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Introduction

In S1, we describe the governing equations for our tidal loading boundary value problem

and our solution method (1.1), benchmark our solutions against analytic and numer-

ical tidal loading models (1.2), and verify that results on models with heterogeneities

are not subject to inaccuracy due to our choice of mesh sizing parameters (1.3) or our

choice of weak-zone elastic moduli (1.4). We also investigate the extent that structural

heterogeneities that induce non degree-2 harmonics in radial displacement fields (1.5),

examine whether the mean ice thickness tracked in this study (i.e., d̃ice) approximates the

thermal thickness of Enceladus’s ice shell (1.6), and illustrate the impact of structural

heterogeneities on horizontal displacements at Enceladus (1.7).
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Text S1

1.1 Governing Equations

1.1.1.1 Strong Form of the Equation of Motion

Following Aagaard et al. (2007), we formulate and solve a boundary value problem

appropriate for tidal loading. We start by defining the strong form of the quasi-static

equation of motion for a geometry with fault surfaces:

σij,j + fi = 0 in W (1a)

σijnj = Ti on S (1b)

where i describe cartesian directions i for a body subject to stresses σij and specific forces

fi over the volume W , Ti describes tractions on all surfaces S, and nj is the vector normal

to S. We subdivide S into the surface at the outer domain boundary S0, the surface

at the inner (i.e., ice-ocean) domain boundary Sint, and surfaces corresponding to fault

interfaces Sf of our geometry.

1.1.1.2 Constitutive Relation for Elasticity

We write a constitutive relation for elasticity (i.e., Hooke’s law) using the rank-4 stiffness

tensor Cijkl to map displacements ukl to stresses σij. We assign parameters in Cijkl that

are appropriate for linear isotropic material with a shear modulus G and bulk modulus µ

(see Table 1 of the main text; the symbol , denotes derivative with respect to a direction):

σij =
1

2
Cijkl(uk,l + ul,k) (2)

1.1.1.3 Tidal Loading

Building on the procedure of Souček et al. (2016) (see S1), we formulate three compo-

nents of tidal loading: ‘body’, ‘ocean’, and ‘topographic’ forces. We additionally treat a
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fourth ‘self-gravitational’ force for this work. As per Newton’s second law, the body force

f b
i arising from diurnal tides is the gradient of the driving potential (i.e, see Equation

7 of the main text) scaled by ice density ρice (ei denotes the unit vector parallel to the

evaluated direction):

f b
i = ρice(∇V ) · ei (3)

The ocean force is a traction T o
i on Sint which scales the driving potential V with ocean

density ρw (es denotes the unit vector perpendicular to the surface of the geometry):

T o
i = ρwV (es · ei) on Sint (4)

The topographic force arises from the traction induced by deformation at the boundaries

of the domain (see Equation S5 in Souček et al., 2016). We form the topographic force by

generating tractions on S0 (i.e., T t,0
i ) and Sint (i.e., T

t,int
i ). For small displacements, we

can write T t,int
i and T t,0

i as a function of radial displacements at domain boundaries (i.e.,

ui(e
i · es); note that here we only apply the Einstein summation convention for matching

subscripts), ρice, ρw, and gravitational acceleration at the inner and outer surfaces gint

and g0 (see Table 2 in the main text):

T t,0
i = ui(e

i · es)ρiceg0(es · ei) on S0 (5a)

T t,int
i = ui(e

i · es)(ρice − ρw)gint(e
s · ei) on Sint (5b)

For the self-gravitational force, we evaluate a body force f sg
i and a traction at the inner

surface T sg
i :

f sg
i = ρice∇V sg · ei (6a)

T sg
i = ρwV

sg(ei · es) on Sint (6b)
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where V sg is a gravitational potential arising from deformation (i.e., mass movement) at

the boundaries of the domain. To compute V sg, we combine solutions to the Poisson’s

equation (i.e., potentials) arising from boundary displacements (i.e., V sg
int and V sg

0 ) that

are expanded into spherical harmonics (i.e., via the linear transformation Hqw where q and

w are spherical harmonic degree and order). We evaluate potentials at radial locations r.

