References
1. Jeon, H. Bin, Tsalu, P. V. & Ha, J. W. Shape Effect on the
Refractive Index Sensitivity at Localized Surface Plasmon Resonance
Inflection Points of Single Gold Nanocubes with Vertices. Sci.
Rep. 9 , 13635 (2019).
2. Jana, J., Ganguly, M. & Pal, T. Enlightening surface plasmon
resonance effect of metal nanoparticles for practical spectroscopic
application. RSC Adv. 6 , 86174–86211 (2016).
3. Wang, L., Hasanzadeh Kafshgari, M. & Meunier, M. Optical Properties
and Applications of Plasmonic-Metal Nanoparticles. Adv. Funct.
Mater. 30 , 2005400 (2020).
4. Tavakkoli Yaraki, M., Tukova, A. & Wang, Y. Emerging SERS biosensors
for the analysis of cells and extracellular vesicles. Nanoscale14 , 15242–15268 (2022).
5. Attia, Y. A., Buceta, D., Requejo, F. G., Giovanetti, L. J. &
López-Quintela, M. A. Photostability of gold nanoparticles with
different shapes: the role of Ag clusters. Nanoscale 7 ,
11273–11279 (2015).
6. He, S. et al. Optimizing gold nanostars as a colloid-based
surface-enhanced Raman scattering (SERS) substrate. J. Opt.17 , 114013 (2015).
7. Chapagain, P. et al. Tuning the Surface Plasmon Resonance of
Gold Dumbbell Nanorods. ACS Omega 6 , 6871–6880 (2021).
8. Liu, X.-L. et al. Tuning Plasmon Resonance of Gold Nanostars
for Enhancements of Nonlinear Optical Response and Raman Scattering.J. Phys. Chem. C 118 , 9659–9664 (2014).
9. Khizar, S. et al. Advancement in Nanoparticle-based Biosensors
for Point-of-care In vitro Diagnostics. Curr. Top. Med. Chem.22 , 807–833 (2022).
10. Lei, R. W., Wang, D., Arain, H. & Mohan, C. Design of Gold
Nanoparticle Vertical Flow Assays for Point-of-Care Testing.DIAGNOSTICS 12 , (2022).
11. Oliveira, B. B., Ferreira, D., Fernandes, A. R. & Baptista, P. V.
Engineering gold nanoparticles for molecular diagnostics and biosensing.WILEY Interdiscip. Rev. NANOBIOTECHNOLOGY doi:10.1002/wnan.1836.
12. Devi, R. S., Girigoswami, A., Siddharth, M. & Girigoswami, K.
Applications of Gold and Silver Nanoparticles in Theranostics.Appl. Biochem. Biotechnol. doi:10.1007/s12010-022-03963-z.
13. Chen, Y. & Feng, X. Gold nanoparticles for skin drug delivery.Int. J. Pharm. 625 , (2022).
14. Veeren, A., Ogunyankin, M. O., Shin, J. E. & Zasadzinski, J. A.
Liposome-Tethered Gold Nanoparticles Triggered by Pulsed NIR Light for
Rapid Liposome Contents Release and Endosome Escape.Pharmaceutics 14 , (2022).
15. Sauvage, F. et al. Laser-induced nanobubbles safely ablate
vitreous opacities in vivo. Nat. Nanotechnol. 17 , 552-+
(2022).
16. Zhang, R., Kiessling, F., Lammers, T. & Pallares, R. M. Clinical
translation of gold nanoparticles. DRUG Deliv. Transl. Res.doi:10.1007/s13346-022-01232-4.
17. DuRoss, A. N. et al. Radiotherapy reimagined: Integrating
nanomedicines into radiotherapy clinical trials. WILEY
Interdiscip. Rev. NANOBIOTECHNOLOGY doi:10.1002/wnan.1867.
18. Yang, Y. et al. Multifunctional Gold Nanoparticles in Cancer
Diagnosis and Treatment. Int. J. Nanomedicine 17 ,
2041–2067 (2022).
19. Kopac, T. Protein corona, understanding the nanoparticle–protein
interactions and future perspectives: A critical review. Int. J.
Biol. Macromol. 169 , 290–301 (2021).
20. Cai, R. & Chen, C. The Crown and the Scepter: Roles of the Protein
Corona in Nanomedicine. Adv. Mater. 31 , 1805740 (2019).
21. Wang, X. & Zhang, W. The Janus of Protein Corona on nanoparticles
for tumor targeting, immunotherapy and diagnosis. J. Control.
Release 345 , 832–850 (2022).
