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Abstract. Cancer diagnosis using gene expression data is significant research for 

facilitating early treatment and prevention of cancer. The classification of gene 

expression data is challenging due to its high dimensionality and smaller number 

of samples that renders classification a difficult task. Creation of well-defined 

class boundaries is the aim of every classification algorithm. The Fuzzy min-max 

(FMM) neural network classifier is known to create good decision boundaries 

using hyperboxes constructed for each class. In this paper, we explore the Gen-

eral Fuzzy min-max (GFMM) and Enhanced Fuzzy min-max (EFMM) neural 

network architectures for the classification of lung cancer subtypes from micro-

array gene expression data. Both GFMM and EFMM are advanced versions of 

Simpson’s FMM neural network classifier. The GFMM is extremely efficient 

because it involves very simple operations for hyperbox manipulation, and can 

handle both labeled and unlabeled data. On the other hand, EFMM proposes three 

heuristic rules related to hyperbox expansion, contraction and the overlap test, 

which enhances the learning algorithm. We perform the classification of gene 

expression data using these two algorithms, then we analyze the performance by 

visualizing the hyperboxes obtained after training, and compare the accuracies of 

these classifiers. LASSO is used for selecting the important genes from the high-

dimensional gene expression data. After the analysis of the results, we observe 

that EFMM with LASSO gives the best performance as compared to GFMM, 

FMM and other machine learning algorithms.    

Keywords: Gene expression data, fuzzy min-max neural network, LASSO.  

1 Introduction 

Cancer diagnosis using gene expression signatures is trending research due to its use-

fulness in early treatment and detection of cancer which is a major cause of death world-

wide. Mining of gene expression data has also attracted data mining researchers due to 

the numerous challenges involved that makes it distinct from patterns found in normal 

data. Microarray gene expression data is very challenging to work with due to its high 

dimensionality and limited number of samples. The problem is complicated by the pres-

ence of noise, and an imbalanced class distribution in which one type or subtype of 

cancer has a larger population than other classes. In literature, a large variety of machine 
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learning algorithms such as neural networks, support vector machines, logistic regres-

sion, gradient boosting machines, naïve bayes, and random forest of decision trees have 

been applied for the classification of gene expression data. Slonim et al. [8] distin-

guished between class discovery and class prediction for gene expression data in a 

Bayesian inferencing framework; they used leukemia dataset, and they found that the 

genes without correlation give better results, and the median prediction was 0.86. Khan 

et al. [9] used Artificial Neural Networks (ANNs) for the categorization of cancer using 

gene expression profiles; the main advantage found was that it could work with non-

linear features and has high sensitivity. Lyu et al. [10] performed tumor classification 

using a Convolution Neural Network (CNN) for learning from the gene expression data, 

and they achieved 95.59% of accuracy which was better as compared to other related 

works. For the classification of gene expression profiles, Ahmed et al. [11] used the 

Deep Neural Network (DNN), improved DNN, CNN, and RNN along with prepro-

cessing techniques; improved DNN gave the best result of all.  

A host of classifiers such as the support vector machine [12], random forest of decision 

trees [13], logistic regression [14] and naïve Bayes classifier [15] have been success-

fully used for the classification of gene expression data. All these classifiers work on 

crisp data without transiting to the fuzzy domain. Feature selection techniques like 

LASSO has proved to improve the performance of these classifiers on gene expression 

data [16]. The combination of fuzzy sets and classification is well covered in literature 

[17-19]. The motivation behind using fuzzy classifiers is the creation of fuzzy decision 

boundaries in the input space, which allows for flexible decision making. The FMM, 

GFMM, EFMM neural networks are examples of successful application of the fuzzy 

set theory to pattern recognition and classification problems. A brief introduction of the 

same is introduced here. As we know, regarding crisp sets, the element or a data point 

that is in the universe of discourse either belongs to the positive set (i.e. 1) or not (i.e. 

0). But the fuzzy sets are more generalized and regard all samples as members of a set; 

they take care of the data points which partially belong to a set by calculating their 

membership values with respect to the particular set. The membership value is contin-

uous between [ 0, 1], and it is different for each data point. By using this concept, 

