References
1. Jeon, H. Bin, Tsalu, P. V. & Ha, J. W. Shape Effect on the Refractive Index Sensitivity at Localized Surface Plasmon Resonance Inflection Points of Single Gold Nanocubes with Vertices. Sci. Rep. 9 , 13635 (2019).
2. Jana, J., Ganguly, M. & Pal, T. Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv. 6 , 86174–86211 (2016).
3. Wang, L., Hasanzadeh Kafshgari, M. & Meunier, M. Optical Properties and Applications of Plasmonic-Metal Nanoparticles. Adv. Funct. Mater. 30 , 2005400 (2020).
4. Tavakkoli Yaraki, M., Tukova, A. & Wang, Y. Emerging SERS biosensors for the analysis of cells and extracellular vesicles. Nanoscale14 , 15242–15268 (2022).
5. Attia, Y. A., Buceta, D., Requejo, F. G., Giovanetti, L. J. & López-Quintela, M. A. Photostability of gold nanoparticles with different shapes: the role of Ag clusters. Nanoscale 7 , 11273–11279 (2015).
6. He, S. et al. Optimizing gold nanostars as a colloid-based surface-enhanced Raman scattering (SERS) substrate. J. Opt.17 , 114013 (2015).
7. Chapagain, P. et al. Tuning the Surface Plasmon Resonance of Gold Dumbbell Nanorods. ACS Omega 6 , 6871–6880 (2021).
8. Liu, X.-L. et al. Tuning Plasmon Resonance of Gold Nanostars for Enhancements of Nonlinear Optical Response and Raman Scattering.J. Phys. Chem. C 118 , 9659–9664 (2014).
9. Khizar, S. et al. Advancement in Nanoparticle-based Biosensors for Point-of-care In vitro Diagnostics. Curr. Top. Med. Chem.22 , 807–833 (2022).
10. Lei, R. W., Wang, D., Arain, H. & Mohan, C. Design of Gold Nanoparticle Vertical Flow Assays for Point-of-Care Testing.DIAGNOSTICS 12 , (2022).
11. Oliveira, B. B., Ferreira, D., Fernandes, A. R. & Baptista, P. V. Engineering gold nanoparticles for molecular diagnostics and biosensing.WILEY Interdiscip. Rev. NANOBIOTECHNOLOGY doi:10.1002/wnan.1836.
12. Devi, R. S., Girigoswami, A., Siddharth, M. & Girigoswami, K. Applications of Gold and Silver Nanoparticles in Theranostics.Appl. Biochem. Biotechnol. doi:10.1007/s12010-022-03963-z.
13. Chen, Y. & Feng, X. Gold nanoparticles for skin drug delivery.Int. J. Pharm. 625 , (2022).
14. Veeren, A., Ogunyankin, M. O., Shin, J. E. & Zasadzinski, J. A. Liposome-Tethered Gold Nanoparticles Triggered by Pulsed NIR Light for Rapid Liposome Contents Release and Endosome Escape.Pharmaceutics 14 , (2022).
15. Sauvage, F. et al. Laser-induced nanobubbles safely ablate vitreous opacities in vivo. Nat. Nanotechnol. 17 , 552-+ (2022).
16. Zhang, R., Kiessling, F., Lammers, T. & Pallares, R. M. Clinical translation of gold nanoparticles. DRUG Deliv. Transl. Res.doi:10.1007/s13346-022-01232-4.
17. DuRoss, A. N. et al. Radiotherapy reimagined: Integrating nanomedicines into radiotherapy clinical trials. WILEY Interdiscip. Rev. NANOBIOTECHNOLOGY doi:10.1002/wnan.1867.
18. Yang, Y. et al. Multifunctional Gold Nanoparticles in Cancer Diagnosis and Treatment. Int. J. Nanomedicine 17 , 2041–2067 (2022).
19. Kopac, T. Protein corona, understanding the nanoparticle–protein interactions and future perspectives: A critical review. Int. J. Biol. Macromol. 169 , 290–301 (2021).
20. Cai, R. & Chen, C. The Crown and the Scepter: Roles of the Protein Corona in Nanomedicine. Adv. Mater. 31 , 1805740 (2019).
21. Wang, X. & Zhang, W. The Janus of Protein Corona on nanoparticles for tumor targeting, immunotherapy and diagnosis. J. Control. Release 345 , 832–850 (2022).
