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Abstract 19 

Geodetic altimeters provide unique observations of the river surface longitudinal profile due to 20 

their long repeat periods and densely spaced ground tracks. This information is valuable for 21 

calibrating hydraulic model parameters, and thus for producing reliable simulations of water 22 

level for flood forecasting and river management, particularly in poorly instrumented 23 

catchments. In this study, we present an efficient calibration approach for hydraulic models 24 

based on a steady-state hydraulic solver and CryoSat-2 observations. In order to ensure that only 25 

coherent forcing/observation pairs are considered in the calibration, we first propose an outlier 26 

filtering approach for CryoSat-2 observations in data-scarce regions using simulated runoff 27 

produced by a hydrologic model. In the hydraulic calibration, a steady-state solver computes the 28 

WSE profile along the river for selected discharges corresponding to the days of CryoSat-2 29 

overpass. In synthetic calibration experiments, the global search algorithm generally recovers the 30 

true parameter values in portions of the river where observations are available, illustrating the 31 

benefit of dense spatial sampling from geodetic altimetry. The most sensitive parameters are the 32 

bed elevations.  In calibration experiments with real CryoSat-2 data, validation performance 33 

against both Sentinel-3 WSE and in-situ records is similar to previous studies, with RMSD 34 

ranging from 0.43 to 1.14 m against Sentinel-3 and 0.60 to 0.73 against in-situ WSE 35 

observations. Performance remains similar when transferring parameters to a one-dimensional 36 

hydrodynamic model. Because the approach is computationally efficient, model parameters can 37 

be inverted at high spatial resolution to fully exploit the information contained in geodetic 38 

CryoSat-2 altimetry.  39 

1. Introduction  40 

Climate change and human activities have altered river regimes globally, posing significant challenges for water 41 

resources managers (Mahé et al., 2013). Flood and drought patterns are changing calling for robust flood hazard and 42 

risk assessment. Many river basins are currently ungauged or sparsely gauged (Hannah et al., 2011), as monitoring 43 

efforts and data accessibility have severely declined in recent decades (Vörösmarty et al., 2001). However, a 44 

reasonable hydraulic representation of river channels is key to producing meaningful large-scale flood models and 45 

typically relies on ground monitoring. Simulating river hydraulics at large scale in poorly instrumented regions 46 

requires adapted model structures and simplifications to compensate for constraints on computational resources and 47 

insufficient ground observations.  48 

Remote sensing observations can be used to retrieve hydraulic parameters and have become a key supplement to in-49 

situ observations in hydrological studies. When parameters cannot be sensed remotely, calibration is a key step to 50 

ensure the simulated quantities agree with observations of the system (Michailovsky et al., 2012). Thus bathymetry 51 

and channel roughness still need to be estimated through calibration or assumptions made by the modeler, e.g. 52 

regarding channel geometry (Alsdorf et al., 2007). Methods to achieve this efficiently in data poor regions are 53 

greatly needed.  54 

Satellite radar altimeters can measure the water surface elevation (WSE) of inland water bodies, which can be used 55 

as an alternative to in-situ level observations. WSE from satellite radar altimetry has been used increasingly in 56 

hydrodynamic model calibration studies as a supplement to in-situ gauge data (Paiva et al., 2013; Schneider et al., 57 

2018b) or even as a possible surrogate in ungauged basins (Getirana et al., 2013; Jiang et al., 2019; Liu et al., 2015). 58 

Dense water level profiles have been proven useful in the estimation of distributed hydraulic parameters 59 

(O’Loughlin et al., 2013; Paris et al., 2016; Schumann et al., 2010). In order to capture small-scale variability of 60 

river morphology the spatial sampling must be denser than what can be achieved with short-repeat missions (down 61 

to 52 km at the Equator for the two Sentinel-3 satellites). In that respect, geodetic altimeters such as CryoSat-2 62 

provide the opportunity to extract longitudinal profiles of rivers.  63 

Although not designed for hydrological applications, the benefit of high spatial sampling density of geodetic 64 

missions for hydraulic studies has been proven in recent years (Jiang et al., 2019; Schneider et al., 2018a, 2018b; 65 

Tourian et al., 2016). Schneider et al. (2018) exploited the dense spatial sampling of CryoSat-2 to calibrate channel 66 

roughness in the well-gauged Po River at a finer spatial resolution. They compared using homogenous roughness 67 
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parameters increasing the spatial resolution from subreach level to 10 km-long sections. The RMSE (Root Mean 68 

Square Error) against in-situ observations improved by up to 29 cm. They showed a strong correlation between the 69 

channel sinuosity and the spatially variable calibrated channel roughness. Jiang et al. (2019) showed that missions 70 

with high spatial coverage, such as CryoSat-2, improved the RMSE against ground observations by up to 4 cm 71 

compared to missions with wider ground track spacing such as Envisat or Jason-2 and 3, and that the sharpness of 72 

the parameter estimates increased with the ground-track spacing. Tourian et al. (2016) reached a similar conclusion 73 

in a study on spatiotemporal densification of altimetry over rivers. The quality of time series at virtual stations 74 

deteriorated slightly when including CryoSat-2 data due to assumptions pertaining to the spatial interpolation. 75 

