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Summary 

Understanding mechanical processes occurring on faults requires detailed information on the 

microseismicity that can be today enhanced by advanced techniques for earthquake detection. This 

problem is more challenging when seismicity rate is low and most of the earthquakes occur at 

depth. In this study we compare three detection techniques, the autocorrelation FAST, the machine 

learning EQTransformer and the template matching EQCorrScan, for catalog improvement 

associated with seismic sequences in the normal fault system of Southern Apennines (Italy) using 

data from the Irpinia near fault observatory. We found that the integration of the machine learning 

and template matching detectors, the former providing templates for the cross-correlation, largely 

outperforms with respect to the techniques based on autocorrelation and machine learning alone, 

featuring an enrichment of the automatic and manual catalogs of factors 21 and 7 respectively. The 

output catalogs can be polluted by many false positives; so, we applied refined selection based on 

the cumulative distribution of the similarity level to clean up the detection lists and analyze final 

subsets dominated by real events.  

The magnitude of completeness decreases by more than one unit as compared to the reference 

value for the network. We report b-values smaller than the average, likely corresponding to larger 

differential stresses than for the background seismicity of the area. For all the analyzed sequences, 

we found that main events are anticipated by foreshocks, indicating a possible preparation process 

for mainshocks at sub-kilometric scales.  

 

Keywords: Machine learning, Time series analysis, Earthquake interaction, forecasting and 

prediction, Statistical seismology 

 



 

 

1 Introduction 

Earthquake detection is a fundamental task in seismology since it represents the first step for the 

analysis and the interpretation of Earth’s crustal deformation processes. Detection consists in 

analyzing continuous records to identify discrete seismic events and becomes more difficult as the 

size of the events decreases and the amplitude of the earthquake signals approaches the noise level. 

With the increase of number and quality of seismic data and the demand for fast, automatic 

processing of large data volumes, detection techniques need to be scalable and flexible, exploiting 

the multiscale coherency of earthquake signals. 

Several techniques have become established through the years, and they can be grouped into two 

main classes: energy-based and similarity-based detectors. The energy-based STA/LTA method 

(Allen, 1978) is one of the reference approaches in seismology and compares the waveform energy 

over a short time window (STA) with that of a long-time window (LTA). This approach is highly 

flexible in detecting impulsive arrivals but may fail for events with amplitude near the noise level 

and closely spaced in time such that their arrivals overlap. Characteristic functions based on 

higher-order statistics of the waveforms, such as skewness and kurtosis, have been shown to 

improve on STA/LTA for low signal-to-noise ratio and intense seismic activity (Poiata et al. 2016; 

Grigoli et al. 2018).  

When focusing on seismic sources that repeat in time at nearby locations and with a similar 

mechanism, techniques based on waveform similarity measured by cross-correlation are very 

efficient for detection of low amplitude events (Gibbons & Ringdal 2006; Shelly et al. 2007; Schaff 

2008; Dodge & Walter 2015). These are usually referred to as template matching methods, since 

selected, known earthquake records are used as templates to scan the continuous data stream. 

Template matching techniques have been efficiently applied to dense networks surrounding 



 

 

tectonic (e.g., Nomura et al. 2014), volcanic (Lengliné et al. 2016) and induced seismicity (Huang 

& Beroza 2015) areas. Template matching requires an a priori set of reference earthquakes, and 

the final catalog is limited to events with waveforms similar to them, and hence might be biased 

by the number and quality of the reference signals.  

Autocorrelation techniques mitigate this issue using each portion of continuous data as a potential 

template (Brown et al. 2008), under the assumption that the main similarities occur between 

seismic signals instead of noise. Despite their good performance, the computational demand of 

such detectors increases quadratically with the time extent of the dataset, such that it becomes 

infeasible for long-term monitoring. The introduction of an efficient set-based similarity, built on 

compact fingerprints (Yoon et al. 2015) allows significant reduction of the runtime. Similarity 

search methods are suitable both for induced seismicity monitoring (Yoon et al. 2017, Scala et al. 

2022) and for seismic sequences in tectonic areas (Yoon et al. 2019; Festa et al. 2021).  

More recently, using artificial intelligence, seismology has developed deep-learning models for 

event detection (Zhu & Beroza 2018; Wang et al. 2019; Dokht et al. 2019; Mousavi et al. 2020). 

These techniques work by learning general earthquake waveform features from their high-level 

representations and aim to increase the dimension of manually generated catalogs with models 

easily exportable across different application areas (Mousavi et al. 2020). 

Understanding which detection technique is more suitable to enhance catalogs is a challenging 

task that requires comparison across methods and in-depth analysis of the differences between the 

resulting catalogs. In this study we performed this comparison for seismic sequences occurring 

within the Southern Italy Irpinia fault system. Italy is one of the most seismically hazardous 

countries in the Mediterranean region, and although the worst historical earthquakes were all 

characterized by magnitude between 6 and 7, more than 120,000 people were killed by earthquakes 



 

 

during the last century (Valensise & Pantosti 2001). The area of this study was struck by the 1980, 

M 6.9 Irpinia earthquake occurred along NW-SE striking faults and characterized by three main 

episodes within a few tens of seconds, causing about 3000 fatalities and severe damage (Bernard 

& Zollo 1989). 

To better characterize the seismic hazard of the Irpinia area the Irpinia Near Fault Observatory 

(INFO) was established in 2007. The key idea of these infrastructures is to install dense networks 

of multi-parametric sensors close to faults aiming at understanding the underlying Earth instability 

processes over broad time intervals (Chiaraluce et al. 2022). INFO includes the Irpinia Seismic 

Network (ISNet, http://isnet.unina.it) made up of 31 seismic stations, equipped with strong-motion 

accelerometers and weak motion sensors to be sensitive to microseismic events. ISNET covers an 

area of 100×70 km2, including the epicenter of the 1980 Irpinia earthquake (Iannaccone et al. 

2010), with an interstation distance of 10-20 km. The manually revised catalog of seismic events 

for the past 15 years includes ∼3000 earthquakes mainly occurring at depths between 8 and 15 

km. The events cover a local magnitude range between Ml -0.4 and Ml 3.7, with a completeness 

magnitude of Ml 1.1 (Vassallo et al. 2012). In Figure 1, we represent the location of stations of 

ISNet (red triangles), the distribution of the earthquakes in the INFO catalog (black dots), the 

location of the sequences analyzed in this study (yellow stars) and the epicenter of the M 6.9, 1980 

Irpinia earthquake (red star).    

