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Modelling the spatial distribution of infrasound attenuation (or transmission loss, TL)
is key to understanding and interpreting microbarometer data and observations. Such
predictions enable the reliable assessment of infrasound source characteristics such as
ground pressure levels associated with earthquakes, man-made or volcanic explosion
properties, and ocean-generated microbarom wavefields. However, the computational
cost inherent in full-waveform modelling tools, such as Parabolic Equation (PE)
codes, often prevents the exploration of a large parameter space, i.e., variations in
wind models, source frequency, and source location, when deriving reliable estimates
of source or atmospheric properties — in particular for real-time and near-real-time
applications. Therefore, many studies rely on analytical regression-based heuristic
TL equations that neglect complex vertical wind variations and the range-dependent
variation in the atmospheric properties. This introduces significant uncertainties in
the predicted TL. In the current contribution, we propose a deep learning approach
trained on a large set of simulated wavefields generated using PE simulations and
realistic atmospheric winds to predict infrasound ground-level amplitudes up to 1000
km from a ground-based source. Realistic range dependent atmospheric winds are
constructed by combining ERA5, NRLMSISE-00, and HWM-14 atmospheric models,
and small-scale gravity-wave perturbations computed using the Gardner model. Given
a set of wind profiles as input, our new modelling framework provides a fast (0.05 s
runtime) and reliable (~ 5 dB error on average, compared to PE simulations) estimate
of the infrasound TL.
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2 1. INTRODUCTION

1 Surface and subsurface sources (e.g., explosions, microbaroms, earthquakes) excite low-
u frequency acoustic waves, i.e., infrasound, that can travel large distances in the Earth’s
55 atmosphere. The refraction and reflection of infrasound waves back to the surface due
3 to vertical and horizontal gradients of atmospheric winds and temperatures enable their
s detection at ground arrays. Because infrasound waves carry information about the source,
s they have traditionally been used to retrieve location and yield estimates of nuclear explosions
w0 (Bvers and Haak, 2010). Recently, the detection and modelling of infrasound phases have
s also enabled the inversion of critical seismic source and subsurface parameters such as focal
a mechanism (Shani-Kadmiel et al., 2021), focal depth (Averbuch et al., 2020; Lai et al., 2021),
2 ground motions (Hernandez et al., 2018), or seismic velocity structures (Brissaud et al.,
1 2021).

s Accurately predicting the spatial distribution of infrasound attenuation, i.e., Transmission
s Loss (TL), is key to build robust estimates of source and subsurface characteristics. Parabolic
s Equations (PE) (Wazler et al., 2021) or finite difference codes (de Groot-Hedlin, 2008;
« Brissaud et al., 2016) are typically used to compute accurate estimates of acoustic amplitudes
s in realistic wind structures. However, owing to the prohibitive computational cost of full-
s waveform numerical modelling tools, most infrasound studies rely on empirical equations
so to relate infrasound amplitudes to source parameters. Widely-used regression equations
s include models to estimate the explosion yield from peak infrasound amplitudes (e.g., Golden
s2 et al., 2012) and empirical equations relating pressure at the source and observed infrasound
s3 amplitudes (Le Pichon et al., 2012). In particular, the construction of empirical equations
sa ignores or greatly over-simplify atmospheric wind structures. For instance, in Le Pichon
ss et al. (2012), the authors assume a single range-independent Gaussian stratospheric duct
ss to optimize their regression model. Yet, vertical and horizontal wind gradients at various
sz altitudes can drastically affect the TL at the ground (de Groot-Hedlin et al., 2010).