However, CryoSat-2 decreased the bias by increasing the spatial representation of the river profile.  76 

An important step in using satellite altimetry for inland water applications is the outlier filtering. Typically, outliers 77 

are removed using secondary datasets such as a Digital Elevation Model (DEM) or binary water/land masks (Jiang 78 

et al., 2017; Schneider et al., 2017; Schwatke et al., 2015) or by evaluating the observations themselves, e.g. the 79 

return waveforms or the backscatter coefficients (e.g. Boergens et al., 2017; Dinardo et al., 2018; Schwatke et al., 80 

2015; Zhang et al., 2020). For larger water bodies or short return missions, statistical outlier removal can be used to 81 

further refine the filtering (e.g. Nielsen et al., 2015; Schwatke et al., 2015; Zhang et al., 2020). For medium-sized 82 

rivers, the number of observations per ground track may be too low to perform meaningful statistical outlier removal 83 

and when bathymetry is unknown, WSE is dominated by the unknown bed elevation and errors larger than 1 m may 84 

be difficult to detect. This poses a challenge particularly for geodetic missions, where the seasonal signal cannot be 85 

removed. The dense spatial sampling pattern is impractical for on-ground validation and comparison to traditional 86 

gauging stations would require aggregation of the observations at the expense of the valuable spatial resolution. 87 

Therefore, robust outlier removal procedures are needed to extract useful observations from geodetic altimetry 88 

datasets.  89 

Water levels alone can only provide limited information, and the modelling and calibration problems must be 90 

adequately formulated to reflect the available observations. Getirana et al. (2013) and Liu et al. (2015) achieve good 91 

simulation results when calibrating channel roughness and bed elevation parameters simultaneously in spite of 92 

model equifinality. Jiang et al. (2019) investigated the information contained in altimetry WSE and the capability to 93 

recover parameter values (bed elevation, channel roughness and channel geometry) through calibration. Only the 94 

bed elevation could be consistently retrieved in combination with one of the other parameters. To avoid ambiguity, 95 

channel geometry can be inferred e.g. by assuming rectangular river cross-sections (Biancamaria et al., 2009; Jiang 96 

et al., 2019) or power channel shapes (Neal et al., 2015) and information from satellite imagery and global 97 

databases. 98 

The inverse problem to determine hydrodynamic model parameters is highly non-linear and non-convex. Studies 99 

have used local iterative search algorithms such as Levenberg-Marquardt (Jiang et al., 2019; Schneider et al., 2018b) 100 

or global search algorithms (Getirana et al., 2013; Liu et al., 2015) to identify the optimal parameters. Global search 101 

algorithms are less sensitive to the starting point for non-convex problems; however, a higher number of simulations 102 

are usually required to search the parameter space adequately. The computational requirements to calibrate spatially 103 

distributed hydraulic parameters constrains the integration of the dataset with model calibration. Solving the shallow 104 

water equations – even with efficient solvers – still requires long simulation time, including warm-up periods (Neal 105 

et al., 2012). In particular, the benefit of the spatially dense sampling by CryoSat-2 comes at the cost of a low 106 

temporal resolution, and the river profile is sampled over an extended period of time. Therefore, efficient calibration 107 

approaches balancing parameter accuracy and resources requirements for long observation periods are greatly 108 

needed. 109 

In this study, we evaluate how using a steady-state solver of the shallow water equations and a global search 110 

algorithm improves the calibration efficiency of hydraulic parameters against robustly selected CryoSat-2 111 

observations. Specifically, we  112 

 Propose an outlier filtering method for CryoSat-2 observations suited for data-scarce regions based on 113 

runoff simulations 114 

 Evaluate the capability of retrieving spatially distributed parameter values (i.e. channel roughness and bed 115 

elevation at least every 20 km) using a steady-state solution of the Saint-Venant equations and CryoSat-2 116 

observation density in synthetic calibration experiments 117 

 Evaluate the method using real-world CryoSat-2 observations and the steady-state solver in the Zambezi 118 

catchment 119 

 Assess the performance cost of transferring the calibrated parameters into a 1D LISFLOOD-FP 120 

hydrodynamic model of the Zambezi and evaluate performance against Sentinel-3 water level and in-situ 121 

gauge data 122 
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2. Data and methods  123 

2.1. Study area 124 

The Zambezi is located in Southern Africa and is the fourth largest river in Africa. It is 2,574 km long and drains a 125 

1.4 million km2 basin. Precipitation follows a declining North-to-South gradient, with an average of 1,500 mm in the 126 

North and 500 mm in the South. The wet season is between October and March. Flow is driven largely by the 127 

precipitation climatology but also by retention in large swamps and floodplains, and artificial reservoirs in the basin.  128 

The Zambezi provides key ecosystem services, supporting large populations of fauna and flora, but is also an 129 

important resource for the people living in the basin. We select three regions within the Zambezi as study areas: the 130 

Kafue, the Luangwa and the Upper Zambezi, upstream of the Barotse floodplain, specifically the tributaries 131 