In recent years, several studies concerning both source parameters (i.e., Zollo et al. 2014; Picozzi 

et al. 2019, 2022a) and medium properties (Vassallo et al. 2016) allowed significant improvement 

in the understanding of the Irpinia fault system, highlighting a relation between hydrological 

changes in the shallow karst system and microseismicity generation, with the former likely acting 

as an external forcing mechanism (D’Agostino et al. 2018; Picozzi et al. 2022b; De Landro et al. 

http://isnet.unina.it/


 

 

2022). The background seismicity of recent years appears to be spread within a volume bounded 

by the main faults of the 1980 event and sometimes clustered in sequences with events of 

maximum magnitude Ml ∼3.0 (Stabile et al. 2012). The current monitoring strategies led to 

manually revised catalogs containing between 10 and 50 events for the seismic sequences. 

Nevertheless, Festa et al. (2021) showed that these seismic sequences may include hundreds of 

detectable events when analyzed with advanced tools. 

 

Figure (1). The location of the ISNet seismic stations (red triangles), the events detected by INFO from 

2007 (black dots). The red star marks the epicenter of the 1980, M 6.9 earthquake; yellow stars indicate 

the locations of the main events of the 10 seismic sequences analyzed in this study. 

For this reason, in this study we considered the continuous waveforms at ISNet stations for a set 

of ten seismic sequences (Figure 1) to test and compare the performance of three well-established 

automatic detection approaches: the autocorrelation method FAST (Yoon et al. 2015; Bergen & 

Beroza 2018), the machine learning technique EQTransformer (Mousavi et al. 2020) and the 

template matching technique EQCorrscan (Chamberlain et al. 2018). We assessed their 



 

 

performance in a particular context (i.e., a small scale, dense network monitoring normal faults) 

and for a specific task (to provide augmented catalogs for seismic sequences). We found that the 

integration of the machine learning and template matching techniques outperforms the 

autocorrelation detector. Enhanced catalogs feature a smaller magnitude of completeness as 

compared to the INFO catalogs, down to one point in magnitude, and enable to characterize the 

seismicity rate discovering a foreshock activity before the main event. 

The paper is organized as follows. In section 2 we present the selected seismic sequences. Then 

we discuss the different techniques and the associated processing used to generate the enhanced 

catalogs (Section 3). In section 4, the results are reported in terms of performance of the techniques 

and the differences in the catalog content across the three methods. In section 5 we discuss the 

time-magnitude features of the sequences (magnitude of completeness, b-value of the Gutenberg-

Richter law and time evolution of the seismicity). Finally, in the Discussion we present how the 

results affect the strategies for catalog generation and for a statistical description of the seismicity.   

 

2 Data  

In this work, we analyzed 10 seismic sequences that occurred in the Irpinia region between 2011 

and 2021 near the three fault segments of the 1980 Irpinia earthquake. For each sequence, we 

selected the continuous velocity records at the 5 to 7 stations closest to the sequence centroid, 

spanning a hypocentral distance range between 10 km and 30 km. This choice was guided by the 

need for having a good azimuthal coverage with respect to the sequence.  

The seismic sequences were selected using the information of the INFO catalog, available at the 

webpage http://isnet.unina.it/. The catalog has two layers: the first one consists of a catalog 



 

 

automatically generated by the software Earthworm (Johnson et al. 1995), which runs on 

continuous data-streams. Then, a second revised catalog is released after waveform inspection by 

network operators with the twofold aim of improving the phase picking and including detections 

missed by the automatic procedure. The final catalog consists of located events with a local 

magnitude estimated using a scaling law calibrated for the area (Bobbio et al. 2009) and a moment 

magnitude inferred by spectral fitting (Zollo et al. 2014). According to the INFO catalog, the 

selected seismic sequences last between 3 and 6 days. Each sequence consists of a number of 

earthquakes between 10 and 50 (Table 1). We processed each sequence considering the continuous 

data stream from one day before to one day after the duration indicated in the catalog.  

 

Table (1) List of analyzed sequences. The table contains the ID number of the sequence, the name, the date, 

the geographical information (latitude, longitude and depth) of the main event, its local magnitude and the 

number of events included in the INFO manual catalog. 

ID PLACE DATE LAT 

(deg) 

LON 

(deg) 

DEPTH 

(km) 

Ml # INFO 

EVENTS 

1 Rocca San Felice (AV) 2020-07-03 40,938 15,150 9,6 3,0 74 

2 Lioni (AV) 2011-08-02 40,850 15,181 11,4 2,7 48 

3 San Gregorio Magno (SA) 2012-02-17 40,709 15,367 5,6 2,8 9 

4 Lioni (AV) 2012-03-03 40,832 15,164 11,3 3,7 25 

5 Laceno (AV) 2013-07-22 40,772 15,130 13,3 1,8 30 

6 Ricigliano (SA) 2015-12-12 40,679 15,484 19,5 3,0 12 

7 Sant’Angelo le Fratte (PZ) 2016-05-15 40,535 15,171 16,0 2,7 19 

8 Lioni (AV) 2017-07-16 40,843 15,175 11,2 2,8 17 

9 Capo di Giano (PZ) 2019-04-16 40,756 15,491 7,2 2,9 8 

10 Bella (PZ) 2019-09-08 40,775 15,499 6,3 3,1 23 

 

 



 

 

3 Methods 

We applied three different detection techniques to the selected continuous data: the deep-learning 

based detector EQTransformer (Mousavi et al. 2020), the template matching technique 

EQCorrscan (Chamberlain et al. 2018) and the autocorrelation technique FAST (Yoon et al. 2015). 

We then compared the detections provided by each method against the automatic and manually 

revised INFO catalogs to evaluate their performance. Although all these techniques showed 

improved performance with respect to standard detection approaches, it is well-known that, 

depending on the tuning of working parameters, they can suffer from the occurrence of false 

detections, whose number becomes larger and larger as the acceptance threshold for event 

declaration is lowered. Therefore, after applying the techniques, further analysis and detailed 

inspection are usually required to isolate real events. In this study, we explore the possibility of 

using adaptive thresholds, which refine the initial selections and automatically extract a final 

catalog, significantly reducing the rate of false positives.  

 

3.1. EQTransformer  

EQTransformer is an AI-based earthquake signal detector and phase (P and S) picker built on a 

deep neural network with an attention mechanism. It has a hierarchical architecture in which 

detection is performed on continuous time series and seismic phases identified along with the 

extracted declarations. 