ss  Empirical models rely on over-simplistic representations of the wind structures because the
so mapping between source frequency, atmospheric specifications, and TL is highly nonlinear and
s0 poorly constrained. In order to bridge the gap between computationally expensive numerical
s models and over-simplistic empirical equations, supervised Machine-Learning (ML) models
s trained over synthetic or recorded datasets can offer an accurate and inexpensive alternative
63 to existing modelling tools (Michalopoulou et al., 2021). Several authors have employed ML
s« models to predict TL: Pettit and Wilson (2020) built a Physics-Informed Neural Network
es (PINN) trained over synthetic PE simulation results to predict attenuation maps (along
e range and altitude) in the atmospheric boundary layer. PINN consist in updating the cost
o7 function to include physics-based constraints. This model provides an inexpensive alternative
s to existing modelling tools but shows low accuracy as it is difficult adjusting the weights
so of the physics-informed parameters in the objective function. Additionally, atmospheric
70 specifications are encoded using only wind profiles, and this approach was not adapted to
7 long-range propagation. Hart et al. (2021) used a fully connected neural network to predict
72 two-dimensional (2D) attenuation in a turbulent atmosphere from a set of predefined input
73 parameters describing the turbulent field. This model shows a relatively low error (< 7 dB)
72 but relies on over-simplified wind models with a set of 13 inputs to describe the velocity field
75 which are not representative of long-range propagation.

7 Relating wind structures to TLs is key to accurately reproduce full-waveform simulations.
77 Instead of using pre-defined parameters to describe the wind velocity field, Convolutional-



s Neural Networks (CNN, Krizhevsky et al. (2012)) provide an excellent solution to identify
70 patterns of interest within input wind models. Such patterns are extracted using a set of
s filters described by a number of coefficients that are optimized during the ML training process.
s1 Such network is typically followed by a set of fully-connected network to relate the encoded
g2 information by the CNN and the output. In this contribution we propose a new ML model
&3 trained over synthetic PE simulations to build ground TL in realistic range-dependent wind
s« models that both shows a low computational cost compared to existing modelling tools, and
ss high accuracy over long-range propagation.

s 2. BUILDING A TRANSMISSION-LOSS DATASET

&7 Building a synthetic TL dataset requires a modelling tool and a set of atmospheric models.
ss Similar to Le Pichon et al. (2012), we generate TL profiles using the open-source (PE) solver
s ePape, provided by the US National Center for Physical Acoustics (NCPA, Wazler et al.,
90 2021). To provide realistic bounds for the atmospheric models, we collect 524 slices of 1000
o1 km up to 80 km altitude from ERAJ re-analysis models, discretized over 137 altitude levels
o (ECMWF, 2018) with a horizontal resolution of 1 degree. The spatial step of 1 degree
03 is picked as a trade-off between the resolution to capture ERA5 spatial variability and
u the computational time to both download atmospheric models and run simulations. Since
s ERAD models are limited to around 80 km altitude, we use two empirical models to retrieve
o6 atmospheric properties up to 120 km altitude: HWM-14 to obtain zonal and meridional
ov winds (Drob et al., 2015), and NRLMSISE-00 to retrieve temperatures (Picone et al., 2002).
e ERA5 and HWM-14/NRLMSISE-00 atmospheric models are stitched together using a cubic
o interpolation between over the altitude range of 75 to 85 km. Because atmospheric properties
o vary with latitude, longitude, and time of the year, ERA5 profiles are uniformly sampled
w1 between latitudes —40 to 70 degrees, longitudes —150 to 165 degrees, and between years
102 2010 to 2020 (see Fig. 1a).

w3 ERAD models lack resolution to capture fine-scale wind and temperature fluctuations owing
104 to, e.g., gravity-wave breaking above the troposphere (Chunchuzov et al., 2015; Chunchuzov
s and Kulichkov, 2019). To account for unresolved wind perturbations at higher altitudes,
106 infrasound studies typically consider the Gardner model to add gravity-wave perturbations
107 to the original wind profiles (Gardner et al., 1993). Therefore, we account for small-scale
108 perturbations by considering four Gardner realizations for each atmospheric slice (see green
0o stage in Fig. 2a). Similar to Norris and Gibson (2002), we generate Gardner perturbations
o by considering four altitude levels 84, 70, 45, and 21 km, at which we sample standard
 deviations uniformly within the range of, respectively, 1-25, 1-18, 1-10, and 1-5 m/s. Finally,
12 because the direction of propagation within an atmospheric slice, i.e., upwind or downwind
u3 propagation, greatly alters the TLs at the ground, we augment our dataset of atmospheric
14 models by running simulations in both scenarios by changing the sign of the projected winds
s (see yellow stage in Fig. 2a). Our final dataset includes 20960 simulations.