Kabompo and Lungwebungo (Figure 1). 132 

2.2. Hydrologic model 133 

2.2.1. Rainfall-runoff model 134 

The hydrodynamic model is forced with runoff from a conceptual rainfall-runoff model of the Zambezi basin. The 135 

rainfall-runoff model is described in Kittel et al. (2018) and is based on the work by Zhang et al. (2008) who 136 

extended the Budyko framework’s concept of limits to monthly and daily time steps. The model builds on a 137 

representation of the water balance through demand and supply at various levels.  At each time step, Fu’s 138 

representation of the Budyko curve (Zhang et al., 2008) is used to partition precipitation into catchment retention 139 

and runoff, and catchment retention into evapotranspiration, groundwater recharge and root-zone storage. The model 140 

is coupled to a Nash cascade of linear reservoirs simulating tributary processes.  141 

 142 

2.2.2. River delineation and model calibration 143 

The river network is delineated using TauDEM v. 5 (Tarboton, 2015) and the MERIT DEM (Multi-Error-Removed 144 

Improved-Terrain Digital Elevation Model, Yamakazi et al., 2017). The model is forced using GPM (Global 145 

Precipitation Model) precipitation (Huffman et al., 2014) and ECMWF ERA-Interim (European Centre for Medium 146 

range Weather Forecasts - Interim Reanalysis) (Berrisford et al., 2011) temperature observations for the period 2001 147 

to August 2019. The model is calibrated against in-situ discharge records from 1990-present after careful analysis to 148 

ensure hydrometeorological stationarity can be assumed between the observation and simulation periods. In order to 149 

parametrize ungauged subcatchments, the subcatchments were grouped into calibration clusters using the European 150 

Space Agency Climate Change Initiative Land Cover map v.2 (ESA, 2017) and the MERIT DEM and calibrated 151 

holistically using an aggregated objective function at catchment scale allowing trade-offs between parameters in 152 

nested subcatchments. The model setup and performance is summarized in Appendix A and B. The parameter 153 

regionalization approach and calibration methods are described in Kittel et al. (2020a).  154 

2.3. Radar Altimetry 155 

2.3.1. CryoSat-2 156 

CryoSat-2 Level 2 data were provided by the National Space Institute, Technical University of Denmark (DTU 157 

Space) for the period 16-07-2010 to 21-03-2018. The data is based on the 20Hz Level-1b ESA dataset and has been 158 

retracked at DTU Space using an empirical retracker based on a sub-waveform threshold (Villadsen et al., 2016). In 159 

the Zambezi, CryoSat-2 operates only in Low Resolution Mode (LRM). The DEM and CryoSat-2 observations are 160 

reprojected onto the EGM2008 using VDatum (Myers et al., 2007).  161 

First, we use the water occurrence maps from Pekel et al., (2016) to extract observations over the river. We use a 162 

threshold of 10% water occurrence frequency, and allow a 90-m buffer zone around the river mask based on the 163 

results from Schneider et al., (2018). The footprint in LRM is several km wide (2.5 km2 with a diameter of 1.64 km) 164 
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and a return signal from the water surface can be captured before and after the satellite has crossed the river. 165 

Parabolic distortions of the water levels due to this so-called “hooking effect” (Frappart et al., 2006; Maillard et al., 166 

2015), are expected to be negligible at the scale of the buffer applied. 167 

Second, we remove observations deviating from the local value of the MERIT DEM by more than 30 m. This 168 

ensures that the surface elevation is indeed within the 60 m satellite reception window. In total, CryoSat-2 crossed 169 

the Zambezi basin 3,724 times during the observation period, resulting in 291,287 observations over water bodies in 170 

the basin. Of those, 38,697 observations are over the river network itself. The rejection rate in step one is 10.5%, 171 

yielding 34,647 observations after this step. 172 

Unlike previous studies, the third step takes into account the river dynamics by using the output of the rainfall-runoff 173 

model. We fit a one-dimensional smoothing spline to the CryoSat-2 observations on each river reach. The spline 174 

curve is assumed to represent the mean water level for the days of observation. The expected deviation, Δ𝑦, from the 175 

mean level, ymean, associated with the simulated discharge, Q, at the time of sensing assuming uniform flow and a 176 

wide rectangular channel is estimated using Eq. 1. 177 

Δ𝑦 = ((
𝑄

𝑄𝑚𝑒𝑎𝑛
)

3
5

− 1) 𝑦𝑚𝑒𝑎𝑛                      (1)  

We calculate the mean discharge, 𝑄𝑚𝑒𝑎𝑛, using only the days with CryoSat-2 observations. We use error 178 

propagation to estimate the total uncertainty of Δ𝑦 based on assumed uncertainties of the discharge estimate, width, 179 

slope and Manning’s number (Table 1). By applying a range of smoothing factors in the spline interpolation of 180 

WSE, we obtain different estimates of the deviation from the mean water level (Δ𝑦) for each CryoSat-2 observation. 181 

If the deviation falls outside of the predicted confidence interval of Δ𝑦 for all smoothing factors the observation is 182 

rejected.  183 

 184 

Table 1 Assumed uncertainties of parameters used to estimate the confidence interval of the 185 