The detector is trained on the Stanford EArthquake Dataset (STEAD) (Mousavi et al. 2019), 

composed of worldwide labeled earthquakes and noise signals. In the training phase ∼ 1 M 

earthquake and ∼ 300 k noise waveforms recorded at stations within epicentral distance up to 300 



 

 

km are used, representing ∼ 450 k events. The traces used in the training extend for 1 minute with 

a sampling rate of 100 Hz and are band-pass filtered in the range 1-45 Hz.  During the training 

phase, the data was augmented by adding secondary earthquake signals and a random level of 

Gaussian noise into the earthquake waveform, and shifting the event within the trace to vary its 

position. The first operation allows the model to be sensitive, at station level, to multiple events 

occurring very close in time, as happens during a seismic sequence. We selected the trained model 

EqT_model_h5, optimized to minimize false positives.  

EQTransformer output depends on five input parameters: the probability thresholds for detection 

(det_thresh), P (P_thresh) and S (S_thresh) picks, the overlap between consecutive time windows 

and the batch size. After a parametric study, we set the input values to det_thresh=0.3, 

P_thresh=S_thresh=0.1, overlap=30%, batch size =100 (see Supplementary material). For the 

association, we declared an event if it is detected at least at 2 stations within a time window of 10s. 

Since the association phase performs a simple count of detections declared inside a moving time 

window without checking any time and spatial coherence among the stations, EQTransformer may 

declare false positives if there are multiple triggers from the same station inside the considered 

time window. The choice of the trained model mitigates this issue; the declaration of non-seismic 

signals is further reduced by excluding from the association detections with an estimated duration 

below 1 s. 

Since these detections will be used as templates for template matching analysis, we evaluated the 

quality of the EQTransformer picks by comparing them to the manual picks. Therefore, we 

selected 75 phases from 13 events in the local magnitude range 1.0 – 3.0 that were also included 

in the INFO catalog. We found that EQTransformer automatic picks tend to anticipate manual 

picks. The distributions of the differences in the picks feature a mean and standard deviation of -



 

 

0.1 s and 0.2 s for P waves (Figure S1, left panel), and -0.2 s and 0.5 s for S waves (Figure S1, 

right panel) respectively. 

 

3.2. EQCorrscan  

We used EQCorrscan software (Chamberlain et al. 2018) for template matching analysis. We 

considered as templates the events declared by EQTransformer at stations with at least one pick 

(P or S). The threshold for event declaration is computed by considering for each master event the 

MAD of cross-correlation coefficients between the single-station template and one hour window 

of continuous data. The threshold is then defined as the sum of the MAD over all the picked 

stations for the master events. We selected portions of templates lasting 1.5 s and starting 0.15 s 

before the picks; traces were band-pass filtered in the range 2-9 Hz and decimated to 25 Hz.  

For template matching approaches, the number of detections critically depends on the selected 

threshold. For a lower threshold, we can retrieve more earthquakes, but with the risk of a dramatic 

increase in the number of false detections. On the other hand, higher thresholds would reduce the 

number of false positives, but at the expense of increasing missed real events. Thus, the threshold 

should be set to balance the number of false and real detections. We initially set the detection 

threshold to 8 times the sum of template cross-correlation MAD and investigated the resulting 

catalogs for some sequences. In Figure 2, we report, as an example, the results for the Laceno 

sequence (ID5), which was characterized by a main event of magnitude Ml 1.8. In this case, the 

template matching analysis provides 233 detections. We inspected all the detections to isolate real 

events from false positives, checking the shape, the frequency content and the duration of the 

signals in different frequency bands. In the left panel of Figure 2, we report the distribution of the 

ratio between the sum of the cross-correlation associated with the single declaration and the 



 

 

detection threshold (CCsum/thresh), distinguishing false events (red points) and real earthquakes 

(green points). The distributions of real and false detections appear separated with an overlap in 

the range (1.1-1.4).  

To further investigate the distribution of the previous parameter, in the right panel of Figure 2, we 

represent the cumulative number of real and false events (green and red curves, respectively) and 

the cumulative number of all detections in the catalog (blue curve) as a function of the 

CCsum/thresh parameter. For low values of this parameter, the cumulative number of detections 

is dominated by false events. 

   

 

Figure (2) Left panel: Distribution of the ratio CCsum/threshold for the events in the initial catalog 

provided by EQCorrscan (green points correspond to real events, red points to false positives) for the ID5 

sequence. Right panel: cumulative number of events as a function of the ratio CCsum/threshold for the 

subset of the real events (green line), false positives (red line) and for the whole initial catalog (blue line)  

 

As the parameter increases, we retrieve fewer and fewer false events having such a high score, 

resulting in a flattening of the red curve. Thus, for large values of CCsum/thresh the increase of 



 

 

the blue curve is driven by the distribution of the real events. Since the real and false event 

distributions feature different behaviors, the cumulative distribution of all the detections exhibits 

a change in the slope, which can be identified by fitting its initial and final trends and used as a 

refined criterion that allows us to significantly reduce the number of false detections in the catalog. 

In the right panel of Figure 2, the slope break corresponds to the value CCsum/thresh = 1.15, which 

results in a new threshold equal to 9.2 MAD, higher than the initial value.   

We stress that this criterion is directly applied to the cumulative number of detections in the catalog 

output by the template matching technique and can be automated, without preliminarily identifying 

the two families. We observed the same behavior for all the sequences and thus we applied the 

same strategy to refine the threshold in all cases.  

We remark that the separation between the distributions of false and real events can be identified 

when the number of samples for the two populations is comparable. If the population of one 

distribution is significantly larger than the other, the global cumulative distribution almost 

reproduces the shape of the larger size distribution, and the criterion cannot be applied. Thus, the 

selection of the initial detection threshold is also important for the refinement. In Figure S2, we 

superimpose the cumulative distributions computed for thresholds of 6 and 8 MAD. When 

lowering the threshold value to 6 MAD, the detection list is composed of ∼ 13k declarations and 

the shape of the cumulative distribution only represents the behavior of false events (red curve in 

Figure S2). 

 

 

 



 

 

3.3. FAST 

The FAST technique (i.e., Fingerprint And Similarity Thresholding, Yoon et al. 2015) is an 

uninformed similarity search technique that converts time-domain waveforms into binary 

fingerprints, containing discriminative features of earthquakes. It performs an optimized search to 

identify couples of similar fingerprints associated with seismic events. FAST compresses the 

single-component time-frequency spectrogram into fingerprints using the Haar wavelet transform, 

maintaining only the fraction of the Haar coefficients that most differ from the average noise-

descriptive behavior.  

The similarity among fingerprints is evaluated using a Min-Hash algorithm (Broder et al. 2000) 

and the Jaccard theorem (Leskovec et al. 2014). This latter ensures that the probability of having 

the same outcome from a Min-Hash function applied to two different fingerprints is equal to the 

Jaccard similarity, which provides a set-based estimate of the similarity between binary objects. 