22. Xiao, Q. et al. The effects of protein corona on in vivo fate of nanocarriers. Adv. Drug Deliv. Rev. 186 , 114356 (2022).
23. Yeo, E. L. L., Azman, N. ‘Ain & Kah, J. C. Y. Stealthiness and Hematocompatibility of Gold Nanoparticles with Pre-Formed Protein Corona. Langmuir 37 , 4913–4923 (2021).
24. Habibi, N., Mauser, A., Ko, Y. & Lahann, J. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches.Adv. Sci. 9 , 2104012 (2022).
25. Piella, J., Bastús, N. G. & Puntes, V. Size-Dependent Protein–Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona. Bioconjug. Chem. 28 , 88–97 (2017).
26. Huang, D., Zhou, H., Liu, H. & Gao, J. The cytotoxicity of gold nanoparticles is dispersity-dependent. Dalt. Trans. 44 , 17911–17915 (2015).
27. Hossen, M. N. et al. Experimental conditions influence the formation and composition of the corona around gold nanoparticles.Cancer Nanotechnol. 12 , 1 (2021).
28. Jahan Sajib, M. S., Sarker, P., Wei, Y., Tao, X. & Wei, T. Protein Corona on Gold Nanoparticles Studied with Coarse-Grained Simulations.Langmuir 36 , 13356–13363 (2020).
29. Lopes Rodrigues, R., Xie, F., Porter, A. E. & Ryan, M. P. Geometry-induced protein reorientation on the spikes of plasmonic gold nanostars. Nanoscale Adv. 2 , 1144–1151 (2020).
30. Bewersdorff, T. et al. The influence of shape and charge on protein corona composition in common gold nanostructures. Mater. Sci. Eng. C 117 , 111270 (2020).
31. Tukova, A., Kuschnerus, I. C., Garcia-Bennett, A., Wang, Y. & Rodger, A. Gold Nanostars with Reduced Fouling Facilitate Small Molecule Detection in the Presence of Protein. Nanomaterials vol. 11 (2021).
32. Kaur, S., Bari, N. K. & Sinha, S. Varying protein architectures in 3-dimensions for scaffolding and modulating properties of catalytic gold nanoparticles. Amino Acids 54 , 441–454 (2022).
33. Szunerits, S., Spadavecchia, J. & Boukherroub, R. Surface plasmon resonance: signal amplification using colloidal gold nanoparticles for enhanced sensitivity. 33 , 153–164 (2014).
34. Radziuk, D. & Moehwald, H. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells.Phys. Chem. Chem. Phys. 17 , 21072–21093 (2015).
35. Benelmekki, M. Introduction. Nanomaterials 1–14 (2019) doi:10.1088/2053-2571/ab126dch1.
36. Raval, N. et al. Chapter 10 - Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development. in Advances in Pharmaceutical Product Development and Research(ed. Tekade, R. K. B. T.-B. F. of D. D.) 369–400 (Academic Press, 2019). doi:https://doi.org/10.1016/B978-0-12-817909-3.00010-8.
37. Rasmussen, M. K., Pedersen, J. N. & Marie, R. Size and surface charge characterization of nanoparticles with a salt gradient.Nat. Commun. 11 , 2337 (2020).
38. García-Álvarez, R. & Vallet-Regí, M. Hard and Soft Protein Corona of Nanomaterials: Analysis and Relevance. Nanomaterials vol. 11 (2021).
39. Pérez-Jiménez, A. I., Lyu, D., Lu, Z., Liu, G. & Ren, B. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem. Sci. 11 , 4563–4577 (2020).
40. Kumari, G., Kandula, J. & Narayana, C. How Far Can We Probe by SERS? J. Phys. Chem. C 119 , 20057–20064 (2015).
41. He, Z. & Zhou, J. Probing carbon nanotube–amino acid interactions in aqueous solution with molecular dynamics simulations. Carbon N. Y. 78 , 500–509 (2014).
The table of contents entry should be 50-60 words long and should be written in the present tense and impersonal style. The text should be different from the abstract text.
Introduction
2. Results and Discussion
2.1 GNPS synthesis and characterization
2.2 Protein-induced stabilization of GNPs in media with high ionic strength