WSE deviation 𝛥𝑦 186 

Parameter  Estimate Error propagation 

Q Daily discharge from rainfall-runoff model +/- 25 % 

Slope From univariate spline function (minimum fixed at 10-5) 2 x standard deviation over the reach 

Manning’s n 0.035 Calibration range: 0.02-0.05 

Width GRWD database +/- 25 % 

The effect of the spline function smoothing factor on the magnitude of the level deviation from the mean is 187 

mitigated by using an ensemble of spline curves using varying smoothing factors (0.01-4 times the number of 188 

observations in the reach).  189 

 190 

2.3.2.  Sentinel-3 191 

The Sentinel-3 dataset is independent of the data used to calibrate the steady-state model and its virtual stations’ 192 

monitoring network is denser and with more recent observations than the ground network. Sentinel-3 Level-2 WSE 193 

observations were obtained from the ESA GPOD (Grid Processing on Demand SAR Versatile Altimetric Toolkit for 194 

Ocean Research and Exploitation) service (available on https://gpod.eo.esa.int/). The data has been described and 195 

evaluated in Kittel et al. (2020b).  196 

2.4. In-situ observations 197 

In situ observations were available for five subcatchments in the Upper Zambezi and in the Kafue, and two out of 12 198 

subcatchments in the Luangwa (Appendix A). The Zambezi River Authority (ZRA) kindly provided in-situ 199 

observations in the Upper Zambezi, completing the dataset from Michailovsky & Bauer-Gottwein (2014). In-situ 200 

discharge was used for the calibration of the rainfall-runoff model, while in-situ stage at two stations (Kabompo and 201 

Chavuma) was used to validate the hydraulic model. To avoid bias related to the vertical datum of the datasets, all 202 

records are referenced to their long-term mean and only amplitudes are compared.  203 

https://gpod.eo.esa.int/
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2.5. Steady-state solver 204 

2.5.1. Saint-Venant equations 205 

The steady-state solver is based on the Saint-Venant equations, which express the mass balance and momentum 206 

balance equations for gradually varied one-dimensional flow in an open channel 207 

𝜕𝐴

𝑑𝑡
+

𝑑𝑄

𝑑𝑥
= 𝑞                       (2)  

𝜕𝑄

𝜕𝑡
+

𝜕

𝜕𝑥
(

𝛽𝑄2

𝐴
) + 𝑔𝐴

𝜕ℎ

𝜕𝑥
− 𝑔𝐴(𝑆0 − 𝑆𝑓) = 0                      (3)  

x is the chainage or distance along the channel [m], t the time [s], h the channel depth [m], Q the discharge [m3/s], A, 208 

the flow cross-sectional area [m2], q the lateral inflow [m3/s], g, the acceleration due to gravity (set to 9.81 m2/s) and 209 

β the momentum coefficient (set to unity). The bed slope, S0 [m/m] is given by 210 

𝑆0 = −
𝑑𝑧

𝑑𝑥
                      (4)  

z is the channel datum or bed elevation above a given height. The friction slope, Sf [m/m], is given by  211 

𝑆𝑓 =
𝑄2

𝐾2
                      (5)  

K, the conveyance [m3/s], can be expressed as a function of channel cross-section geometry using Manning’s 212 

equation 213 

𝐾 =
𝐴

5
3

𝑛 × 𝑃
2
3

                      (6)  

P is the wetted perimeter [m] and n is Manning’s friction coefficient [s/m1/3]. The derivation of the equations for the 214 

steady-state solver is detailed in Appendix C. 215 

Equation 7 is the general form of the equation to solve, when assuming steady flow (i.e. constant discharge over 216 

time) and lateral inflow in a rectangular channel, where RHS (Right Hand Side) is the collection of terms not 217 

containing the derivative of the depth with respect to the chainage 218 

𝑑ℎ

𝑑𝑥
=

(
𝑄2

𝑔𝐴3
𝜕𝐴
𝜕𝑥

+ 𝑆0 −
𝑄2

𝐾2 +
2𝑄 × 𝑞

𝑔𝐴2 )

(1 −
𝑄2

𝑔𝐴3
𝜕𝐴
𝜕ℎ

)

𝑑ℎ

𝑑𝑥
= 𝑅𝐻𝑆(𝑥, ℎ(𝑥))                      (7)

 

Where q is the lateral inflow at chainage x. Lateral inflow consists of runoff generated by the rainfall-runoff model 219 

in tributary subcatchments, which enters the hydrodynamic model at the most upstream node, and runoff produced 220 

in the subcatchment itself, which is distributed along the chainage proportionally to the contributing area. 221 

The solver is initialized by calculating the downstream water level boundary condition using Manning’s equation 222 

and a downstream slope of 2e-4 m/m at chainage, i. The level is then calculated stepwise at 𝛥𝑥 spatial increments, 223 

moving upstream along the channel and solving Eq. 10 either implicitly (Eq. 11) or explicitly (Eq. 12): 224 