Therefore, the use of a set of Min-Hash functions allows for an a priori selection of similar 

fingerprints without comparing all the couples, significantly reducing the computational time.  

Information about similarity is integrated across components for fingerprints within the same time 

window; the station declaration list is thus built considering fingerprints overcoming a fixed station 

similarity threshold. After identification of couples of fingerprints at station level, a network 

association criterion requires time delays compatible with travel times at a minimum number of 

stations, to provide the final list of detections. Following Bergen and Beroza (2018), the detections 

are ranked depending on the number of stations declaring the event and their similarity score, 

referred to as the peaksum, which measures the maximum similarity between a single detection 

and all the others. 



 

 

We bandpass filtered traces in the range 1-10 Hz and downsampled to 25 Hz. A similar frequency 

band was considered in other applications (4-10 Hz, Yoon et al. 2015; 1-6 Hz, Yoon et al. 2019). 

For fingerprint generation, we selected 6.0 s long time windows with a lag of 0.2 s between 

consecutive windows. We kept 200 out of the 1024 coefficients of the Haar transform based on 

the daily MAD of the coefficients. The Min-Hash algorithm application is grounded on two 

independent parameters: the number of tables b and the number of hash functions per table r (Yoon 

et al. 2015). We set b=100 and r=4 (Festa et al. 2021, Scala et al. 2022). In the association phase 

we required similarity occurring at least at 2 stations with a maximum lag between detection times 

of 3 s, given the inter-station distance. 

As with all the autocorrelation techniques, FAST suffers from a large number of false detections 

(Yoon et al. 2017). A class of false positives is represented by coherent noise occurring over time 

due to local ambient sources. To mitigate this effect, we discarded those fingerprints that are 

similar for more than the 3% of the day length (∼ 15 minutes). Starting from the threshold 

refinement established for the template matching technique, we investigated the possibility to set 

up a similar criterion, based on the cumulative distribution of the peaksum parameter for all the 

detections, at a fixed number of stations. In Figure S3, we present the cumulative distribution of 

the peaksum for events declared at 2 stations, where a change in slope occurs around the 90th 

percentile. Below this corner, the reported peaksum values are very close to each other and, when 

inspecting the waveforms, the vast majority of which corresponds to false positives. On the other 

hand, above this corner, the values follow a different distribution, and they appear to be indicative 

of real events. We found a similar behavior for other sequences and when changing the number of 

stations. Thus, the slope break criterion is adaptively applied for each sequence to refine the 

threshold for event selection. We applied this strategy only when the number of detections is large 



 

 

enough to allow a statistical analysis in terms of peaksum distribution. To validate this criterion, 

we also performed a visual inspection of the declarations discriminating real and false events 

according to the shape, the frequency content of the signal and the propagation throughout the 

considered stations.  

Finally, events below the threshold were considered in a later stage, if their fingerprints are found 

similar to those of events above the threshold. When building the final detection lists, we removed 

regional and teleseismic events.    

 

3.4. Catalog merging, magnitude and b-value estimation 

After having performed the detection analysis of the seismic sequences, we estimated the local 

magnitude Ml of seismic events. We first selected one event in each sequence with waveforms 

clearly emerging from the noise at all the stations. For this event we computed the local magnitude 

from half of the maximum peak-to-peak Wood-Anderson displacement averaged on the horizontal 

components and on the stations, using the local relationship of Bobbio et al. (2009) and the INFO 

catalog location. For all other events (considered as ‘offsprings’), we provided a magnitude 

estimation through the displacement amplitude ratio, assuming colocation: 𝑀𝑙 = 𝑀𝑙𝑟𝑒𝑓 +
𝐴

𝐴𝑟𝑒𝑓
 . 

𝑀𝑙𝑟𝑒𝑓 is the magnitude of the reference event; 𝐴 and 𝐴𝑟𝑒𝑓 are half of the maximum of peak-to-

peak amplitudes for the considered and the reference events, respectively. The error in the 

magnitude estimation due to colocation can be estimated to be 0.1 units of magnitude (Festa et al. 

2021). 

To investigate the frequency–magnitude distribution from the resulting catalogs, we evaluated the 

parameters of the Gutenberg-Richter relation (𝑙𝑜𝑔𝑁 = 𝑎 − 𝑏𝑀, N number of events with local 



 

 

magnitude > M) and the magnitude of completeness for each sequence, using the software ZMAP 

(Wiemer, 2001) and considering the local magnitude to characterize the event size.  

For the Rocca San Felice seismic sequence (ID1), which is characterized by the highest number of 

detections, we also investigated the temporal evolution of the b-value. For this purpose, we 

considered a sliding window of 80 events with 50% of overlap. We estimated the average b-value 

and the uncertainty by means of a bootstrap approach (Efron, 1979), using for each dataset, 200 

realizations of random samples with replacement. 

 

4 Results 

To assess the overall performance of the adopted detection techniques, we analyzed the results 

obtained applying the autocorrelation FAST, the machine learning EQTransformer (hereinafter, 

EQT) and the template matching EQCorrscan (hereinafter, TM) detectors for ten seismic 

sequences in the Irpinia region. In Figure 3, we show the detection catalogs for the three 

techniques, integrated over the ten sequences and organized in a Venn diagram. When analyzing 

the performances of the different approaches, it is worth highlighting that for the considered 

sequences, the manually revised INFO catalog contains 265 events only, 82 of which were 

automatically declared by the STA/LTA-based detector operating on the network. 

The catalog obtained by merging all the independent detections (i.e., hereinafter the merged 

catalog) contains 1792 events, increasing by a factor 6.7 the revised catalog, and by a factor 21 the 

automatic one. These results clearly highlight the superior performance of the advanced techniques 

in discovering smaller magnitude events relative to standard approaches. The contribution of the 

techniques to the merged catalog in terms of number of detections changes among sequences. We 



 

 

report one sequence (ID1) with a high seismicity rate (∼500 events in 1 day), while for the other 

sequences the rate is lower, presenting between 50 and 200 events in 4 days. 

Looking at the overall performances of the single techniques, we report that FAST declares 941 

events (∼ 3.5x the manual catalog, ∼ 11x the automatic catalog), EQT detects 450 events, 

increasing by factors 1.5 and 5.0 the revised and automatic catalogs. Finally, TM declares 1715 

events, with a catalog content similar to the merged one.  

As can be seen from Figure 3, most of the events (95%) declared by FAST are also retrieved by 

the TM, using earthquakes declared by EQT as templates. This is the reason why the EQT 

detections are always included in the TM detection list.  