Simpson et al. [1] introduced the Fuzzy min-max (FMM) neural network in 1992 which 

has been applied successfully for classification and clustering problems. In FMM, the 

fuzzy set is represented by a rectangle which is also known as hyperbox. All hyperboxes 

have min and max points, and the data point which lies inside the hyperbox has a mem-

bership value equal to 1. The fuzzy min-max classifier connects the hyperboxes to their 

respective class nodes (i.e. gives the highest membership value) which can be used for 

the classification. The learning algorithm is divided into three phases, first, it checks 

for the hyperbox expansion then after the successful expansion it goes for the second 

phase which performs the overlap test. If there is overlap, then the final phase of the 

learning algorithm is contraction phase which removes the unwanted overlap of hyper-

boxes. Many researchers modify this learning algorithm to make it more efficient and 

fast [2]. The two popular improved versions of the FMM classifier which we are going 

to apply in this paper are the General Fuzzy Min-Max (GFMM) [3] and Enhanced 

Fuzzy Min-Max (EFMM) [4] neural networks. The GFMM improves the effectiveness 

of the original fuzzy min-max algorithm by suggesting a few modifications to the gen-

eral FMM architecture and functioning, some of which are given below. 
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1. In the pattern space, the input patterns can be fuzzy hyperbox or crisp points. 

2. The membership function and the hyperbox expansion constraints are modi-

fied. 

3. This algorithm can be used for both clustering and classification because it can 

process labeled and unlabeled input points at the same time. 

4. In the original algorithm, the number of hyperboxes created depends on the 

maximum hyperbox size hyperparameter 𝜃. The smaller the value 𝜃, the more 

the number of hyperboxes created, and this leads to the overfitting problem. 

Larger 𝜃 creates lesser number of hyperboxes which increases the generaliza-

tion ability, but the ability to capture the boundaries between the classes is 

decreased. So the settlement between these two cases is implemented in gen-

eralized fuzzy min-max. 

 

In the original fuzzy min-max, Simpson proposed two different algorithms for classifi-

cation and clustering problems but the GFMM combines them in one algorithm. The 

training of GFMM is extremely efficient for almost every case because it uses very 

simple compare, add and subtract operations for the hyperbox manipulation. 

 

  The other very popular version of FMM is Enhanced fuzzy min-max (EFMM) [4] 

which is known to give high classification performance. There are three heuristic rules 

introduced in the EFMM which enhances the learning algorithm. First, reducing the 

overlapping regions of hyperbox during the expansion phase reduces the classification 

errors. Second, the already existing overlap testing phase is extended so all the over-

lapping corners can be identified. Third, the existing hyperbox contraction rule in FMM 

is not able to cover all the overlapping cases, so in EFMM they introduced a new rule 

for contraction for solving the different overlapping cases.  

 In this paper, we investigate the application of GFMM and EFMM classifiers for clas-

sification of lung cancer gene expression data. The application of GFMM and EFMM 

to gene expression data has not been explored before. In a recent work [5], authors 

applied the FMM classifier for the classification of lung cancer gene expression data. 

The current work advances on this work by exploring two advanced versions of the 

FMM classifier for the application on microarray data. The aim is to exploit the im-

proved definitions of hyperboxes and expansion-contraction learning process for deter-

mining the decision boundaries between cancer subtypes. 

The problem with the microarray data is they have thousands of genes (or features), and 

processing of all the features takes a larger time as compared to when using fewer fea-

tures. To overcome this issue, we use Least Absolute Shrinkage and Selection Operator 

(LASSO) for the feature selection which a high performing algorithm for skewed fea-

ture selection [6][7]. Then we calculate the performance of both the fuzzy classifiers 

and then compare the results with that of several other machine learning algorithms. 

We perform fivefold cross-validation for all the classification algorithms, and all the 

comparisons are made based on accuracy and execution time of the algorithm.  

The organization of this paper is as follow. Sections 2 and 3 contain a brief discussion 

about GFMM and EFMM, respectively. Section 4 presents the methodology used for 

the experiments, and finally, section 5 analyzes the classification results, and section 6 

outlines the future scope of this work. 
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2 General Fuzzy Min-Max Neural Network 

In this section we discuss about the input patterns of GFMM, learning algorithm 

phases and the neural network at the core of GFMM for the current task of classification 

of microarray gene expression data.  

2.1 Input pattern 

The input pattern that is processed by the GFMM is the ordered pair of the ℎ𝑡ℎ input 

pattern and the class index of one of the classes. The ordered pair is given by 

 

                                                        {𝐼ℎ  , 𝑐ℎ }                                                          (1) 

 

where 𝐼ℎ is the ℎ𝑡ℎ input pattern in the form of 𝐼ℎ
𝑙  (lower) and 𝐼ℎ

𝑢 (upper) i.e. [ 𝐼ℎ
𝑙  , 𝐼ℎ

𝑢 ] 
are the vector inputs. 

𝑐ℎ 𝜖 { 0, 1 , 2 , 3, … . , 𝑝 } is the class index of any one of the p+1 classes. If  𝑐ℎ = 0 , 

it means the input is unlabeled.  