us  The distribution of effective velocity ratios C.y computed from our final atmospheric
uz model dataset for three different altitude regimes, shown in Fig. 1b, is close to a Gaussian
us distribution, centred around ¢.g = 1. This indicates that our dataset includes models with
ne and without strong high-altitude ducts. The distribution of tropospheric effective velocity
120 ratios is centred at lower values than for higher-altitude layers. This owes to the small
122 number of occurrences of tropospheric wave ducts in our dataset. In contrast to large vertical
122 variations of wind velocities, most ERA5 models show small (< 15 m/s) lateral variations of
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Figure 1. Atmospheric model dataset. (a) distribution of 1000 km long atmospheric slices extracted
from the ERA5 dataset. (b) Distribution of effective velocity ratio g between the ground and
various atmospheric layers: troposphere (purple) between 5 and 20 km altitude, troposphere (purple)
between 20 and 50 km altitude, and thermosphere (purple) between 50 and 100 km altitude. (c)
Distribution of standard deviations of wind velocities along range for various atmospheric layers.
(d) Distribution of input source frequencies used in PE simulations to build our TL dataset.

123 wind velocities. The largest lateral wind variations occur above the stratosphere since winds
124 at these high altitudes are generally the strongest on Earth (Blanc et al., 2018).

s TL profiles are then computed for a surface sources over 1000 km using 7 Padé coefficients
136 and the Sutherland-Bass attenuation model (Sutherland and Bass, 2004) using NCPA’s ePape
17 PE simulator ( Wazler et al., 2021). Signals from sources of interest (earthquakes, volcanoes,
13 large explosions) typically show dominant frequencies below 5 Hz. Therefore, similar to
10 Le Pichon et al. (2012), we sample 5 source frequencies from a uniform distribution between
130 0.1 to 3.2 Hz for each atmospheric slice (see Fig. 1d and Fig. 2a). PE assumes slow lateral
131 variations in the atmospheric properties over the scale of one wavelength. To ensure smoothly
132 varying atmospheric properties, we must only consider models that do not include lateral
133 variations over the scale of the largest wavelength considered, which means A ~ 3.5 km at
134 0.1 Hz. Because we are using a 100 km horizontal sampling, interpolation of atmospheric
135 properties within the NCPA software will generate smooth-enough models to fulfil the PE
136 assumptions.



137 PE neglect nonlinear terms and cross winds. Nonlinearities affect primarily the amplitude
133 and frequency content of thermospheric phases for large-amplitude pressure sources (Sabatini
1o et al., 2019). Therefore, uncertainties on the predicted amplitudes must be accounted for
1o when investigating high-yield surface sources. When large-amplitude sources are considered,
w1 PE simulations will severally overpredict the amplitude of refracted phases at the ground.
12 While cross winds have a significant impact on the apparent backazimuth observed from
3 refracted phases at stations located at large distances from the source, their influence on
14 infrasound amplitudes is insignificant (Hernandez et al., 2018; Shani-Kadmiel et al., 2021).

us 3. DESIGNING A TRANSMISSION-LOSS MODEL

us  Parabolic equations correspond to a mapping between 2D vertical range-dependent vertical
17 profiles (temperature, winds, and pressure), frequency, and ground transmission loss profiles
s under the effective-velocity approximation (Wazler et al., 2021). Our goal is to find an
19 alternative nonlinear map between PE inputs and outputs using a neural network in order to
150 reduce the computational cost. Variations of TL with range for a given source frequency
151 between different atmospheric models are primarily controlled by lateral and vertical wind
152 variations. To reduce the complexity of our ML architecture, we simplify the TL-prediction
153 problem by assuming that there exists an additional nonlinear mapping between frequency,
152 2D wind variations and TL that approximates the PE solution.

