model103

relative to our Base model for geometries with d̃el = 15 km across our range of tested104

Smin values. Results from Figure 3 demonstrate that both Love number results and over-105

all radial displacement fields are insensitive to chosen minimum cell size for values of Smin <106

3 km. We accordingly assign Smin = 1 km for all models discussed in this work.107

108

1.4 Choice of Weak Zone Elastic Parameters109

We evaluate results from models with weak zones at chasma, Tiger Stripe, and circum-110

tectonic boundary locations (i.e., WZ models) to confirm that Love number outputs are111

not sensitive to our choice of weak zone shear modulus. Figure 4 shows Love number val-112

ues evaluated from WZ models with d̃el = 15 km and specified weak zone moduli across113

10−8 < GWZ/G < 100. We additionally show example snapshots of radial displace-114

ment fields from our WZ models relative to our Base model with d̃el = 15 km across our115

range of tested GWZ values. Results from Figure 4 demonstrate that both Love num-116

ber results and overall radial displacement fields are insensitive weak zone shear mod-117

ulus for GWZ/G < 10−4 . These results are consistent with those described in the sup-118

plementary documentation of Souček et al. (2016) but extend to inferences of displace-119

ment away from the Tiger Stripes and for instances of non-zero bulk modulus within weak120

zones.121
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Figure 3. Results evaluated at periapse for WZ models (d̃el = 15 km) for a range of Smin.

We show radial displacement fields viewed facing upwards towards the South Pole (top) and hd
20

Love number results we use to track the sensitivity of results due to changes in Smin (bottom)
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Figure 4. Results evaluated at periapse for WZ models (d̃el = 15 km) across several values of

GWZ . We show radial displacement fields viewed facing upwards towards the SP (top) and hd
20

Love number results we use as a proxy for effective model stiffness.
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