2.2 Membership Function 

The fuzzy hyperbox membership function plays an important role in deciding 

whether a particular input belongs to a particular class or not. In GFMM, the new mem-

bership function is defined which fulfills the limitations of the original fuzzy min-max. 

In the original function, it was observed that by increasing the distance from the hyper-

box, the membership does not decrease steadily, which is the major drawback of this 

membership function. In GFMM, the degree of membership 𝐼ℎ for the hyperbox 𝐵𝑞  is 

1 if 𝐼ℎ is inside the hyperbox 𝐵𝑞 , and the membership decreases as the distance from 

the hyperbox is increases. In the membership equation, 𝛾 =  [𝛾1 , 𝛾2 , … . . , 𝛾𝑛  ] is the 

sensitivity parameter; this regulates how fast the membership values decreases.  

 

 

            𝐵𝑞(𝐼ℎ) = 𝑚𝑖𝑛𝑝=1 𝑡𝑜 𝑛 (𝑚𝑖𝑛 (
[1 − 𝑓(𝐼ℎ𝑝

𝑢 − 𝑤𝑞𝑝 , 𝛾𝑝)] ,

[1 − 𝑓(𝑣𝑞𝑝 − 𝐼ℎ𝑝
𝑙  , 𝛾𝑝)]

))                 (2) 

 

                          𝑤ℎ𝑒𝑟𝑒 , 𝑓(𝑟, 𝛾) =  {

1   𝑖𝑓 𝑟𝛾 > 1
𝑟𝛾  𝑖𝑓 0 ≤ 𝑟𝛾 ≤ 1

0  𝑖𝑓 𝑟𝛾 < 0
}                                    (3)                       

 

2.3 GFMM Learning Algorithm 

The steps of the GFMM learning algorithm are given below. 
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1. Min and Max Point Initialization: 

For the new hyperbox, the algorithm initializes its min point 𝑉𝑞 = 0  and the 

max point 𝑊𝑞 = 0, this can be automatically used in the expansion phase of 

the algorithm. The values of the min and max points when the 𝑞𝑡ℎ hyperbox 

is adjusted for the first time by using the 𝐼ℎ = [𝐼ℎ
𝑙  , 𝐼ℎ

𝑢] are given by 

 

                                  𝑉𝑞 = 𝐼ℎ
𝑙     ,    𝑊𝑞 =  𝐼ℎ

𝑢              (4) 

         These values are similar to the input pattern. 

 

2. Hyperbox Expansion: 

Suppose the ℎ𝑡ℎ input pattern has to be expanded with the hyperbox 𝐵𝑞  which 

have the highest degree of membership; before expansion the following con-

dition has to be satisfied. 

 

              ∀𝑎=1..𝑛  (𝑚𝑎𝑥 ((𝑤𝑞𝑎  , 𝐼ℎ𝑎
𝑢 )  −   𝑚𝑖𝑛(𝑣𝑞𝑎  , 𝐼ℎ𝑎

𝑙 )))   ≤   𝜗              (5) 

 

If this condition got satisfied, the new min and max points of the hyperbox 𝐵𝑞  

are given by 

 

                                      𝑣𝑞𝑝
𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑣𝑞𝑝

𝑜𝑙𝑑  , 𝐼ℎ𝑝
𝑙 )                                         (6) 

 

                                      𝑤𝑞𝑝
𝑛𝑒𝑤 = 𝑚𝑎𝑥(𝑤𝑞𝑝

𝑜𝑙𝑑  , 𝐼ℎ𝑝
𝑢 )                                       (7)                             

 

And there is a case, when the above expansion condition does not satisfy, then 

we look for the other hyperboxes of the same class for the expansion. If neither 

hyperbox is ready for the expansion then make a new hyperbox 𝐵𝑘 for the 

input pattern.   

3. Hyperbox Overlap test:                    

After the successful expansion, there are chances of overlap between the two 

hyperboxes and if both these hyperboxes belongs to the different classes then 

the classifier will give wrong results. The algorithm conducted the hyperbox 

overlap test to check for the overlap. 

Let the hyperbox 𝐵𝑞  be expanded; we test for the overlap with hyperbox 𝐵𝑝 if 

 

                   𝑐𝑙𝑎𝑠𝑠(𝐵𝑞) =  

{
 
 

 
 

0 ,              𝑡𝑒𝑠𝑡 𝑤𝑖𝑡ℎ 𝑎𝑙𝑙 𝑡ℎ𝑒 
                𝑜𝑡ℎ𝑒𝑟 ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑥𝑒𝑠.