155 Because local wind variations can explain the of infrasound rays back to the surface
156 (Chunchuzov et al., 2015), we use a Convolutional Neural Network (CNN) to encode the
157 nonlinear relationship between local wind patterns, represented as 2D images, and TL profiles.
158 Since the relationship between frequency and TL for complex wind structures is poorly
159 constrained, we approximate this undefined mapping by using fully-connected layers, which
160 are the most generic neural network architectures. The final architecture (Fig. 2b) consists
11 of two layers of 2D convolutions using 5 x 5 kernels followed by Batch normalization and
12 Average Pooling. The encoded winds are then concatenated with the source frequency input,
13 and three fully-connected layers. Average pooling consists of taking the average of the output
164 of each convolution which is employed to both reduce the dimensionality and learn translation
165 invariance over the input representation. Batch normalization (loffe and Szegedy, 2015)
166 Te-centers and re-scale the input of each layer over each mini-batch during the training process.
17 Normalizing batches reduces the variations of distributions in inputs at each layer, speeds up
168 training, and produces more reliable models. Both Batch normalization and Average Pooling
160 layers are used to make the ML model more robust to new data. The last fully connected
o layer being the output layer that represents the normalized TL profile between 0 to 1000 km.
i All weights are initialized using a uniform Glorot initializer (Glorot and Bengio, 2010).

2 To facilitate the recognition of patterns in input data, winds are vertically downscaled and
173 horizontally upscaled from a 10 x 1000 2D image, i.e., 10 profiles discretized over 1000 points
s along the altitude, to a 50 x 40 2D images. To limit the range of input and output values,
175 input profiles and outputs TLs are then normalized by removing the mean and scaled to unit
176 variance. Both mean and variance are computed over the training dataset only. The output
177 layer corresponds to the normalized TL profile linearly interpolated it over 500 points within
s the range 0 to 1000 km. We train the neural network using an Adam optimizer (Kingma
179 and Ba, 2015) with a starting learning rate of 107, ReLu activation functions are used
10 throughout the network expect for the output layer where we do use any activation function.
11 The ML architecture is implemented in Python using the TensorFlow library (Abadi et al.,
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Figure 2. Dataset creation and ML architecture. (a) Procedure to augment our atmospheric model
dataset. First upwind and downwind scenarios are considered for each wind slice. The difference
between upwind and downwind scenarios corresponds simply to flipping the sign of the projected
winds onto the slice. Then, 5 random set of Gardner perturbations are generated for both upwind
and downwind scenarios. Finally, 4 input frequencies are considered for each perturbed wind model.
A total of 40 wind models are generated for each atmospheric slice extracted from the ERA5
dataset. (b) Cartoon depicting a deep learning network workflow for TL predictions. We use 2D
representation of wind amplitudes (grey) with size 50 x 40 as inputs for our ML model. In the first
stage (blue) we use three Convolutional Neural Networks (CNN) to encode the wind information
as a vector of size 256. In the second stage (orange), we concatenate this wind encoding with the
input source frequency. In the third stage (green), we build a mapping between input frequency and
encoded wind representation using two Fully-Connected (FC) layers to finally produce a normalized
TL vs range of size 500 (red). This normalized TL can be transformed back to dB by using the
scaling transformer used for pre-processing the data.
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182 2015). More details about architecture optimization are provided in Appendix A.

183 4. VALIDATION OF MACHINE-LEARNING PREDICTIONS

18« To optimize our ML model, we split our full dataset between 85% training data and 15%
185 validation data. Strong correlations in TL are expected between PE simulations using wind
18 models corresponding to perturbed versions of the same original unperturbed wind model
187 along a given atmospheric slice. Therefore, before training, all simulations corresponding to
188 the same original atmospheric slice (see the first stage in Fig. 2a) are added to same set (either
180 training or validation) to make our model more robust to new data. To facilitate convergence,
10 we adaptatively update the learning rate when the Root Mean-Square-Error (RMSE) does
11 not decrease over the course of 3 epochs, i.e., training steps. To avoid over-fitting the training
12 data, we use early stopping if the MSE does not decrease over the course of 12 epochs. Finally,
193 to speed up the training process, we use mini-batches of size 32.