G is the universal gravitational constant (i.e., as discussed in Hemingway & Mittal (2019)

cf. Equation 4). We ignore effects due to the changes in density on V sg:

V sg = V sg
int + V sg

0 (7)

V sg
int =

∑
q

∑
w

4πGr
2q + 1

(ρw − ρice)
(R0

r

)q+2
Hqwui(e

i · es) on Sint (8a)

V sg
0 =

∑
q

∑
w

4πGr
2q + 1

ρice
( r

R0 − d̃ice

)q−1
Hqwui(e

i · es) on S0 (8b)

1.1.1.4 Fault Displacement

To consider the impact of frictionless faults in the crust (e.g., Tiger Stripes in Faulted

models) on deformation, we assume that 2D fault surfaces within our geometry Sf are

tractionless (i.e., dislocations fully cancel tidally-driven tractions evaluated along the fault

plane). Following the formulation described in Segall, 2010 (Chapters 1-3), we relate

displacements on either end of a fault surface (i.e., u+
o and u−

o where o is the displacement

direction for nodes along a fault surface) to tractions T f
i over Sf according to:

T f
i = CijklMklo(u

+
o − u−

o )nj(e
o × es) on Sf (9)

whereMklo is a rank-3 tensor containing linear Green’s functions relating strike-slip motion

to equivalent co-local strain along a fault plane in a 3D elastic medium (cf. Equation

3.23, Segall, 2010; Aki & Richards, 1980). Note that the addition of the cross term (i.e.,
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eo × es) in Equation 9 ensures motion normal to fault surfaces does not contribute to

traction induced by fault slip (i.e., fault surfaces are ‘clamped’ in the normal direction).

We assume clamped fault surfaces (i.e., ignore mode-1 deformation from crack opening;

Aagaard et al., 2007) based on the expectation that the magnitude of tidally-driven elastic

extensional stresses within Enceladus’s ice shell (∼ 5-15 kPa; see Figure 1 of Behounkova

et al., 2017) is much smaller than the average effective hydrostatic normal stresses across

fault planes that are flooded by water (∼ 120 kPa for Faulted models with d̃ice = 25 km;

see Equation S14 of Sládková et al., 2021). For models with lateral variations in thickness

(i.e., LTV ) and d̃ice ∼ 15-17 km, we would expect that extensional stresses produced by

diurnal would begin to approach the upper limit of mean effective hydrostatic stresses

across the Tiger Stripes. We therefore acknowledge that mode-1 crack opening could

occur across Tiger Stripes for relatively thin ice shells, but treating such a case is beyond

the scope of the current work. We compute fault slip ds by applying a rotation matrix

Rso to transform vectors u+
o and u−

o from the global cartesian coordinate system to a local

fault coordinate system:

ds = Rso(u
+
o − u−

o ) on Sf (10)

1.1.2 Numerical Approximation and Solution Method

1.1.2.1 Weak Form of Equation of Motion

We construct the weak form of the quasi-static equation of motion by dotting the strong

form of the equation of motion (Equation 1) with a weighting function ϕi:∫
W

(σij,j + fi) ϕi dW = 0 (11)
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1.1.2.2 Galerkin Approach

Following the Galerkin approach, we formulate our weighting function ϕi as an n-

dimensional combination of linear basis (i.e., shape) functions Nn scaled by coefficients

cni . We also formulate our trial solution (i.e., for displacement ui) as an m-dimensional

combination of linear basis functions Nm scaled by coefficients ami :

ϕi =
∑
n

cni N
n (12a)

ui =
∑
m

ami N
m (12b)

1.1.2.3 Assembly of Jacobian

Considering the divergence theorem for stresses in W , substituting our formulation for

the weighting function (Equation 12), and recognizing that the equation of motion’s weak

form is equivalent to the strong form for arbitrary weighting function coefficients cni allows

us to rewrite Equation 11 as:

−
∫
W

σijN
n
,jdW +

∫
S

TiN
ndS +

∫
W

fiN
ndW = 0 (13)

We substitute forces, stresses, and tractions from the constitutive relation (Equation 2),

our tidal loading formulation (Equations 3, 4, 5, and 6), and our numerical treatment of

fault surfaces (Equations 9 and 10) into Equation 13 to formulate a Jacobian Anm
ij . Anm

ij is a

superposition of tensors integrated over our domain volume
W
Anm

ij , outer surface
S0
Anm

ij ,

inner surface
Sint

Anm
ij , and fault sufraces

Sf
Anm

ij . We replace the linear transformation

Hqw and the radial position of the domain r with the rank-4 tensor Hqwnm and the radial

position of nodes rn respectively:

Anm
ij =

W
Anm

ij +
S0
Anm

ij +
Sint

Anm
ij +

Sf
Anm

ij (14)
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W
Anm

ij =

∫
V

(
1

4
Cijkl(N

m
,k +Nm

,l )(N
n
,j +Nn

,i ) + (ρice∇(
∑
q

∑
w

4πGrn

2l + 1
((ρw − ρice)

Hqwnm(e
i · es)

(R0

rn
)q+2

+ ρiceHqwnm(e
i · es)