𝑜𝑡ℎ𝑒𝑟 , 𝑔𝑜 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔

 𝑡𝑒𝑠𝑡 𝑜𝑛𝑙𝑦 𝑖𝑓

                   𝑐𝑙𝑎𝑠𝑠(𝐵𝑞) ≠ 𝑐𝑙𝑎𝑠𝑠(𝐵𝑝) }
 
 

 
 

             (8) 

 

  If suppose 𝑝𝑡ℎ dimension is detected from all the observations, and 𝛿𝑜𝑙𝑑 −
 𝛿𝑛𝑒𝑤 >  0 , then we set ∆= 𝑝. 
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4. Hyperbox Contraction:  

           ∆𝑡ℎ dimension of the two hyperboxes is adjusted only if ∆ > 0. To 

make minimal effect on the size and shape of the hyperbox only one dimension 

is adjusted in each hyperbox. The contraction phase of GFMM is very similar 

to the original Fuzzy min-max. 

2.4 Network Architecture of GFMM 

 There are only two changes between the GFMM network architecture shown in Fig. 1 

and Simpson’s original FMM network architecture. First, the input node gets doubled 

to 2 ∗ 𝑛. Second, in the output layer, an additional node is introduced which handles 

the unlabeled hyperbox from the second layer of the network. 

 

 

 
 

                                       Fig 1. The network of GFMM  
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3 Enhanced Fuzzy Min-Max Neural Network 

The Enhanced Fuzzy Min-Max Neural Network (EFMM) [4] overcomes the limitation 

of the original FMM learning algorithm and enhanced its performance. There are three 

heuristic rules for the learning algorithm, as will be discussed in this section. 

3.1 Shortcomings of FMM 

The three shortcomings of FMM that are overcome by EFMM, which makes an impact 

on the learning algorithm, are summarized below. 

1. Hyperbox Expansion: In this phase they show that, when the overlapping re-

gions are increasing between two classes it makes impact on the performance 

of the FMM. In FMM they first calculate the sum of all the differences be-

tween min and max point of the dimensions and then they compare this sum 

with the 𝑛𝜗. There are very high chances of wrong prediction even if one di-

mension can exceed the 𝑛𝜗 (expansion coefficient) and the sum of all dimen-

sion is under the expansion coefficient. 

 

2. Hyperbox Overlap Test: The four existing cases for detecting the overlap be-

tween two different class hyperboxes are not sufficient. There are some inputs 

in which overlapping regions are detected and the test assumes it is a non-

overlapping region and it stops the overlap test. So more conditions are added 

in the overlap test of EFMM. 

3. Hyperbox Contraction: In FMM the contraction is based on the hyperbox 

overlap test, but the overlap test phase can pass some undetected overlapping 

regions which creates problems in the contraction phase.   

In EFMM they modified all these three phases to overcome the problems. And the 

modified version improves the classification results. 

3.2 EFMM Learning Algorithm 

The three heuristic rules which can overcome all the limitations of EFMM are: 

1. Hyperbox Expansion Rule: To solve all expansion problems in FMM, a new 

equation is formulated. The 𝑞𝑡ℎ hyperbox is checked from all the dimensions 

separately to see if it exceeds  𝜗 or not. This rule is only applicable if no di-

mension can exceed 𝜗. 

 

                             𝑀𝑎𝑥𝑛(𝑊𝑞𝑝, 𝐼ℎ𝑝)  −  𝑀𝑖𝑛𝑛(𝑉𝑞𝑝, 𝐼ℎ𝑝)   ≤   𝜗                          (9) 
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2. Hyperbox Overlap Test Rule: In the original FMM, the four cases are insuffi-

cient for the hyperbox overlap test. In GFMM, they modified the test phase 

and included additional overlap testing cases, as observed from (8). Now there 

are total nine cases to detect the possible overlap regions. And (10) and (11) 

are already there in FMM.  

 

Initially, 𝛿𝑜𝑙𝑑 = 1 

 

             𝑐𝑎𝑠𝑒 1: 𝑉𝑞𝑝 < 𝑉𝑟𝑝 < 𝑊𝑞𝑝 < 𝑊𝑟𝑝  , 𝛿
𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑊𝑞𝑝 − 𝑉𝑟𝑝 , 𝛿

𝑜𝑙𝑑)           (10) 

              𝑐𝑎𝑠𝑒 2: 𝑉𝑟𝑝 < 𝑉𝑞𝑝 < 𝑊𝑟𝑝 < 𝑊𝑞𝑝  , 𝛿
𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑊𝑟𝑝 − 𝑉𝑞𝑝  , 𝛿