s Our ML model converges within 80 epochs with a validation RMSE (over normalized TL
105 profiles) twice larger than the training RMSE (see Fig. 3a). Once trained, the ML model
106 has a computational cost of around 0.05 s (Dell T5610 Intel Xeon E5-2630 v2 2.6 GHz 6
17 CPUs 64GB RAM on CentOS 7) for all input frequencies while PE simulation cost increases
10 significantly with frequency up to 100 s at 3.2 Hz (see Fig. 3b), which is 2000 times larger
10 than the cost for a ML prediction at the same frequency. In Figs 3¢ and 3d, we show that
200 the RMSE of our ML model follows a bell-shaped distribution centred between 5 to 9 dB
00 with both variations in distance from the source and source frequency. This distribution
202 of errors indicates that our ML implementation is stable for the range of frequencies and
203 distances considered in our dataset. Larger errors tend to occur for high frequencies (> 2
200 Hz) and close to the source (< 200 km). Higher frequencies are more sensitive to small-scale
205 wind variations which leads to more complex distributions of TL with range. This added
206 complexity in high-frequency TLs leads to larger errors in ML predictions. Most TL variations
207 occur within 200 km from the source with the presence of the first acoustic shadow zone and
208 first stratospheric return which explains the larger errors observed close to the source.

200 We observe in Figs 3e and 3f that ML predictions match well the average variations of TL
210 with range from the source. In particular, the ML model captures accurately the TL gain
i associated with the different stratospheric returns and the TL asymptotic behaviour at large
212 distances from the source. However, the ML model does not fully reproduce high-frequency
213 TL variations, which correspond to small-scale changes in effective wind velocities. The
2u ML model therefore provides a low-passed solution of the true TL profile. Our model is
215 unable to learn all small-scale perturbations in the wind models primarily due to the lack
216 Of training data. Yet, small-scale wind perturbations are generally unresolved in currently
217 available atmospheric models. Therefore, these high-frequency TL perturbations fall within
218 the uncertainty range associated with available atmospheric model resolutions. Along with
2190 MLL predictions, we can determine an estimate of the ML uncertainty u by computing the
20 median TL error vs range in a given frequency range f, as the median TL error vs range from
21 the source over the testing dataset such that u(r, f) = median{|PE(r, f) — ML(r, f)|}, where
22 1 is the range, f is the frequency, PE is the TL predicted using Parabolic Equations, and ML
223 is the TL predicted using Machine Learning. The frequency dependence of the uncertainty
24 curves u (see frequency dependence of the errors in Fig 3c) is accounted for by computing the
25 errors in five frequency ranges f equally distributed between 0.1 to 3.2 Hz. We observe that
226 errors between our ML predictions and the PE simulations fall within the ML uncertainty
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Figure 3. Training and validation of the ML model. (a) Evolution of Root-Mean Square Errors
(RMSE) with training epoch. (b) Computational cost of PE simulations (red) and ML predictions
(blue) vs input source frequencies. (c) Distribution of RMSE over the testing dataset for various
input frequencies. (d) Distribution of RMSE over the testing dataset for various ranges from the
source. (e,f) bottom, TL predicted by PE simulations (red) and ML model (blue) along with
the ML uncertainty (light blue) for an (e) upwind and (f) downwind wind scenario. (e,f) top,
corresponding wind models used for ML predictions. The ML uncertainty « is computed, in a given
frequency range f, as the median TL error vs range from the source over the testing dataset such
that u(r,f) = median{|PE(r, f) — ML(r, f)|}, where r is the range, f is the frequency, PE is the
TL predicted using Parabolic Equations, and ML is the TL predicted using Machine Learning.



27 range (blue shaded region in Figs 3e and 3f). As suggested by the distributions showed in
2s Figs 3¢ and 3d, the uncertainty range remains stable with variations in frequency and range
29 from the source.

20 Transfer Learning (TrLe) is typically used to improve the performances of CNNs over
211 small datasets. Here, TrLe consists of using a CNN network pre-trained over a large dataset
o of 2D images for a different task (e.g., multi-class classification of real images from a dataset
233 such as ImageNet Deng et al. (2009)) to initialize our wind encoding stage. This technique
234 assumes that there are some invariances between our wind-encoding problem and traditional
235 image-segmentation problems. We tested TrLe by replacing our CNN encoding stage (blue
26 in Fig. 2b) by both a VGG16 (Simonyan and Zisserman, 2015) or a ResNet50 (He et al.,
237 2016) network and trained our network using their pre-trained weights and removing pooling
28 layers. However, TrLe’s performances were worse (RMSE 9) than with the model presented
230 in Fig. 2b owing to the significant differences between both the set of images used for training
20 in VGG16 or ResNetb0 and our wind inputs and the problem of image detection vs TL
a1 prediction. .

