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Text S1. The methodology for the measurement of grain sizes of olivine and clinopyroxene 40 

In this study, grain sizes of olivine and clinopyroxene in the partially molten peridotite were 41 
measured by mapping analyses of electron backscattered diffraction (EBSD) using a Quanta 450 42 
FE-SEM equipped with an HKL Nordlys EBSD detector at the State Key Laboratory of 43 
Geological Processes and Mineral Resources (GPMR) of China University of Geosciences. 44 
Measurements were performed under the conditions of an accelerating voltage of ~ 20 kV, ~ 0.8 45 
μm step size, a beam current of ~ 6 nA, a tilt angle of ~ 70°, and about ~ 20-25 mm working 46 
distance. The smallest detectable grain size was about ~ 4 μm. EBSD patterns of different crystal 47 
minerals are determined by the orientations of the grains being examined. By scanning the beam 48 
in a grid pattern, a map of the grain orientations can be produced. When a discontinuous change 49 
in the orientation occurs, this indicates that a grain boundary has been crossed. The 50 
misorientations of greater than 15° were recorded as being distinct grains. Then, orientation maps 51 
of different crystal minerals can be built using the commercially available software channel5© to 52 
obtain grain sizes of different minerals. 53 

Text S2. The methodology for the measurement of water content in silicate melt using Fourier 54 
transform infrared spectroscopy (FTIR) 55 

We used the FTIR to determine the water content of silicate melt in experiments PC520 and 56 
PC528 at the State Key Laboratory of Geological Processes and Mineral Resources (GPMR) of 57 
China University of Geosciences. Before the FTIR measurements, the samples were double 58 
polished to a thickness of 100 μm and kept in a vacuum stove at 400 K for at least 12h to 59 
preclude the grain boundary water in samples. The water content can be calculated by using the 60 
Beer-Lambert law: 61 𝐶ு = ஺×ଵ଼.଴ଵହଶௗ×ఘ×ఌ ,                                                                                                                               (1) 62 

where CH is the total H2O content (wt.%), A is the measured absorbance of the peak at 3550 cm-1, 63 
after linear baseline correction (≤1), d is the sample thickness (cm); ρ is the density (g L-1) of 64 
silicate melt, 𝜀 is the molar absorptivity (62.8 ± 0.8 L mol-1 cm-1) (Mercier et al., 2010). 65 
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Figure S9. Plots of analyzed oxide abundance (in wt.%) and Mg# of orthopyroxene grains from 125 
the ORL to the melt source. The relative distance “1” represents the top of the ORL. The 126 
analyzed points are about 50-150 μm apart, depending on the size of orthopyroxene grains and 127 
the thickness of ORL. 128 
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