FAST is able to declare 73 events that are missed by the other two techniques, which represents 

5% of the merged catalog. After checking these events, we observe that they can be grouped in 

two classes: either they feature a low, close to one, signal-to-noise ratio, or their waveforms are 

different from those of the events occurring nearby the sequence centroid. For the former class of 

events, they exhibit a smaller cross-correlation value with the used templates and can be still 

retrieved by the TM technique, by lowering the acceptance threshold, at the cost of a significant 

increase of the number of false events. As an example, for the San Gregorio Magno sequence 

(ID3), the TM technique is able to catch all the events in this class when decreasing the declaration 

threshold to 6 MAD. These events appear within a set of more than 3.5k detections (8 MAD catalog 

is composed of 82 declarations), mostly corresponding to false positives.  



 

 

 

 

Figure (3) Venn diagram showing the performance of the different detectors: the autocorrelation (FAST, 

red), machine learning (EQT, yellow) and template matching (TM, green) techniques.  The EQT detections 

are included in the TM ones because the EQT output is used to form templates.  

 

The second class of events corresponds to events with observed S-P travel-times compatible with 

shallower epicenters, as compared to the other events in the sequence. These events often occur as 

isolated couples for which their mutual cross-correlation is very high, while they feature a much 

smaller cross-correlation value with the templates.  

TM contains almost all events retrieved by FAST and doubles the size of the FAST catalog. The 

significant outperformance of template matching is mainly driven by sequences where the 

seismicity rate is high and when the events occur clustered in time, especially when the earthquakes 

occur in the coda of previous ones. For the other sequences, the performances of TM and FAST 

are similar. However, we observe that also when we analyze the catalog for single sequences, TM 

is always able to catch more than 85% of the merged catalog.  

We performed some tests changing the parametrization of FAST, either shortening the time 

window for fingerprint generation or decreasing the number of hash functions to be more 



 

 

permissive in the similarity search. The former action helps in retrieving consecutive events, the 

latter in reducing the similarity threshold for declaration (Yoon et al. 2015). In these cases, we 

retrieve the vast majority of events missed by the previous parametrization.  However, if we take 

the San Gregorio Magno sequence (ID3) as an example, the decrease of the number of hash 

functions from 4 to 3 results in a catalog of 3.5k detections, with a huge increase in the run time 

(from ∼0.5 hours to almost 1 day of analysis) and in the memory requirements for the storage of 

similar fingerprint information (from ∼ 100MB to 5 GB).  

The better performance of TM is also related to the large set of available templates that are 

provided by EQT (i.e., for some sequences the number of templates is doubled with respect to the 

revised catalog). Indeed, when we limit the set of templates to those provided by the revised 

manual catalog, the number of the TM detections significantly decreases and it becomes 

comparable to or smaller than the FAST catalog.  

Finally, the number of EQT detections is much smaller than the other two catalogs (it represents 

about 25% of the merged catalog). However, there is a fraction of events detected by EQT that are 

not seen by FAST, still related to consecutive seismic events. Indeed, the main advantage in using 

EQT in this framework is to provide a richer set of templates to TM improving its performance. 

In Figure 4 we report the detection performances of each technique for the 10 analyzed seismic 

sequences, also comparing them with the INFO manual catalogs. The Rocca San Felice sequence 

(ID1, left panel of Figure 4) is separated to improve the visualization of the results of the other 

sequences (ID2-10, right panel of Figure 4). We note that when TM outperforms FAST we also 

have a wider set of templates provided by EQT (orange bars) with respect to the dimension of the 

INFO catalog (violet bars). 



 

 

 

Figure (4) Detection performance of each technique for the analyzed sequences. The Rocca San Felice 

sequence (ID1) is shown in the left panel, all the other sequences in the right panel. The histograms report 

the detections of FAST (blue), EQT (orange), TM (yellow) and INFO (violet). 

 

4.1. Rocca San Felice sequence 

To analyze the differences in the performance of the techniques in detail, we inspected the 

detections of the largest sequence, the Rocca San Felice sequence (ID1), which occurred from July 

3 to 7, 2020. The Rocca San Felice area is a natural laboratory for studying the interaction between 

fluids and seismicity, since it hosts one of the largest sources of natural non-volcanic CO2 gas 

emissions ever measured (Mefite d’Ansanto, Chiodini et al. 2010). The CO2 degassing in central 

and southern Italy is well documented (Chiodini et al. 2004), and its accumulation within the 

Apennines’ crust is considered a possible triggering mechanism for large earthquakes in Italy 

(Savage, 2010). This sequence was previously studied by Festa et al. (2021), in terms of event 

detection, location and source parameters. Here, we reanalyzed the same waveform dataset to test 

and compare the three detectors. 



 

 

When looking at the outcomes of the three techniques, FAST output consists of 1406 detections, 

reduced to 500 after the application of the automatic selection criterion. These events were then 

visually inspected, limiting the final catalog to 383 earthquakes, similar to the results of Festa et 

al. (2021). EQT declares 155 detections, 139 of which are local earthquakes. Using these latter as 

templates for TM, we obtain a list of 1394 declarations, reduced to 969 after threshold refinement, 

and finally to 796 events after visual inspection. Thus, the application of the adaptive thresholds 

for catalog refinement, allows significant reduction in the number of false events (from 73% to 

25% for FAST and from 55% to 18% for TM). The size of the final detection catalogs from the 

three techniques are presented in Figure 4.    

As previously observed, comparing the three catalogs we note that most of the detections retrieved 

by TM and missed by FAST are earthquakes occurring in the coda of the previous events. An 

example of this situation is shown in Figure S4, where 4 different events, correctly and separately 

detected by TM appear as a single, longer detection in FAST. When shortening the time window 

for fingerprint generation from 6 s to 3 s, FAST is able to separate most of grouped detections, at 

the cost of increasing the computational time and the number of false declarations. This 

parametrization quickly becomes prohibitive, when applied to longer data-streams, and cannot be 

used in standard processing. 

The few cases (i.e., only 7 events) where TM is not able to detect events seen by FAST correspond 

to signals buried in the noise. In Figure S5, we show a set of 3 events declared by TM (Ml 0.08, 

0.15, 0.18, red box) and the last event (blue box), featuring Ml -0.24, detected FAST but missed 

by TM. 

The final combined catalog (i.e., considering the independent detections of FAST and TM) is 

composed of 803 events, enhancing the manual and automatic INFO catalogs of factors 11 and 20, 



 

 

respectively.  It is worth stressing that also for this sequence, TM outperforms FAST due to the 

wide magnitude range and the large number of the templates provided by EQT. Indeed, when we 

limit the set of templates to the 74 manually detected events in INFO, we observe that TM yields 

a catalog of about 300 events (∼ 40 % of the previous TM catalog), which is smaller than the 

FAST final event list. 