𝑜𝑙𝑑)          (11) 

 

𝑐𝑎𝑠𝑒 3: 𝑉𝑞𝑝 = 𝑉𝑟𝑝 < 𝑊𝑞𝑝 < 𝑊𝑟𝑝  ,

𝛿𝑛𝑒𝑤

= 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑊𝑞𝑝 − 𝑉𝑟𝑝 ,𝑊𝑟𝑝 − 𝑉𝑞𝑝  ), 𝛿
𝑜𝑙𝑑)        (12)        

 

𝑐𝑎𝑠𝑒 4: 𝑉𝑞𝑝 < 𝑉𝑟𝑝 < 𝑊𝑞𝑝 = 𝑊𝑟𝑝  ,

𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑊𝑞𝑝 − 𝑉𝑟𝑝  ,𝑊𝑟𝑝 − 𝑉𝑞𝑝 ), 𝛿
𝑜𝑙𝑑)    (13) 

 

𝑐𝑎𝑠𝑒 5: 𝑉𝑟𝑝 = 𝑉𝑞𝑝 < 𝑊𝑟𝑝 < 𝑊𝑞𝑝  ,

𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑊𝑞𝑝 − 𝑉𝑟𝑝  ,𝑊𝑟𝑝 − 𝑉𝑞𝑝 ), 𝛿
𝑜𝑙𝑑)    (14) 

 

𝑐𝑎𝑠𝑒 6: 𝑉𝑟𝑝 < 𝑉𝑞𝑝 < 𝑊𝑟𝑝 = 𝑊𝑞𝑝  ,

𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑊𝑞𝑝 − 𝑉𝑟𝑝  ,𝑊𝑟𝑝 − 𝑉𝑞𝑝 ), 𝛿
𝑜𝑙𝑑)    (15) 

 

𝑐𝑎𝑠𝑒 7: 𝑉𝑞𝑝 < 𝑉𝑟𝑝 ≤ 𝑊𝑟𝑝 < 𝑊𝑞𝑝  ,

𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑊𝑞𝑝 − 𝑉𝑟𝑝  ,𝑊𝑟𝑝 − 𝑉𝑞𝑝 ), 𝛿
𝑜𝑙𝑑)    (16) 

 

𝑐𝑎𝑠𝑒 8: 𝑉𝑟𝑝 < 𝑉𝑞𝑝 ≤ 𝑊𝑞𝑝 < 𝑊𝑟𝑝  ,

𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑊𝑞𝑝 − 𝑉𝑟𝑝  ,𝑊𝑟𝑝 − 𝑉𝑞𝑝 ), 𝛿
𝑜𝑙𝑑)    (17) 

 

𝑐𝑎𝑠𝑒 9: 𝑉𝑟𝑝 = 𝑉𝑞𝑝 < 𝑊𝑟𝑝 = 𝑊𝑞𝑝  ,

𝛿𝑛𝑒𝑤 = 𝑚𝑖𝑛 ((𝑊𝑟𝑝 − 𝑉𝑞𝑝 ), 𝛿
𝑜𝑙𝑑)                                (18) 

 

When 𝛿𝑜𝑙𝑑 − 𝛿𝑛𝑒𝑤 < 1 , then only the overlapping region is detected. To 

check for the next dimension, we have to initialize ∆ = 𝑝 𝑎𝑛𝑑 𝛿𝑜𝑙𝑑 = 𝛿𝑛𝑒𝑤 . 
And this loop ends when no more regions are detected.   

 

3. Hyperbox Contraction Rule: 

 

For the contraction of the overlapping hyperboxes, EFMM introduces nine 

cases and, all these cases are totally based on the overlap test rules. 
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𝐶𝑎𝑠𝑒 1: 𝑉𝑞∆ < 𝑉𝑟∆ < 𝑊𝑞∆ < 𝑊𝑟∆ ,𝑊𝑞∆
𝑛𝑒𝑤 = 𝑉𝑟∆

𝑛𝑒𝑤 =
𝑊𝑞∆

𝑜𝑙𝑑 + 𝑉𝑟∆
𝑜𝑙𝑑

2
   (19) 

 

𝐶𝑎𝑠𝑒 2: 𝑉𝑟∆ < 𝑉𝑞∆ < 𝑊𝑟∆ < 𝑊𝑞∆ ,𝑊𝑟∆
𝑛𝑒𝑤 = 𝑉𝑞∆

𝑛𝑒𝑤 =
𝑊𝑟∆

𝑜𝑙𝑑 + 𝑉𝑞∆
𝑜𝑙𝑑

2
   (20) 

 