22. Xiao, Q. et al. The effects of protein corona on in vivo fate
of nanocarriers. Adv. Drug Deliv. Rev. 186 , 114356
(2022).
23. Yeo, E. L. L., Azman, N. ‘Ain & Kah, J. C. Y. Stealthiness and
Hematocompatibility of Gold Nanoparticles with Pre-Formed Protein
Corona. Langmuir 37 , 4913–4923 (2021).
24. Habibi, N., Mauser, A., Ko, Y. & Lahann, J. Protein Nanoparticles:
Uniting the Power of Proteins with Engineering Design Approaches.Adv. Sci. 9 , 2104012 (2022).
25. Piella, J., Bastús, N. G. & Puntes, V. Size-Dependent
Protein–Nanoparticle Interactions in Citrate-Stabilized Gold
Nanoparticles: The Emergence of the Protein Corona. Bioconjug.
Chem. 28 , 88–97 (2017).
26. Huang, D., Zhou, H., Liu, H. & Gao, J. The cytotoxicity of gold
nanoparticles is dispersity-dependent. Dalt. Trans. 44 ,
17911–17915 (2015).
27. Hossen, M. N. et al. Experimental conditions influence the
formation and composition of the corona around gold nanoparticles.Cancer Nanotechnol. 12 , 1 (2021).
28. Jahan Sajib, M. S., Sarker, P., Wei, Y., Tao, X. & Wei, T. Protein
Corona on Gold Nanoparticles Studied with Coarse-Grained Simulations.Langmuir 36 , 13356–13363 (2020).
29. Lopes Rodrigues, R., Xie, F., Porter, A. E. & Ryan, M. P.
Geometry-induced protein reorientation on the spikes of plasmonic gold
nanostars. Nanoscale Adv. 2 , 1144–1151 (2020).
30. Bewersdorff, T. et al. The influence of shape and charge on
protein corona composition in common gold nanostructures. Mater.
Sci. Eng. C 117 , 111270 (2020).
31. Tukova, A., Kuschnerus, I. C., Garcia-Bennett, A., Wang, Y. &
Rodger, A. Gold Nanostars with Reduced Fouling Facilitate Small Molecule
Detection in the Presence of Protein. Nanomaterials vol. 11
(2021).
32. Kaur, S., Bari, N. K. & Sinha, S. Varying protein architectures in
3-dimensions for scaffolding and modulating properties of catalytic gold
nanoparticles. Amino Acids 54 , 441–454 (2022).
33. Szunerits, S., Spadavecchia, J. & Boukherroub, R. Surface plasmon
resonance: signal amplification using colloidal gold nanoparticles for
enhanced sensitivity. 33 , 153–164 (2014).
34. Radziuk, D. & Moehwald, H. Prospects for plasmonic hot spots in
single molecule SERS towards the chemical imaging of live cells.Phys. Chem. Chem. Phys. 17 , 21072–21093 (2015).
35. Benelmekki, M. Introduction. Nanomaterials 1–14 (2019)
doi:10.1088/2053-2571/ab126dch1.
36. Raval, N. et al. Chapter 10 - Importance of Physicochemical
Characterization of Nanoparticles in Pharmaceutical Product Development.
in Advances in Pharmaceutical Product Development and Research(ed. Tekade, R. K. B. T.-B. F. of D. D.) 369–400 (Academic Press,
2019). doi:https://doi.org/10.1016/B978-0-12-817909-3.00010-8.
37. Rasmussen, M. K., Pedersen, J. N. & Marie, R. Size and surface
charge characterization of nanoparticles with a salt gradient.Nat. Commun. 11 , 2337 (2020).
38. García-Álvarez, R. & Vallet-Regí, M. Hard and Soft Protein Corona
of Nanomaterials: Analysis and Relevance. Nanomaterials vol. 11
(2021).
39. Pérez-Jiménez, A. I., Lyu, D., Lu, Z., Liu, G. & Ren, B.
Surface-enhanced Raman spectroscopy: benefits, trade-offs and future
developments. Chem. Sci. 11 , 4563–4577 (2020).
40. Kumari, G., Kandula, J. & Narayana, C. How Far Can We Probe by
SERS? J. Phys. Chem. C 119 , 20057–20064 (2015).
41. He, Z. & Zhou, J. Probing carbon nanotube–amino acid interactions
in aqueous solution with molecular dynamics simulations. Carbon N.
Y. 78 , 500–509 (2014).
The table of contents entry should be 50-60 words long and should be
written in the present tense and impersonal style. The text should be
different from the abstract text.
Introduction
2. Results and Discussion
2.1 GNPS synthesis and characterization
2.2 Protein-induced stabilization of GNPs in media with high ionic
strength