22 5. ANALYTICAL VS ML PREDICTIONS OF GROUND TLS

a3 Stratospheric winds are one of the dominant factors to explain the refraction of acoustic
24 waves at large distances from the source (de Groot-Hedlin et al., 2010). A widely used
25 empirical regression equation, introduced in Le Pichon et al. (2012), referred in the rest of the
s paper as LP12, has provided estimates of TL over large distances from a variety of surface
27 sources (Hernandez et al., 2018; Vorobeva et al., 2020; De Carlo et al., 2021). However,
s the original model was optimized over a set of idealized synthetic and range-independent
20 models where the main feature was a stratospheric duct of various strength, modelled using
250 a Gaussian wind profile centered at 50 km altitude added to the U.S. Standard Atmosphere.
1 Estimates of LP12 uncertainties over idealized range-independent profiles ( Tailpied et al.,
252 2021) show low errors compared to PE simulations (< 10 dB) when strong winds are ducting
253 the signal in the stratosphere. However, in the case of upwind propagation, the accuracy
254 decreases significantly, especially at high frequencies where the errors can be up to 70 dB.
5 Yet, uncertainties introduced by this empirical model for realistic range-dependent wind
26 models are still mostly unconstrained. Comparisons with our PE simulation dataset offer
257 the opportunity to investigate the uncertainties associated with highly heterogeneous wind
258 models for both LP12 and our ML model.

0 A typical approach to investigate the influence of stratospheric winds on refracted infra-
20 sound is to represent the variations of TLs with variations in stratospheric effective velocity
a1 Tatios, i.e., stratospheric wind strength, and range from the source for different frequencies
22 (Le Pichon et al., 2012). Yet, in contrast to the dataset used for the optimization of LP12,
263 effective velocity ratios in our dataset are not equally distributed since we use the atmospheric
s model products and not idealized profiles. To provide meaningful comparisons with LP12,
265 we build uniformly-spaced 2D TL maps by performing a linear interpolation of the ML-
266 and PE-predicted TLs between 0.8 < Ce, 40-50 km < 1.2, Where Cegr, 40-50 km 1S the effective
267 velocity ratio between 40 to 50 km altitude. Linearly-interpolated TL maps are shown in
xs Fig. 4. Comparison between Figs 4a and 4b as well as between Figs 4e and 4f shows that
x0 the PE-based TL is well-reproduced by ML over the range of frequencies considered. As
270 mentioned earlier, our ML model tends to smooth out the rapid oscillations in TL predicted
on by PE simulations. Yet, average errors shown in Figs 4d and 4h are stable around 5 dB for
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Figure 4. Comparisons of TL maps produced by PE, ML, and LP12 models. (a,b) and (f,g) TL
maps vs range and effective velocity ratio Ceg between 40 — 50 km altitude for a source frequency at
0.15 Hz (a,b) and at 2 Hz (f,g) as predicted by (a,f) the ML model, (b,g) PE simulations, and (b,f
isocontours) Le Pichon model. (c,h) effective velocity ratios ceg for the troposphere (5 — 20 km
altitude, red) and mesosphere-thermosphere (50 — 100 km altitude, blue) at (c) 0.15 Hz (h) and 2
Hz. (d,i) RMSE in dB between the interpolated TL maps from the PE simulations and the ML
model (purple) and Le Pichon model (LP12, red) at (d) 0.15 Hz and (i) 2 Hz. (e,j) Median TL in
dB VS Cefr, 40-50 ke computed from the interpolated TL maps from the PE (black), the ML (purple),
and LP12 (red) models at (e) 0.15 Hz and (j) 2 Hz.
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22 all values of e, 40-50 km-

a3 We also observe that LP12, represented as isocontours in Figs 4b and 4f, is able to capture
o7 the main features of the TL maps, namely the first acoustic shadow zone and first stratospheric
275 return within 250 km from the source, and the high attenuation for low stratospheric effective
216 velocity ratios (Cefr, 4050 km < 1). The good agreement between numerical simulations and
27 LP12 (Figs 4c and 4h) confirms that average TLs are most sensitive to stratospheric winds
278 when a strong duct is present. This is also shown in Figs 4e and 4j where we observe that the
270 high-Cefr, 40-50 km trends of the median TLs are well captured by LP12. However, Figs 4e and
280 4j show that errors between the empirical model and PE simulations increase significantly
21 for low stratospheric effective velocity ratios (Cegr, 40-50 km < 1).