𝐶𝑎𝑠𝑒 3: 𝑉𝑞∆ = 𝑉𝑟∆ < 𝑊𝑞∆ < 𝑊𝑟∆ , 𝑉𝑟∆
𝑛𝑒𝑤 = 𝑊𝑞∆

𝑛𝑒𝑤                                    (21) 

 

𝐶𝑎𝑠𝑒 4: 𝑉𝑞∆ < 𝑉𝑟∆ < 𝑊𝑞∆ = 𝑊𝑟∆ ,𝑊𝑞∆
𝑛𝑒𝑤 = 𝑉𝑟∆

𝑛𝑒𝑤                                   (22) 

 

𝐶𝑎𝑠𝑒 5: 𝑉𝑟∆ = 𝑉𝑞∆ < 𝑊𝑟∆ < 𝑊𝑞∆ , 𝑉𝑞∆
𝑛𝑒𝑤 = 𝑊𝑟∆

𝑛𝑒𝑤                                    (23) 

 

𝐶𝑎𝑠𝑒 6: 𝑉𝑟∆ < 𝑉𝑞∆ < 𝑊𝑟∆ = 𝑊𝑞∆ ,𝑊𝑟∆
𝑛𝑒𝑤 = 𝑉𝑞∆

𝑛𝑒𝑤                                     (24) 

 

𝐶𝑎𝑠𝑒 7(𝑎): 𝑉𝑞∆ < 𝑉𝑟∆ ≤ 𝑊𝑟∆ < 𝑊𝑞∆ 𝑎𝑛𝑑 (𝑊𝑟∆ − 𝑉𝑞∆)

<  (𝑊𝑞∆ − 𝑉𝑟∆) , 𝑉𝑞∆
𝑛𝑒𝑤 = 𝑊𝑟∆

𝑛𝑒𝑤                                       (25) 

 

𝐶𝑎𝑠𝑒 7(𝑏): 𝑉𝑞∆ < 𝑉𝑟∆ ≤ 𝑊𝑟∆ < 𝑊𝑞∆ 𝑎𝑛𝑑 (𝑊𝑟∆ − 𝑉𝑞∆)

>  (𝑊𝑞∆ − 𝑉𝑟∆) ,𝑊𝑞∆
𝑛𝑒𝑤 = 𝑉𝑟∆

𝑛𝑒𝑤                                       (26) 

 

𝐶𝑎𝑠𝑒 8(𝑎): 𝑉𝑟∆ < 𝑉𝑞∆ ≤ 𝑊𝑞∆ < 𝑊𝑟∆ 𝑎𝑛𝑑 (𝑊𝑟∆ − 𝑉𝑞∆)

<  (𝑊𝑞∆ − 𝑉𝑟∆) ,𝑊𝑟∆
𝑛𝑒𝑤 = 𝑉𝑞∆

𝑛𝑒𝑤                                       (27) 

 

𝐶𝑎𝑠𝑒 8(𝑏): 𝑉𝑟∆ < 𝑉𝑞∆ ≤ 𝑊𝑞∆ < 𝑊𝑟∆ 𝑎𝑛𝑑 (𝑊𝑟∆ − 𝑉𝑞∆)

>  (𝑊𝑞∆ − 𝑉𝑟∆) , 𝑉𝑟∆
𝑛𝑒𝑤 = 𝑊𝑞∆

𝑛𝑒𝑤                                       (28) 

 

𝐶𝑎𝑠𝑒 9(𝑎): 𝑉𝑞∆ = 𝑉𝑟∆ < 𝑊𝑞∆ = 𝑊𝑟∆ ,𝑊𝑞∆
𝑛𝑒𝑤 = 𝑉𝑟∆

𝑛𝑒𝑤 =
𝑊𝑞∆

𝑜𝑙𝑑 + 𝑉𝑟∆
𝑜𝑙𝑑

2
 (29) 

 

𝐶𝑎𝑠𝑒 9(𝑏): 𝑉𝑟∆ = 𝑉𝑞∆ < 𝑊𝑟∆ = 𝑊𝑞∆ ,𝑊𝑟∆
𝑛𝑒𝑤 = 𝑉𝑞∆

𝑛𝑒𝑤 =
𝑊𝑟∆

𝑜𝑙𝑑 + 𝑉𝑞∆
𝑜𝑙𝑑

2
(30) 

 

These are the nine cases for the hyperbox contraction.  

 

These three heuristic rules are the main reason for the enhancement of the learning 

algorithm of EFMM over FMM. 