( rn

R0 − d̃ice

)q−1
)) · ej))dW

(15a)

Sint
Anm

ij =

∫
Sint

((ρw
∑
q

∑
w

4πGrn

2l + 1
((ρw − ρice)Hqwnm(e

i · es)
(R0

rn
)q+2

+ ρiceHqwnm

(ei · es)
( rn

R0 − d̃ice

)q−1
))(es · ej) + (ei · es)(ρice − ρw)gint(e

s · ej)NnNm)dS

(15b)

S0
Anm

ij =

∫
S0

(ei · es)ρiceg0(es · ej)NnNmdS (15c)

Sf
Anm

ij =

∫
Sf

CijklMklo(N
m+
o −Nm−

o )njN
ndS (15d)

where Nm+
o and Nm−

o denote shape functions for split nodes on either side of a fault

surface. We can also combine terms from Equations 3 and 4 to write a force vector bnj :

bnj = −
∫
W

(ρice∇V · ej)NndW −
∫
Sint

ρwV (es · ej)NndS (16)

Finally, we assemble Equations 14, 15, and 16 to form a linear system and solve for

displacement coefficients ami .

Anm
ij ami = bnj (17)

1.1.2.4 Solution Method

We solve Equation 17 using a multigrid method built into the PetSc solver package

within Pylith (Aagaard et al., 2007). For the multigrid method, we apply preconditioners

to Anm
ij in Equation 17 to obtain solutions (i.e., coefficients ami ) for a series of increasingly

fine mesh grids. We use Gaussian elimination to compute ami for all grids except the

coursest grid. To remove rigid body translational and rotational motion from solutions,
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we apply singular-value decomposition and discard computed ami values at the coursest

grid level (for details, see 4.1.5 of Aagaard et al., 2007). We are able to mesh geometries,

run simulations, and post-process model results for a single time step (e.g., at t = 0) within

60 – 90 minutes on a computer equipped with two CPU cores using our finite-element

method.

1.2 Benchmarking

We benchmark our tidal loading formulation on Base models against analytic solu-

tions using the spectral solver software package SATStress, a widely used tool within the

planetary science community to predict diurnal (and fluid) Love number values and stress

fields on planetary bodies (Wahr et al., 2009). SATStress solves the equation of motion for

tidally-loaded multi-layered spherically symmetric bodies accounting for self-gravitation

and viscous effects. Figure S1 shows predictions of Love number values from SATStress

across our range of modelled d̃ice values. Within SATStress, we specify a multi-layered

body with an outer ice layer and underlying ocean consistent with the rheological param-

eters in Table 2 (see main text), a mean ice viscosity 1016 Pa-s (Friedson & Stevenson,

1983), an ocean shear modulus 10−20 Pa, and an ocean viscosity 10−20 Pa-s. Love number

values between numerical and analytical models agree to within <0.1% across all d̃ice val-

ues. Possible additional minor differences between predictions from either set of results

may result from our lack of accounting for changes in ice shell rheology due to volumetric

expansion or contraction within the ice shell during tidal loading (for details see Wahr et

al., 2006).

We additionally compare model results from this work with results from Souček et al.

(2016). Figure S2 shows displacement magnitude fields at three different time indices in
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the tidal cycle (t=0.0 T (periapse), 0.2 T , and 0.4 T , where T is the orbital period T = 33

hrs) for models in Souček et al. (2016) (top row) and this work (bottom). We deactivate

self-gravitation on Base models and assign weak zones with either 1. prescribed bulk

modulus µWZ = 10−5µ and shear modulus GWZ = 10−5G or 2. prescribed bulk modulus

µWZ = µ and shear modulus GWZ = 10−5G to regions surrounding the Tiger Stripes

for model comparisons. We find we are able to largely reproduce results from Souček et

al., (2016) (i.e., peak displacement magnitude values correspond to within <10%) most

accurately for models with both zero bulk and shear modulus. Discontinuities in radial

displacement occur across all models with weak zones. Slight differences in displacement

field characteristics persist surrounding the weak zone regions likely due to methodological

differences in the implementation of adaptive mesh sizing, the assignment of reduced

elastic moduli (i.e., the location of the Tiger Stripes and the shear modulus reduction

away from fault planes), or the use of different shape functions (i.e., linear vs. quadratic)

between models.