 

5. Statistical analysis of the catalogs 

In this section, we highlight the importance of the enhanced catalogs to improve the 

characterization of the seismic sequences in terms of well-established statistical parameters. We 

used the seismic catalogs for estimating the magnitude of completeness, Mc, and the b-value of 

the Gutenberg-Richter frequency magnitude distribution. The estimation of the statistical 

parameters using the INFO catalog is not possible for some of the considered sequences due to the 

small number of detected events (i.e., in some cases consisting of 10 earthquakes only). 

If we consider the combined catalog for each sequence (obtained combining TM and FAST 

detections), we obtain a magnitude of completeness ranging between Mc -0.3 and Mc 0.4 (in local 

magnitude units), with an average improvement with respect to the INFO manual catalog of 1.1 

units.  

Considering the overall performance of the single techniques, we find that Mc for TM coincides 

with those obtained for the combined catalogs. Also FAST provides Mc estimates similar to those 

of the combined catalogs, with the exception of sequences ID1 and ID5, where it is larger. On the 

contrary, EQT features a Mc larger by 0.3 units on average, with a large variability (from 0.1 to 

0.7), but still smaller than the one from INFO.  



 

 

Focusing on the b-value, we find that TM and FAST provide compatible values within 

uncertainties. Interestingly, we observe that in general EQT provides b-values systematically lower 

than the other two techniques. We return to this issue in the Discussion.  

In Table S1, we report the estimated values of the magnitude of completeness Mc and the b-values 

in local magnitude (here referred to as 𝑏𝑀𝑙
 ) for the 10 analyzed sequences and the different 

techniques. 

As an example, we show the frequency-magnitude distributions for the different detection 

techniques for the Rocca San Felice sequence (ID1) in Figure 5. 

 

 

Figure (5) Gutenberg-Richter law for FAST (Mc 0.0 and b=0.71 ± 0.05; left panel), EQT (Mc 0.2 and 𝑏 = 

0.54 ± 0.04; central panel) and TM (Mc -0.3 and 𝑏 = 0.71 ± 0.03; right panel) catalogs. 

 

We find that the slope and the magnitude of completeness are Mc 1.2 and 𝑏𝑀𝑙
 = 0.83±0.12 for 

manual INFO catalog (not shown in Figure), Mc 0.0 and 𝑏𝑀𝑙
 = 0.71±0.05 for FAST, Mc 0.2 and 

𝑏𝑀𝑙
 = 0.54±0.04 for EQT, Mc -0.3 and 𝑏𝑀𝑙

 = 0.71±0.03 for TM.  

The considered seismic sequences occurred in different sectors of the Irpinia area. Picozzi et al. 

(2022b) showed that the b-value distribution in this area is not uniform and hypothesized that b-



 

 

values differences are related to different stress levels (i.e., the lower the b-value, the higher the 

stress, Scholz, 2015) associated with the different seismogenic zones in this region.  

We therefore compare the b-values obtained for the seismic sequences with those obtained by 

Picozzi et al. (2022b). To this aim, we need to consider the moment magnitude of the detected 

events. We converted local magnitude estimates into seismic moment using the empirical 

relationship log 𝑀0 = 1.31𝑀𝑙 + 10.55 (standard deviation 0.12, Figure S6) which has been 

derived considering the ISNet catalog earthquakes (i.e., Ml and Mw values from Picozzi et al. 

2022a). The 𝑀0 can in turn be used to retrieve the moment magnitude Mw (Hanks & Kanamori 

1979). This magnitude scaling relation allows b-value estimates in terms of moment magnitude 

(𝑏𝑀𝑤
 ) from the b-value based on the local magnitude (𝑏𝑀𝑙

), yielding  𝑏𝑀𝑤
= 1.5 𝑏𝑀𝑙

 /1.31. 

Figure 6 shows that the b-values for the whole area are on average rather small (i.e., mostly below 

1). The smallest b-values from Picozzi et al. (2022b) are observed for the Southern sector of the 

Irpinia region (∼0.7). The central and northern sectors are associated with slightly larger b-values 

(i.e., between 0.8 and 0.9). 

We computed the difference between the b-values from Picozzi et al. (2022b) and those obtained 

for the sequences using the combined catalog (Δb-value). It is worth clarifying that the former 

values are obtained by associating to a given point a number of events that occurred within a given 

distance range. Therefore, the b-values from Picozzi et al. (2022b) provide a spatial average of the 

stress level in a rather large crustal volume with respect to the b-values obtained for the sequences, 

which typically have limited spatial extent. Despite this methodological issue, we observe that the 

Δb-values are small, within a ± 0.25 range, and larger than zero for most cases, indicating an 

overall decrease of the b-value during the sequences. 



 

 

 

Figure (6) Map showing the spatial distribution of average b-values from bootstrap analysis (redrawn from 

Picozzi et al. 2022b). In the figure we show the nucleation point for the 1980 Irpinia earthquake (white 

star) and Δb-value (see text for the definition, colored circles) for the sequences analyzed here.  

Finally, we analyzed the time evolution of the event occurrence and the seismic moment during 

the sequences. Considering the occurrence time of the main event in each sequence as a time 

reference, we observe that the enhanced catalogs allow discovery of foreshocks. In Figure 7, we 

report the cumulative number of events and the cumulative released seismic moment, as a function 

of occurrence time from the mainshock. 

The foreshocks represent a fraction of the single-sequence catalog ranging between the 5% and 

20% of the detected events, with a cumulative seismic moment between 2 ∙ 1011 and 6 ∙ 1013 Nm.  

In particular, the larger value in seismic moment is associated with a main event of Ml 2.7 (ID2), 

anticipated by two earthquakes of Ml 2.0 and a Ml 2.4 within 10 minutes before the mainshock.  

The green curve of Figure 7 represents a particular sequence (ID5), with a main event of magnitude 

Ml 1.8 that was anticipated by several foreshocks of maximum magnitude Ml 1.2. For this 

sequence, we find that the catalog is composed, of more than 80%, of foreshocks. A similar 

percentage is observed for a Ml 2.8 main event sequence anticipated by several Ml >1.5 events 



 

 

that features around 50 % foreshocks.  

In the time evolution of the sequences, we can distinguish two behaviors. Most of the sequences 

generate the majority of earthquakes (around 70 % of the catalog) within 6 hours after the 

mainshock and are characterized by a similar time evolution of the aftershocks (Figure 7, left 

panel). Three sequences feature a swarm-like behavior with magnitudes of the aftershocks 

approaching the size of the largest event. 