 

4 Methodology 

The task at hand is to identify cancer subtypes from the gene expression profiles 

pertaining to lung cancer data. The details of the dataset are given in section 5. The 
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process flow of the training and testing processes for (GFMM / EFMM) is shown in 

Fig. 2. For each classifier, there are two different accuracies, one is with the selected 

genes and the second is with the original dataset. LASSO feature selection is used to 

select the significant genes prior to the classification phase. With the selected genes the 

whole classification process becomes faster and the results are also impressive. 

 

 

 

 
 

Fig 2. Flow chart of the training and testing process  

 

 

The steps of the methodology are detailed below. 

 

1. Load the Microarray gene expression dataset. 

2. Normalize the dataset using min-max normalization and the range of the  

normalization is [ 0, 1]. In min-max normalization, all the minimum val-

ues are set to 0 and all the maximum values are set to 1. And the values 

which lie between maximum and minimum values are set with a decimal 

value within a range of [ 0, 1]. 

3. In this step we have two choices first is to go for classification without 

any feature selection and the second one is before going for the classifi-

cation process select important features with LASSO and then perform 

the classification task. 

i. Directly go for train-test split and then perform classification by 

GFMM / EFMM. 

ii. Extract the important features from the lung cancer dataset. 

There is a requirement for this step because our dataset has 

12600 genes (i.e. features) and not all the genes make an impact 

on the final result. We used the LASSO feature extraction tech-

nique for extracting the features. After the feature extraction pro-

cess 176 genes got selected and these selected genes were used 
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for training of the model. This step makes the whole classifica-

tion process faster and more efficient. 

 

4. Divide the dataset into training and testing sets. 70:30 is the ratio we 

choose for the train:test split. 

5. Now train the GFMM / EFMM model with the training set. For analyzing 

the performance of both the classifiers, calculate the accuracy and store 

them in their respective arrays. Repeat steps 4 and 5 for five times because 

we are performing a five-fold cross-validation. 

 

5 Results 

In this section we first discuss the experimental setup and the hyper parameter settings 

of the classification algorithms including GFMM and EFMM. Then we compare the 

results of GFMM and EFMM with the other classification algorithms. 

5.1 Experimental Setup 

The hyperparameters which are used for the various learning algorithms in this paper 

are given in Table 1. For some, the standard classification algorithms we used the de-

fault parameters, but for GFMM and EFMM we set the parameters to get the best result 

using grid search. All the experiments were performed in the python version 3.7.0 on 

Intel 2.00GHz core PC. 

Table 1. Hyperparameter Settings  

 

CLASSIFIER HYPER PARAMETER VALUES 

Enhanced Fuzzy Min-Max  Hyperbox Coefficient(𝜗) 0.1 

Sensitivity(𝜔)  1 

General Fuzzy Min-Max  Hyperbox Coefficient(𝜗) 0.1 

Sensitivity(𝜔) 1 

Fuzzy Min-Max  Hyperbox Coefficient(𝜗) 0.7 

Sensitivity(𝜔) 1 



12 

Support Vector Machine  Regularization parameter (c) 1 

Gamma  0.0018, 0.126 (with LASSO) 

K-Nearest Neighbor  No. of neighbors  7 

Logistic Regression C 1 

Penalty l2 

Solver lbfgs 

Naïve Bayes Var_Smoothing 1𝑒−9 

Random Forest N_estimators 100 

Max_depth 2 

 

 

We used microarray lung cancer dataset [20] for all the experiments. This dataset has 

203 samples and 12,600 features (genes). There are five classes indicating five subtypes 

of lung cancer [20]. The class distribution is highly imbalanced. The different cancer 

subtypes and their class populations are: lung adenocarcinomas (139), squamous cell 

lung carcinomas (21), lung carcinoids (20), small cell lung carcinomas (6), and normal 

samples (17). Under such a scenario, defining accurate class boundaries is an obvious 

challenge. We propose to counter this challenge using the FMM classifiers: GFMM and 

EFMM. 

5.2 GFMM Results 

The General Fuzzy min-max model hyperbox visualization after training is complete is 

shown in Fig. 3. The five colors indicate the five classes. The hyperbox visualization 

shows some degree of overlap between a few classes, especially between the majority 

class and two of the minority classes. For the GFMM algorithm, the value we choose 

for the hyperbox expansion coefficient (i.e. theta) is 0.1 and the sensitivity value is 1; 

sensitivity measures the fuzziness and this is used in the testing phase. The classifica-

tion results are shown in Tables 2 (accuracy) and 3 (execution time) for all methods. 

For GFMM, we observe that the execution time of the classification process in case of 

selected features is 4.57 secs which is faster as compared to all the other algorithms. 