22 LP12 systematically underpredicts the TL for low effective velocity ratios at high frequen-
23 cies (Fig. 4j), which is consistent with a previous assessment of the empirical model ( Tailpied
24 et al., 2021). This owes to the presence of wind ducts outside the stratosphere that are not
285 accounted for in the empirical model (see Figs 4c¢ and 4g). This is especially true at high
26 frequencies (Chunchuzov et al., 2015) and close to the source where small wind variations can
267 make acoustic energy return to the ground (Chunchuzov et al., 2015). Tropospheric ducted
28 arrivals generally show strong acoustic amplitudes at ground arrays and can represent up to
280 20% of the energy radiated from the source (Drob et al., 2003). Accounting for tropospheric
200 ducting is therefore critical for accurate attenuation assessments in the range of distances
201 from the source (< 1000 km) considered here. However, these ducts generally exist only up
202 to a range of ~ 750 km and do not affect longer-range propagation at a global scale. Note in
203 Figs 4c and 4g that there is a bias in our dataset with the presence of thermospheric ducts
204 only when large stratospheric ducts are present for Ceg 4050 km > 1. This bias represents
205 the inherent correlations present in combined ERA5-NRLMSISE-00 models. Therefore,
206 considering scenarios with low thermospheric winds and strong stratospheric winds might
207 lead to a decrease in ML prediction accuracy.

2s 6. CONCLUSIONS AND DISCUSSION

20 In this contribution we have proposed an ML-based approach to rapidly (~ 0.05 s runtime)
00 and reliably (~ 5 db dB error on average, compared to PE simulations) predict estimates
so0 of ground TL from surface sources up to 1000 km. The trained ML model takes as input a
302 range-dependent atmospheric specification and a wave frequency to generate a TL estimate.
303 Errors compared to full PE simulations remain low for increasing source frequency at close
s0a Tange of the source. Our ML model can reproduce complex TL where guided tropospheric
ss waves and multiple stratospheric returns are present. Comparisons with the regression
s equation introduced in Le Pichon et al. (2012) indicate that considering only the influence
s07 of stratospheric winds between 40 and 50 km altitude enables one to reproduce the main
308 features of the variations of TL with effective velocity ratio (LP12’s errors remain below 10
20 dB at low frequency for cor > 1). However, by neglecting the impact of tropospheric and
s0 high-altitude winds, LP12 can lead to significant errors (RMSE ~ 50 dB) while the ML
su model is able to capture accurately the TL for highly heterogeneous wind structures.

sz Several techniques could be used to further improve the accuracy of our ML model.
s1i3 Running additional simulations will increase the size of the training dataset which will reduce
s the RMSE but will not affect the computational cost of ML predictions once trained. Building
us on Raissi et al. (2019); Pettit and Wilson (2020), physical constraints imposed by the PEs
a6 and its boundary conditions could be integrated into the cost function to facilitate the
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a1z convergence of our ML model. Because we trained our algorithm over atmospheric models
us extracted only from the ERA5 and the NRLMSISE-00/HWM-14 climatological models,
s19 biases might be present in the structure of the input wind fields used for training due to
»0 the specific system of equations solved to produce ERA5 models. Acquiring atmospheric
21 models from additional sources (e.g., MERRA dataset as presented in Kumar et al. (2015)),
322 could make the ML model more robust to arbitrary wind models. In addition to atmospheric
23 models, small-scale gravity-wave models could be enhanced by considering more realistic
2 range-dependent perturbations (Drob et al., 2013; Lalande and Wazler, 2016).