 Figure 8 shows the b-value temporal evolution for the Rocca San Felice sequence. We see that 

the 𝑏𝑀𝑤
 has an average value close to 1. However, during the sequence evolution, the b-value 

shows significant changes, with variations larger than the associated uncertainties. The 

interpretation of these changes is beyond the scope of this work. We report these results to 

highlight the importance of having enhanced catalogs for monitoring the evolution of seismic 

sequences. Future studies will investigate the possible mechanism related to the b-value evolution 

during seismic sequences in Irpinia. 

 

Figure (7) Foreshock/aftershock analysis: left panel shows the cumulative percentage of the events in the 

catalog as a function of the time from the main event. The right panel contains the cumulative seismic 

moment in a shorter time window before the main event. 



 

 

 

Figure (8): temporal evolution of b-value (red circles) computed for the Rocca San Felice sequence (ID1) 

with 95% probability uncertainty (red band) and event distribution as a function of time and moment 

magnitude (black stars).   

 

6. Discussion 

The use of new, advanced techniques for enhancing seismic catalogs is crucial: both to monitoring 

how seismicity evolves with time within a complex geological system, and to understanding how 

faults slip to generate moderate to large earthquakes, possibly anticipated by the occurrence of 

small seismic events. This latter scientific issue becomes more challenging in areas where 

seismicity occurs deep in the crust, as happens for seismic events in Southern Apennines, with 

earthquakes located at depths between 8 and 15 km. Moreover, in this area, the background seismic 

rate is pretty low (the INFO revised catalog contains about 3000 events in 14 years), despite the 

high seismic hazard of the region (Meletti et al. 2021). When applying automatic detection 

techniques during seismic sequences, we report that the combination of the machine learning 

detector EQTrasformer (EQT) and the template matching EQCorrScan (TM) outperforms the 

autocorrelation technique FAST.  



 

 

The integration of the two techniques (i.e., EQT and TM) is beneficial because EQT allows 

building a rich catalog of templates for TM. Using only as templates the events automatically 

detected by the INFO system or revised by network operators, the final catalog of TM significantly 

decreases, at the same level or below the performances of FAST. This latter technique shows 

similar performances with respect to the combination of the other two methods when the seismicity 

rate in the sequence is low and events are well separated in time. However, the computational cost 

and the memory requirements of FAST make this detector challenging to apply to seismic 

sequences. Furthermore, the computational resources significantly increase as we extend the time 

window of the analysis beyond the few days here analyzed.  

Both TM and FAST detectors suffer from a high rate of false events with standard thresholds. We 

suggest the use of a refinement procedure based on the cumulative distribution of parameters that 

measure the waveform similarity (the sum of cross-correlation for TM and the peaksum for FAST). 

Several additional strategies have been proposed to rule out false positives from the detection lists 

(e.g., Yoon et al. 2017; Scala et al. 2022). However, these are based on specific features of false 

events (frequency content, energy distribution in time and/or frequency) and require further, often 

visual inspection of the events. The strategy proposed here, instead, can be automatically applied 

on the shape of the cumulative distribution, without knowing specific characteristics related to 

false positives.  

The performance of EQT alone has been shown to be lower than the other two techniques. This 

can be ascribed to the selected trained model which minimizes false events. Consequently, most 

of the EQT declarations are real events within the sequences and the majority of the discarded 

detections still corresponds to local or regional earthquakes occurring at different locations. When 

adopting the trained model EqT_model2.h5, which minimizes the rate of false negatives, in the 



 

 

case of the Rocca San Felice sequence (ID1) we retrieved a list of ∼3k detections, ∼550 of which 

are effective events, almost all contained in the previous EQT+TM catalog. Since the binding 

criterion of EQT is weak in the selection of events we thus prefer to maintain a more conservative 

approach for EQT and to enhance the catalog integrating it with the TM technique. The use of a 

more robust associator (Ross et al. 2019; Zhang et al. 2019), and/or a model trained on local data 

(e.g., INSTANCE, Michelini et al. 2021) could improve the detection performance of EQT, at 

least to the level of FAST. 

While standard or even revised catalogs are in general too sparse to provide reliable statistics for 

seismic sequences in the Southern Apennines, the rapid, automatic generation of enhanced 

catalogs allows monitoring of seismicity evolution in near real time, in terms of frequency-

magnitude event occurrence (Gutenberg-Richter law) and event occurrence with time. For several 

sequences, no reliable estimate of the b-value can be provided using only events included in the 

INFO catalog. Here we report that all the detectors but EQT only for a few cases provided 

enhanced catalogs over which it is possible to estimate the parameters of the Gutenberg-Richter 

law. Analyzing the b-values for the sequences, we report that TM and FAST provide consistent 

estimates, while the b-value from EQT is systematically lower. This is attributable to the larger 

magnitude of completeness of this technique and to the lack of some events (~10%) above its 

completeness level. In other words, it seems that EQT progressively loses detections near Mc, 

which leads to a biased population of magnitude bins and lower b-value estimates. This suggests 

the need to cover almost two-three units in magnitude to estimate the relative rate of occurrence 

reliably for seismic events in sequences for the area. 

We found that for most of the sequences the b-value is smaller (within a range of 0.25 units) than 

the average value computed from background seismicity. This systematically happens both in the 



 

 

northern and central sectors of the fault systems. Differences in b-value between these two Irpinia 

sectors have been ascribed to the presence of fluid saturated volumes, eventually filled with 

different fluid content, CO2 and water respectively (Picozzi et al. 2022).  

Worldwide observations indicate that the b-value is directly connected to differential stress 

(Schorlemmer et al. 2005; Scholz, 2015) and it increases as the differential stress decreases. The 

systematic decrease of the b-value for the sequences indicates that they usually occur in regions 

where the stress is higher than in the surrounding areas, and they likely rupture compact, sub-

kilometric size asperities (Festa et al. 2021). When analyzing in detail two sequences in the area, 

Stabile et al. (2012) and Festa et al. (2021) retrieved large stress drops and focal mechanisms 

compatible with main orientation of the large faults that generated the 1980 Irpinia earthquake. 

These sequences either occurred on subparallel, smaller scale faults, or they ruptured some patches 

on the main faults that were unruptured during previous events, or they map small scale, 

geometrical discontinuities, which impede rupture growth into a large earthquake. In all cases, the 

sequences did not evolve into a large event, indicating that both static and dynamic stresses were 

not able to sustain a rupture over larger spatial scales.  

We only report one sequence featuring a b-value larger than the average. This sequence (ID8) 

occurred in the northern sector and is characterized by a main event of Ml 2.8 and the second 

largest one in magnitude of Ml 1.4. We retrieved more than 80 foreshocks (~50% of the catalog) 

within 1 hour before the main event and an acceleration of the seismicity preceding the mainshock. 