ℎ𝑖−1 = ℎ𝑖 −
1

2
× (𝑅𝐻𝑆(𝑥𝑖 , ℎ𝑖) + 𝑅𝐻𝑆(𝑥𝑖−1, ℎ𝑖−1)) × 𝛥𝑥                       (8)  
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ℎ𝑖−1 = ℎ𝑖 − 𝑅𝐻𝑆(𝑥𝑖 , ℎ𝑖) × Δ𝑥                      (9)  

The explicit solution is faster but requires smaller steps Δ𝑥 to be stable, while the implicit solution is less sensitive to 225 

the spatial increments but requires the solution of a non-linear implicit equation for ℎ𝑖−1 at each time step. We tested 226 

the speed of the two solvers using a hypothetical formulation of the Kabompo reach channel. The solutions are 227 

virtually identical when solving the equations for steps of less than 500 m. The implicit solver runs in 5.3 seconds, 228 

whereas the explicit solution needs 0.06 seconds. Even when applying the implicit solution only to cross-sections 229 

with observations, the fastest computational time remains slower (0.17 seconds), and the large spatial increments 230 

affect the final solution. We therefore use the explicit solver using 250 m spatial steps. If the solution becomes 231 

numerically unstable, the spatial step is subdivided into 1 m increments. 232 

 233 

2.5.2. Global search algorithm and performance statistics 234 

We define calibration cross-sections every 20 km and at each CryoSat-2 observation. Although the steady-state 235 

solver is less computationally demanding than a full hydrodynamic calibration, the number of model parameters 236 

must still be constrained. Increasing the parameter space increases the risk of parameter correlation. We therefore 237 

remove cross-sections less than 5 km apart for shorter reaches (Kabompo and Upper Zambezi) and 10 km apart for 238 

longer reaches (Lungwebungo, Kafue and Luangwa).  239 

The bed elevation and channel roughness are calibrated for each cross-section using the Shuffled Complex 240 

Evolution algorithm from the University of Arizona (SCEUA) developed by Duan et al., (1992) and implemented in 241 

Python using SPOTPY (Houska et al., 2015). The algorithm uses “complexes” to sample the parameter space. The 242 

complexes are evolved independently and shuffled after each evolution cycle to ensure an efficient global search. 243 

The number of complexes is the most important parameter in the algorithm setup (Madsen, 2000).  244 

The calibration objective function consists of a data misfit term comparing the residuals between the CryoSat-2 245 

WSE and the simulated WSE  246 

𝐸𝑖 =  (𝑤𝑖 + 𝑧𝑖) − 𝑊𝑆𝐸𝐶2,𝑖                        (10)  

and a smoothness preference for the two parameters along the chainage 247 

𝑃𝑖 =
√(𝑝𝑖 − 𝑝𝑖−1 )

2

𝑓𝑠𝑚𝑜𝑜𝑡ℎ
                      (11)  

𝑓𝑠𝑚𝑜𝑜𝑡ℎ is the smoothness preference: smaller values will give higher weight to P and force the solver to move 248 

towards a smoother solution with less abrupt changes in bed elevation or channel roughness. 249 

The calibration objective is 250 

𝑂𝑏𝑗 = √
1

2𝑁
(∑ 𝐸𝑖

2

𝑁

𝑖=1

+ ∑ 𝑃𝑖
2

𝑁

𝑖=1

)                      (12)  

The smoothness preference must be chosen to balance a realistic water surface and allowing features from the bed 251 

and channel roughness to be simulated. The preference is set to 1, giving equal weight to the smoothness and error 252 

objectives due to the types of parameters evaluated. This balances the difference in magnitude between the 253 

objectives while still prioritizing a good fit between data and observation. 254 

We compute three additional diagnostic performance measures to evaluate the post-calibration performance of the 255 

hydraulic model: the Pearson correlation coefficient, the rank correlation coefficient and the non-parametric Kling-256 

Gupta Efficiency (Pool et al., 2018). The Kling-Gupta Efficiency (KGE) combines the Pearson correlation 257 

coefficient, and the biases between mean and observed mean discharge and between the simulated and observed 258 

standard deviation. In the non-parametric version, Spearman’s rank correlation is used instead and the discharge 259 

variability performance is computed using the flow duration curve. The method is less sensitive to assumptions of 260 

data linearity, data normality and outliers. 261 

 262 
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2.5.3. Synthetic experiment and global search algorithm 263 

Synthetic calibration experiments are used to evaluate the capabilities of the steady-state solver and calibration 264 

algorithm to retrieve the bed elevation and channel roughness using CryoSat-2-type observations of WSE. We 265 

generate a synthetic set of parameters (i.e. bed elevation and Manning’s n at all cross-sections) to produce synthetic 266 

CryoSat-2 observations in the Kabompo reach, i.e. a synthetic representation of the true WSE. To reflect data 267 

uncertainties, the synthetic truth is perturbed with normally distributed random noise with varying standard 268 

deviations. Two calibration runs with 10 and 20 complexes, respectively, are performed. The resulting six 269 

experiments are: 270 

 3 cm standard deviation representing in-situ water level accuracy using a) 10 complexes and b) 20 complexes 271 