»s  Our ML model was trained over a set of simulations generated by a PE modelling tool
26 ( Wazler et al., 2021) which has strong assumptions about infrasound propagation (see Section
27 2). In particular, PE simulations ignore the influence of cross winds which have a strong
28 impact on the acoustic wavefronts at large distances from the source. ML predictions are
29 expected to be significantly improved if the synthetic dataset were generated using a more
10 accurate modelling tool such as Finite-Differences (FD, Brissaud et al. (2016); Sabatini
m et al. (2019)) or Spectral Element Methods (SEM, Brissaud et al. (2017); Martire et al.
332 (2021)) solving the full linearized Navier-Stokes equations. However, the computational
3313 cost associated with such method is much greater than for PE simulations and generating a
su large synthetic dataset would require extensive computational resources. This cost could be
135 somewhat alleviated since, by resolving the full three-dimensional wavefield, multiple TLs
136 could be extracted from one FD or SEM simulation by considering different azimuths from
s the source. Once trained over computationally expensive FD or SEM simulations, we can
138 anticipate the cost of one ML simulation to be on the same order than presented here (< 0.1
330 ) which makes ML even more attractive than when trained over PE simulations. In addition
a0 to the absence of cross-winds, PE simulations ignore topography which causes a significant
s scattering of acoustic energy (Drob et al., 2003). As FD or SEM tools can incorporate
s topography, an encoded representation of topographic variations (e.g., one-dimensional
113 CNN) could be concatenated to the frequency and encoded winds to provide more accurate
s predictions.

us  This work paves the way for the monitoring and characterization of infrasound sources.
16 Recent studies (Vorobeva et al., 2020; De Carlo et al., 2021) have shown that infrasound
a7 generated by colliding ocean waves, called microbaroms, may provide important constraints
us on stratospheric winds. To validate their theoretical model connecting ocean sources and
110 Observations, these studies rely on the empirical model presented in Le Pichon et al. (2012).
350 Extending the current ML model to longer ranges (> 1000 km) would be is useful in, e.g.,
1 global acoustic event analysis, but would also allow an enhanced modelling of microbarom
;2 amplitudes, hence also facilitating the development of global infrasound-based near-realtime
33 atmospheric model diagnostics. Crosswinds are not taken into account in PE simulations
s« which would introduce strong uncertainties at greater ranges. The localization of infrasound
355 sources is generally performed using only the arrival times and backazimuth observed at ground
56 arrays and neglects amplitude (e.g., Blom et al. (2018)). The absence of amplitude inputs
ss7 in the optimization process owes to the high computational cost of full-waveform modelling
18 approaches. The inexpensive ML model introduced here could enable the exploration of
350 variations of relative amplitudes between stations with the choice of source location.

w0 Finally, because ML models provide an analytical relationship between input wind models
s0 and ground TLs, our ML tool could be used to investigate the sensitivity of infrasound
s2 amplitudes with variations in wind models. Sensitivity kernels could be built using explanatory
363 techniques such as Layer-wise Relevance Propagation (Bach et al., 2015) which propagates
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s the ML predictions backwards in the neural network to determine what part of the input
w5 data, i.e., wind model, was used to build a given output, i.e., TL. The construction of
36 wind sensitivity kernels could then be employed to further constrain wind structures in
se7 infrasound-based wind inversions (Vera Rodriguez et al., 2020). While we restricted our
s model to absolute TL predictions, i.e., predictions of the norm of the complex TL, both real
w0 and imaginary parts of the TL could be independently predicted. Predicting complex TL
s0 would enable one to reconstruct the full infrasound time series from any source time function
s input (e.g., Arrowsmith et al. (2012)).
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Figure 5. Optimization of training and input hyperparameters. RMSE vs epochs during training
for variations in (a) batch size, (b) validation dataset size, and (c) input image size from a baseline
model with: batch size 32, 15% validation dataset size, and 20 x 4 input size.

w3 Appendix A: Hyper-parameter optimization

sws  The ML model is described by a set of hyper-parameters that must be optimized in order
w5 to obtain the best regression performance. First, we optimized the ML architecture, i.e.,
a6 the number of CNN and dense layers as well as number of CNN filters, using a Bayesian
07 optimization with Gaussian Processes as implemented in the scikit-optimize Python library
aws (Head et al., 2021). In addition to architecture optimizations, we investigated the variations
w0 in RMSE with the choice of training parameters (batch size and validation dataset size) as
a0 well as inputs image size. Such variations are shown in Fig. 5. There are generally negligible
a1 error differences between each model. As a trade-off between training time and error we
a2 choose batches of size 32, a dataset of size 20%, and input images of size 20 x 4.
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