1.3 Mesh Convergence Test

We perform a mesh convergence test to confirm that Love number results from models

with structural heterogeneities are not sensitive to chosen mesh sizing parameters. Figure

S3 shows Love number values evaluated from models with only weak zones at chasma,

Tiger Stripe, and circum-tectonic boundary locations (i.e., WZ models) and d̃ice = 15

km meshed with specified minimum cell side lengths Smin= 6, 5, 4, 3, 2, and 1 km. We

additionally show example snapshots of the radial displacement fields between our WZ

model relative to our Base model for geometries with d̃ice = 15 km across our range of

tested Smin values. Results from Figure S3 demonstrate that both Love number results
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and overall radial displacement fields are insensitive to chosen minimum cell size for values

of Smin < 3 km. We accordingly assign Smin = 1 km for all models discussed in this work.

1.4 Choice of Weak Zone Elastic Parameters

We evaluate results from models with weak zones at chasma, Tiger Stripe, and circum-

tectonic boundary locations (i.e., WZ models) to confirm that Love number outputs are

not sensitive to our choice of weak zone shear modulus. Figure S4 shows Love number

values evaluated fromWZ models with d̃ice = 15 km and specified weak zone moduli across

10−8 < GWZ/G < 100. We additionally show example snapshots of radial displacement

fields from our WZ models relative to our Base model with d̃ice = 15 km across our

range of tested GWZ values. Results from Figure S4 demonstrate that both Love number

results and overall radial displacement fields are insensitive weak zone shear modulus for

GWZ/G < 10−4 . These results are consistent with those described in the supplementary

documentation of Souček et al. (2016) but extend to inferences of displacement away from

the Tiger Stripes and for instances of non-zero bulk modulus within weak zones.

1.5 Mode Coupling

We investigate the extent to which structural heterogeneities excite radial displacement

patterns beyond degree-2 harmonics. For each model with structural heterogeneities,

we treat radial displacement fields relative to the Base model (i.e., ur(Ω̄), where Ω̄ is

the position variable comprising the co-latitude longitude pair (θ, ϕ) in a reference frame

fixed to Enceladus’s center of mass). Note that ur(Ω̄) is a sum over orthonormal spherical

harmonic basis functions Ylm(Ω̄) scaled by coefficients ur
lm (l and m denote spherical
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harmonic degree and order):

ur(Ω̄) =
∞∑
l=0

l∑
m=−l

ur
lmYlm(Ω̄) (18)

The power of ur(Ω̄) at a given spatial scale (i.e., l) can be represented via the power spec-

tral density. We evaluate power spectral density using the root-mean-square of coefficients

ur
lm in Equation 18 over order m:

Power Spectral Density =

(∑
m(u

r
lm)

2

2l + 1

)1/2

(19)

Figure S5 shows power spectral density across l for LTV, Faulted+LTV, Faulted, Faulted+

LTV+WZ, andWZ models (See Figures 1 and 2 in the main text). Figure S5 demonstrates

that structural heterogeneities stimulate mode coupling (i.e., non degree-2 deformation)

across l = 2 - 20 with diminishing power at shorter wavelengths (i.e., higher l). Moreover,

lateral variations in crustal thickness (i.e., in LTV and WZ models) and weak zones (i.e.,

in WZ and Faulted + LTV + WZ models) drive the most significant long-wavelength (l

= 2 - 5) deformation across models. By contrast, deformation driven by faults (i.e., in

Faulted models) is minimal at long-wavelengths but relatively more prominent at shorter

wavelengths (l = 10 - 20) as compared to deformation in LTV models.

1.6 Ice Thickness and Thermal Thickness

We aim to describe the relationship between 1) the ice thickness d̃ice predicted from

analyzing displacement over diurnal timescales at Enceladus and 2) the thermal thickness

d̃t of ice between the surface and the water-ice phase transition at 273◦K (i.e., the ice-

ocean boundary). Note that the general (i.e., complex) form of the diurnal degree-2 shape

Love number (for a spherically symmetric body) possesses both real ℜ(hd
2) and imaginary

ℑ(hd
2) components. For a body that exhibits purely elastic deformation, hd

2 = ℜ(hd
2)
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and ℑ(hd
2) = 0. However, we expect the ‘thermal’ portion of the ice shell to exhibit an

additional viscous component of deformation such that ℑ(hd
2) ̸= 0. We can therefore

estimate the ratio between d̃t and d̃ice by comparing ℜ(hd
2) and ℑ(hd

2):

d̃t/d̃ice =
(ℑ(hd

2)
2 + ℜ(hd

2)
2)1/2

ℜ(hd
2)

(20)

The imaginary Love number component ℑ(hd
2) in Equation 20 is sensitive to the dynamic

viscosity structure of the crust (Čadek et al., 2019). Viscosity η(r) in the ice shell is a

function of radial position r and d̃t (cf. Equations 56 and 57, Beuthe 2018):

η(r) = η0 · exp

(
E

RgTio

(
Tio

T
(r−R)/(d̃t)
io T

(r−R+d̃t))/(d̃t)
s

− 1)

)
(21)

where is η0 = 3·1014 Pa-s is the minimum viscosity at the base of the ice shell (Čadek et al.,

2019), Tio = 273 K and Ts = 70 K respectively are temperatures at the ice-ocean boundary

and surface (Howett et al., 2010), R = 252.1 km is radius of the surface (Hemingway &

Mittal, 2019), Rg is the gas constant, and E = 59.4 kJ mol−1 is the activation energy for

diffusion creep of ice.