 20 cm standard deviation representing high accuracy for altimetry WSE using a) 10 complexes and b) 20 272 

complexes 273 

 40 cm standard deviation representing average accuracy for altimetry WSE using a) 10 complexes and b) 20 274 

complexes 275 

Parameter sensitivity is evaluated by conducting an extended Fourier amplitude sensitivity test (FAST) (Saltelli et 276 

al., 1999) as implemented in SPOTPY (Houska et al., 2015). We compare the total sensitivity of the bed elevation 277 

and channel roughness at each cross-section to assess the spatial sensitivity of the two parameters along the river 278 

chainage. Over 686.000 model runs are performed to adequately sample the parameter space. 279 

 280 

2.5.4. Calibration against real-world observations  281 

We then use the real-world CryoSat-2 observations and calibrate the bed elevation and channel roughness in five 282 

reaches in the Zambezi catchment. To ensure that the steady-state assumption is reasonable, we choose CryoSat-2 283 

observations where the 10-day discharge gradient is less than 5% of the mean discharge. This is the case for 69.9% 284 

of the CryoSat-2 observations. Furthermore, we classify the simulated runoff and CryoSat-2 observations based on 285 

the runoff histogram and time of observation. This ensures that extreme runoff simulations are not given excessive 286 

weight during the calibration, assuming that each CryoSat-2 river surface profile is representative of its respective 287 

discharge class during calibration. 288 

2.6. LISFLOOD-FP hydrodynamic model 289 

LISFLOOD-FP is a coupled 1D/2D hydrodynamic model simulating the propagation of flood waves along channels 290 

(in 1D) and over floodplains (in 2D). LISFLOOD-FP has three solvers available for calculating channel flow. The 291 

kinematic wave routing model only considers the friction slope, assuming local and convective acceleration and the 292 

free surface gradient are negligible. The diffusive wave model includes an additional pressure term. The sub-grid 293 

channel solves the full shallow water equations with the exception of the convective acceleration term (Neal et al., 294 

2012). All three formulations are numerically stable (De Almeida et al., 2012). The model is specifically designed 295 

for poorly gauged catchments and has been implemented for a number of sites including the Niger River (Neal et al., 296 

2012), the Congo (O’Loughlin et al., 2020), and rivers in the UK (Sosa et al., 2020). 297 

We use LISFLOOD-FP to simulate the channel hydrodynamics in the transient state. The model requires 298 

information about channel geometry in the form of channel slope, channel width and bankfull depth from a DEM or 299 

surveyed cross-sections. The bankfull depth is derived from the MERIT DEM, the width from the GRWD database 300 

and the bed elevation and channel roughness from the calibrated steady-state solver. The resolution of the input files 301 

is 900 m instead of the 250 m used by the steady-state solver to ensure reasonable computation time. The model is 302 

forced with daily discharge from headwater catchments and lateral inflow, both simulated by the rainfall-runoff 303 

model. To ensure that runoff is allocated realistically, it is distributed according to the contributing area to each 304 

channel pixel, obtained from the river delineation. The model is run in 1D as a means to compare the steady-state 305 

solver to a transient solver by burning in the channel bed elevation into the DEM. 306 
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3. Results 307 

3.1. CryoSat-2 outliers filtering 308 

Figure 2 illustrates the CryoSat-2 river longitudinal profiles and outlier filtering for each of the five reaches. 309 

Observations are considered outliers if there is a discrepancy between the seasonality (high or low flow) and the sign 310 

of the difference between the data points and the spline function (positive or negative deviation from the mean) or if 311 

the magnitude of the difference is unlikely. For instance, in the downstream part of the Upper Zambezi, water level 312 

increases of 5 m are unlikely; therefore, the associated CryoSat-2 observations are rejected. The rejection rate is 313 

between 10% for Lungwebungo and 24% for Luangwa.  314 

The main challenges in terms of outlier-filtering is adequately fitting the spline function so it is representative of the 315 

mean water surface profile along the river line. In the Upper Zambezi, Kafue and Kabompo we removed 316 

observations deviating from the spline function by more than twice the residual standard deviation and fitted a new 317 

spline function through the remaining observations, resulting in rejection rates of 18%, 19% and 23% respectively. 318 

This was necessary due to the combination of large variations in WSE and changes in the reach slope.  There is a 319 

fine balance between overfitting outliers and smoothing the mean water level. 320 

The Luangwa River runs from North-East to South-West. CryoSat-2 predominantly crosses the Luangwa between 321 

March and end of November, thus missing the wet season. Therefore, the CryoSat-2 observations are expected to be 322 

relatively close to the mean water elevation with very small predicted residuals. In this case the outlier filtering is 323 

particularly sensitive to the estimation of the mean water surface profile. However, reducing the smoothing factors 324 

of the spline curve ensemble also increased the risk of admitting clear outliers. 325 

3.2. Synthetic test 326 

The synthetic tests evaluate the impact of observation uncertainties by using respectively 3 cm, 20 cm and 40 cm 327 

standard deviations to perturb the synthetic CryoSat-2 observations, and of the number of complexes in the 328 

optimization algorithm by evolving 20 complexes instead of the standard 10. The results are shown in Figure 3. 329 