The accuracy we achieved with and without LASSO are 95.41% and 89% respectively.      
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Fig 3. GFMM hyperbox after training on the lung cancer gene expression data 

 

5.3 EFMM Results 

 

Enhanced Fuzzy min-max classifier gives the best result among all the classifiers, as 

observed from Table 2. The accuracy achieved with and without LASSO is 97.37% and 

91.80% respectively, and this is the best among all the classifiers that we have used for 

this microarray dataset. The EFMM hyperbox visualization is shown in Fig. 4, that is 

obtained after the training process is complete. Comparing the hyperbox visualizations 

of GFMM in Fig. 3 with that of EFMM in Fig. 4 we observe a better segregation of 

classes in case of EFMM in Fig. 4, indicating that the fuzzy membership functions for 

the five classes are more well defined in case of EFMM. The reason for the more accu-

rately defined class boundaries of EFMM is the improved learning process aiming to 

reduce the overlap between hyperboxes. As observed from the hyperbox visualization 

in Fig. 4, the majority class namely, lung adenocarcinoma, is segregated well from the 

other classes which improves the classification performance.  

 

 



14 

 
Fig 4. EFMM Hyperbox after training on the lung cancer gene expression data 

 

5.4 Results Comparisons 

In Table 2 we can see accuracy comparison of all the classification algorithms. Other 

than FMM, we have compared the results to Support Vector Machine (SVM), K-Near-

est Neighbor, Logistic Regression, Naïve Bayes and Random Forest. From these re-

sults, we analyze that EFMM stands out among all the algorithms in terms of the accu-

racy obtained with LASSO feature selection. Without LASSO, SVM gives the best re-

sult followed by EFMM. The GFMM is also better in terms of execution time but the 

accuracy is almost same as the Simpson`s Fuzzy min-max classifier.    

 

Table 2. Accuracies for lung cancer classification 

 

Algorithms Accuracy (in %) 

 

With LASSO Without      

LASSO 

Enhanced Fuzzy Min-Max 97.37 91.80 

General Fuzzy Min-Max 95.41 89.00 

Fuzzy Min-Max 95.08 89.5 

Support Vector Machine (SVM) 94.09 92.45 

K-Nearest Neighbor  93.77 89.18 

Logistic Regression 92.13 90.18 

Naïve Bayes 92.78 89.18 
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Random Forest 83.31 80.32 

 

From the execution times listed in Table 3, we observe that FMM based methods take 

more time to execute as compared to the other machine learning algorithms. GFMM is 

fastest in case of selected features compare to other fuzzy algorithms, and EFMM takes 

approximately same time for both with and without selected features. 

After analyzing all the comparison, we can say that the Enhanced fuzzy min-max clas-

sifier is a very suitable option for the classification of microarray data, and it performs 

best when used with feature selection techniques for selecting the most optimal gene 

set that identifies the cancer subtype well.  

 

    Table 3. Execution time of classification algorithms 

 

Algorithms Execution Time (in seconds) 

 

With LASSO Without      

LASSO 

Enhanced Fuzzy Min-Max 40.21 41.54 

General Fuzzy Min-Max 4.57 87.52 

Fuzzy Min-Max 13.77 963.31 

Support Vector Machine (SVM) 0.40 17.74 

K-Nearest Neighbor  0.37 0.37 

Logistic Regression 0.66 8.51 

Naive Bayes 0.32 1.39 

Random Forest 1.98 2.90 

6 Conclusion 

In this work, we explore the generalized and enhanced versions of the fuzzy min-

max neural network for application on microarray gene expression data. For all the 

experiments we used the microarray lung cancer dataset. LASSO is used for selecting 

the important genes and this optimized subset of genes is used in the training of GFMM 

and EFMM. In the performance analysis of both the classifiers, we found that EFMM 

is more efficient as compared to GFMM and Simpson`s FMM in terms of both accuracy 

and execution time. EFMM also outperforms all other machine learning algorithms 

when used in combination with feature selection. The hyperbox visualizations indicate 

that the fuzzy membership values for the hyperboxes pertaining to the five lung cancer 

subtypes are better defined in case of EFMM that for GFMM. The decision boundaries 

in case of EFMM are more accurate due to the improved expansion-contraction process 

that aims to reduce the overlap between the hyperboxes representing the different clas-

ses. GFMM is the fastest among all the fuzzy classifiers but the classification perfor-

mance of GFMM is same as the Simpson`s FMM. In our study, we prove that EFMM 

in combination with LASSO is the most effective technique for classifying the high-
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dimensional small sample gene expression data. Exploring hybrid combinations of 

EFMM with machine learning methods is the future scope of this work.   
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