This specific behavior could be ascribed to different stress mechanisms generating and controlling 

the sequence, as compared to the nearby ones.  

In most cases, the retrieved b-value is representative of the behavior of the seismicity after the 

main event in the sequence. However, when the rate of the seismicity is high, we can also monitor 



 

 

the evolution of the b-value as a function of time, as in the case of the Rocca San Felice sequence 

(Figure 7). Here we found a rapid increase of the b-value around the main event of the sequence, 

followed by an almost constant level. Monitoring the b-value with time has been claimed to be a 

discriminator of foreshocks and aftershocks. In some cases, both for real earthquakes (Gulia et al. 

2016; Gulia & Wiemer 2019) and laboratory experiments (Amitrano, 2003), it has been observed 

to increase for aftershocks and decrease for foreshocks. Hence, these enhanced catalogs allow to 

study the variation of b-value in time and to confirm the possibility to be used as a risk mitigation 

tool as suggested by Gulia and Wiemer (2019).   

For each of the analyzed sequences we found small magnitude earthquakes anticipating the main 

event. For two cases, we just report very few foreshocks; in other cases, their number (>10) is an 

indication of a preparation process of the main event in the area. Most of the foreshocks that appear 

in these catalogs have a local magnitude M ~ 0 and below. If we extend the stress drop self-

similarity to such events, they ruptured a decametric area, enlightening a new space scale for 

seismic ruptures, never investigated before in this area. The extension and validity of statistical 

analysis and parameters at these scales might provide additional clues on earthquake self-similarity 

and upscaling at larger size events, also for monitoring purposes. Nevertheless, deeper analysis of 

the sources of such events is limited by current instrumental deployment, sampling at 125Hz, and 

by the low signal to noise ratio at high frequency, preventing a robust determination of the event 

size. Installation of instruments at depth or organized in arrays may help in improving our 

understanding of such small-scale ruptures and in filling the gap between laboratory-controlled 

experiments and moderate-to-large size events.    

Further insight on the sequence generation and evolution can come from accurate location of 

events, to discern structures and faults, and to discriminate whether the sequence is driven by fluid 



 

 

diffusion or associated with sequential stress release. Automatic picks provided by EQT exhibit 

too large uncertainties and biases (Figure S1), to be usable for locations with decametric precision. 

Large uncertainties arise from the complexity of the structure across which waves propagate, often 

showing converted phases preceding the S-wave or emergent P signals (De Landro et al. 2015). 

Future direction for picking improvement could be grounded on transfer learning to refine picking 

criteria based on local data and analyst measurements (e.g., Chai et al. 2020), on arrival time 

consistency across multiple stations or including more observables, such as wave polarization 

(Zollo et al. 2021). Template matching provides accurate relative arrival times that can be further 

improved by narrowing the time window around the main phases (Schaff and Waldhauser, 2005). 

FAST, instead, does not provide any arrival time information, since the time windows for 

similarity search are too large for accurate waveform alignment. Automatic picking with FAST 

would require additional post-processing on the detected events. 

 

7 Conclusions  

In this study, we compared the performance of three detectors: the autocorrelation method FAST, 

the machine learning technique EQTransformer (EQT) and the template matching technique 

EQCorrscan (TM).  We selected seismic sequences occurring in the Irpinia region, Southern Italy 

as case study. In this region, the seismicity occurs at depths between 8 and 15 km, and the 

complexity in the geological structure results in waveforms enriched by several secondary phases, 

often featuring low SNR values and emergent P and S arrivals. 

We report that all the techniques provide enhanced catalogs with respect to the reference catalogs 

for the area. We found that the integration of EQT and TM, that is the use of TM from a set of 

templates provided by EQT significantly outperforms FAST, almost doubling its number of 



 

 

detections. The better performance is mainly driven by the sequences where the seismicity rate is 

high and when the events occur clustered in time, often in the coda of previous earthquakes. The 

few events (5% of the merged catalog, i.e., the catalog obtained combining all the FAST and TM 

detections) individuated by FAST and missed by TM occur at low signal-to-noise ratio or they 

appear as isolated couples exhibiting shallower location. As expected, the performance of EQT 

alone, with the adopted trained model, is lower than the other two techniques. However, it still 

improves the INFO catalog by a factor 1.5. Finally, the merged catalog improves the INFO catalogs 

of factors ~7 (manual catalog) and ~21 (automatic catalog).  

Both FAST and TM techniques feature a large number of false events. Automatic criteria, based 

on the cumulative distribution of the score of the similarity (the peaksum value for FAST and the 

sum of cross-correlation for TM) significantly reduce the number of false events and can be 

systematically applied without identifying specific discriminative characteristics of false positives 

as compared to real events.   

When inspecting the catalogs for evaluating the statistical parameters, we report that for the single-

sequence catalog obtained by integrating EQT and TM, the magnitude of completeness ranges 

between Ml -0.3 to 0.4, with an average improvement of 1.1 units in magnitude with respect to the 

INFO manual catalog. The magnitude of completeness for FAST is compatible with that of TM in 

most cases, while EQT provides larger Mc estimates. The b-values from TM and FAST are 

compatible between each other within uncertainties while the b-values obtained with EQT catalogs 

are systematically smaller, both due to the larger magnitude of completeness and the lack of events 

(~10%) above the completeness. This result cautions about the possibility of introducing some 

biases in the Gutenberg-Richter determination, when covering a small range in magnitude above 

the completeness threshold.  



 

 

We also recognize that for all the seismic sequences, main events are anticipated by foreshocks (in 

most cases more than 10 events), indicating a possible preparation process for mainshocks at sub-

kilometric scales. The presence of foreshocks, illuminated by advanced catalogs is crucial to better 

understanding crustal processes, as shown in recent studies of large Apennine earthquakes, where 

it helped in interpreting and understanding the nucleation processes leading to large magnitude 

events (Chiarabba et al. 2020; Sugan et al. 2022). 

 

Data availability statement 

Data and products related to the Irpinia Near-Fault Observatory (INFO) are available at the Irpinia 

seismic network infrastructure portal (ISNet: http://isnet.unina.it); continuous waveforms are 

available at the EIDA platform (http://www.orfeus-eu.org/data/eida/, virtual network 

_NFOIRPINA, network code IX) and at the EPOS portal (https://www.epos-eu.org/dataportal). 

Software FAST is published on GitHub https://github.com/stanford-futuredata/FAST (Yoon et al. 

2015). Software EQCorrScan is available at https://eqcorrscan.readthedocs.io/en/latest/ 

(Chamberlain et al. 2018). Software EQTransformer is published on GitHub 

https://github.com/smousavi05/EQTransformer (Mousavi et al. 2020). 
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