A larger difference in performance is seen when increasing the observation uncertainty compared to increasing the 330 

number of complexes, as seen in the performance statistics (Table 2) and the spread in the scatter plot in Figure 3. 331 

The RMSD is in the order of magnitude of the observation uncertainty. For all uncertainties parameter retrieval is 332 

most improved at gauged cross-sections. This was expected and confirms the advantage of using spatially dense 333 

observations to calibrate hydrodynamic parameters. The weighted objective used in calibration includes a 334 

smoothness factor. There is good consistency between the RMSD and calibration objective, with the smoothness 335 

factor forcing a reduction in variations where the observation density is low. Increasing the number of complexes 336 

comes at a higher computational cost, and the benefit is limited in terms of calibration objective and parameter 337 

retrieval. 338 

 339 

Table 2 Calibration performance for the synthetic experiments 340 

Observation uncertainty 𝜎 = 40 cm 𝜎 = 20 cm 𝜎 = 3 cm 

 

Number of complexes 10 20 10 20 10 20 

WSE objective 0.26 0.26 0.15 0.15 0.09 0.09 

RMSD [m] 0.33 0.33 0.18 0.17 0.08 0.08 

Datum offset RMSD [m] 0.70 0.75 0.60 0.49 0.42 0.56 

- at gauged cross-section 0.57 0.53 0.41 0.39 0.38 0.39 

Manning’s n RMSD [s/m1/3] 0.0082 0.0083 0.0088 0.0072 0.0071 0.0075 
 341 
The downstream sections are most sensitive during calibration according to the FAST sensitivity analysis. The 342 

Saint-Venant equations account for backwater effects; therefore, changes in downstream parametrization have an 343 

impact on all upstream evaluation points. Tweaking upstream parameters will mainly impact the upstream 344 
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predictions in the steady-state solver and thus have limited effect on the overall performance. Sensitivity is driven by 345 

the observation density, as seen for the parameters at cross-section 12, which correspond to the first large gap in 346 

observations, and are not sensitive at all (Figure 3 and Figure 4).  347 

 348 

The analysis also confirms that the objective function is less sensitive to the channel roughness, n, than the datum 349 

offset, z, as shown in Figure 4 (top). The scatter plots in Figure 4 provide information on whether trade-offs during 350 

calibration can explain the low sensitivity of the channel roughness. We plot the results of the low uncertainty 351 

calibration, to remove the effect of observation uncertainty on the parameter retrieval. During calibration, the 352 

parameters converge to relatively narrow parameter space. The synthetic truth is not always within the optimum 353 

range, which is due to the global objective function and trade-offs between parameters at the different cross-354 

sections.  355 

The bed elevation and channel roughness have similar local effects: overestimating the channel roughness raises the 356 

water level, but can be compensated by slightly decreasing the bed elevation locally. Previous studies have shown 357 

that the two parameters impact the water surface differently over different characteristic spatial scales (Durand et al., 358 

2014; Wood et al., 2016). When calibrating a single, global roughness parameter, the bed elevation will tend to have 359 

a local impact, whereas adjustments of the friction parameter will have a more diffuse effect and impact a longer 360 

portion of the reach. Thus, the two parameters can be retrieved simultaneously. In this study, both parameters are 361 

calibrated locally and both have a local impact. This can be seen at cross-section 0, where the best performing 362 

parameter samples (objective function less than 0.2) form a straight line towards the synthetic truth. Thus, although 363 

parameters can be retrieved successfully at some cross-sections, there is still model ambiguity (e.g. at cross-section 364 

4). The ambiguity can be partially resolved by increasing the observation density.  365 

3.3. Calibration using real-world CryoSat-2 observations in the Zambezi 366 

Figure 5 shows the calibrated longitudinal water surface profiles at the five locations in the Zambezi after 367 

calibrating the steady-state solver against real-world CryoSat-2 observations. Overall, the simulated WSE 368 

corresponds quite well to the CryoSat-2 observations.  369 

LISFLOOD-FP models are run for each reach using the calibrated channel roughness and bed elevation. Table 3 370 

summarizes performance statistics of the calibration and evaluation based on the steady-state solver and the transient 371 

solution respectively. We compare the simulated and observed water level by subtracting calibrated bed elevation 372 

from the satellite altimetry WSE. This removes the otherwise dominating effect of elevation on the performance. 373 

Overall performance is good and consistent across performance metrics. The weighted objective includes a 374 

smoothness and shallowness preference and is therefore generally larger than the RMSD. There is a good correlation 375 

between the simulated WSE and CryoSat-2 WSE. The RMSD is between 0.58 m and 0.88 m. 376 

Figure 6 shows the WSE time series simulated by LISFLOOD-FP against the in-situ records at Chavuma and 377 