We solve for ℑ(hd
2) and ℜ(hd

2) using SATStress (Wahr et al., 2009, see also S1.2). Within

SATStress, we specify a body with 100 equally thick layers of uniform rheology. For each

layer, we linearly interpolate viscosity values from the radial viscosity structure described

to Equation 21 and assign a constant shear modulus G = 3.3 GPa (Souček et al., 2016).

Figure S6 shows results for computed ℑ(hd
2), ℜ(hd

2), and d̃t/d̃ice (see Equation 20). Figure

S6 demonstrates that d̃t/d̃ice < 1.012 for d̃t = 15 − 30 km. In other words, estimates

of mean ice thickness from Love numbers likely underestimate thermal thickness by less

than ∼ 0.2% at Enceladus (note that computed d̃t/d̃ice are consistent with values expected

when using complex Love numbers at Enceladus reported by Beuthe, 2018 cf. Figure 3).
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1.7 Impact of Structural Heterogeneities on Horizontal Displacements

Results for horizontal displacement (i.e., orthogonal to the radial direction and tangen-

tial to the outer surface) across a range of model classes (see section 2.1 in the main text)

are shown in Figure S7. Figure S7 demonstrates that the magnitude of horizontal dis-

placements produced by structural heterogeneities are comparable to (or greater than) the

magnitude of horizontal displacements in Base models near the South Pole of Enceladus

(see discussion).
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Figure S1. Comparison of analytic and FEM Love number results for several values

of d̃ice on spherically symmetric (Base) models. Love numbers plotted against d̃ice for

analytic models using SATStress (blue dots) and using the FEM formulated here (yellow

dots).
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Figure S2. Comparison of results from models with Tiger Stripes in Souček et al. (2016)

(top row) with results from models which employ weak zones with effectively zero bulk

modulus and effectively zero shear modulus (center row) as well as non-zero bulk modulus

and effectively zero shear modulus (bottom row) at Tiger Stripe locations. Models are

viewed facing the South Pole. Fields denote the magnitude of the displacement vector

evaluated at the outer surface of deformed geometries. The top row and colorbar of this

Figure are adapted from top row of Figure 3 of Souček et al. (2016).
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Figure S3. Results evaluated at periapse for WZ models (d̃ice = 15 km) for a range of

Smin. We show radial displacement fields viewed facing upwards towards the South Pole

(top) and hd
20 Love number results we use to track the sensitivity of results due to changes

in Smin (bottom)
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Figure S4. Results evaluated at periapse for WZ models (d̃ice = 15 km) across several

values of GWZ . We show radial displacement fields viewed facing upwards towards the

SP (top) and hd
20 Love number results we use as a proxy for effective model stiffness.
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Figure S5. Power spectral density of surface radial displacements for models with

structural heterogeneities described in this work. We compute power spectral density for

each model using Equations 18 and 19. For a description of each model class, see section

2.1 of the main text. Axes are plotted in log10 scale.
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Figure S6. Computed complex Love number components ℑ(hd
2) and ℜ(hd

2) (top row),

and associated d̃t/d̃ice values (see Equation 20) (bottom row) across input mean crustal

thicknesses d̃t = 15-30 km. We evaluate ℑ(hd
2) and ℜ(hd

2) using SATStress and following

the procedure described in S1.6.
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Figure S7. Snapshots of the magnitude of horizontal displacement from each model

class viewed facing the south pole (SP, left column) and the sub-Saturnian point (SS, right

column) evaluated at t = 0 (periapse). The top row shows the magnitude of horizontal

displacement in the Base model due to tidal forcing. The remaining rows present the

magnitude of the difference in horizontal displacement between models with structural

heterogeneities and the Base model. Each model shown assumes d̃ice = 25 km. Tiger

Stripes, the south polar circum-tectonic boundary (CTB), and chasma are labelled.
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Figure S8. Crustal thickness variations for LTV models. For details regarding our

methodology to generate crustal thickness variations, see section 2.1 of the main text.
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