Watopa and against the Sentinel-3 WSE. We note that there are some timing issues in the water level prediction, 378 

particularly at Chavuma, and in the low flow predictions at Watopa. These are consistent with uncertainties in the 379 

rainfall-runoff model, which forces the steady-state hydraulic model and hydrodynamic models. Sentinel-3 is a SAR 380 

altimeter and expected to have a lower uncertainty than a conventional altimeter (3-30 cm in the Zambezi, according 381 

to Kittel et al., 2020b). We represent the Sentinel-3 data with a slightly higher uncertainty, as the stations used in 382 

this study could not all be evaluated against in-situ observations. An upper bound of 50 cm was therefore selected to 383 

indicate the Sentinel-3 uncertainty in Figure 6. 384 

The steady-state and transient solutions differ by around 20 to 40 cm in RMSD against CryoSat-2 observations, 385 

which is in the order of magnitude of the expected CryoSat-2 uncertainty in LRM (Villadsen et al., 2016). The 386 

difference between the steady-state and transient solution (22 cm to 98 cm) can be partly explained by 1) the 387 

difference between the subgrid representation of the channel and the 1-dimensional line representation of the steady-388 

state solver and 2) the coarser spatial resolution (900 m instead of 250 m) needed to allow reasonable computation 389 

time. The performance metrics remain comparable or better than results reported in previous studies. 390 

 391 

Table 3 Steady-state (SS) solver and LISFLOOD-FP (L) performance statistics using calibrated 392 

parametrization and CryoSat-2 observations (CS), Sentinel-3 (S3) WSE and in-situ water level 393 

observations. The Pearson and Spearman correlation coefficients are calculated by subtracting 394 

the calibrated bed elevation from the CryoSat-2 observations to remove the effect of elevation on 395 
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the performance. A p-value below 2.5% is considered significant – in all cases the p-value is 396 

below the threshold and the correlation is significant. 397 

 Weighted 

objective 

 

RMSD 

Non-

parametric 

KGE 

Pearson r2 Spearman r2 

Data source C2  C2 S3 In-

situ 

C2 In-

situ 

C2 S3 In-

situ 

C2 S3 In-

situ 

Solver SS SS 

vs. L 

SS L L L L L L L L L L L 

Upper 

Zambezi 

0.68 0.39 0.83 0.79 0.71 0.73 0.79 0.25 0.91 0.79 0.84 0.79 0.82 0.92 

Lungwebungo 0.78 0.98 0.88 1.31 0.43  0.50  0.37 0.58  0.53 0.58  

Kabompo 0.45 0.32 0.61 0.71 1.14 0.60 0.89 0.49 0.90 0.69 0.90 0.90 0.79 0.90 

Kafue 0.74 0.35 0.89 1.05 0.62  0.78  0.85 0.91  0.85 0.90  

Luangwa 0.54 0.17 0.66 0.60 0.99  0.11  0.58 0.43  0.44 0.61  

 398 

Overall, the performance is consistent with previous studies with RMSD values between 0.60 and 1.31 m. Jiang et 399 

al. (2019) obtained RMSD between the simulated and altimetry WSE between 0.72 m and 1.6 m, when using 400 

various combinations of altimetry datasets, with CryoSat-2 alone giving a calibration performance of 1.28 m. 401 

Domeneghetti et al. (2014) obtained a RMSD of around 1 m using Envisat data to calibrate a hydrodynamic model 402 

of the Po river. O’Loughlin et al. (2020) achieved RMSD between 0.84 and 2.02 m in the Congo when comparing a 403 

large-scale hydraulic model forced with in-situ and simulated discharge. As in this study, the channel depths and 404 

friction were calibrated against satellite altimetry WSE observations; however, the study used a global channel 405 

friction parameter. 406 

4. Discussion  407 

4.1. CryoSat-2 data selection 408 

The CryoSat-2 observations used in the calibration must be accurate and representative of the river WSE. CryoSat-2 409 

is not error-free and difficult to validate due to the high spatial sampling but low temporal sampling frequency. In 410 

this study, we used hydrological simulations from a calibrated hydrological model to assess the validity of the 411 

CryoSat-2 observations. Instead of selecting a fixed threshold to assess the deviation of a given CryoSat-2 412 

observation from the local river surface longitudinal profile, we predict the expected range of water level deviation 413 

based on the hydrological conditions in the reach at the time of observation.  414 

Robust outlier removal is essential but highly challenging in poorly instrumented catchments. By exploiting 415 

simulations of discharge, which are already available as input to the hydraulic model, a more refined method was 416 

developed in this study. Valid observations may be rejected due to errors in the corresponding simulated discharge. 417 

This is likely to occur in poorly gauged catchments, where calibration is constrained by data availability. Retaining 418 

these observations may introduce errors in the calibration, as it fits the parameters to produce water levels, which are 419 

unlikely to have occurred under the simulated flow conditions. 420 

4.2. Model performance 421 

The steady-state assumption of the solver is a simplification of the actual hydrodynamic conditions; it can be run for 422 

specific time steps corresponding to satellite overpasses greatly reducing computational time. The results are in the 423 

order of magnitude of the calibration data uncertainty and comparable to previous studies. This confirms that the 424 

method can be used to calibrate hydraulic models efficiently against spatially dense WSE observations.  425 

Furthermore, simplifications are necessary to represent poorly instrumented river channels for hydraulic modelling. 426 

In particular, some assumption on the cross-section geometry is required (e.g. trapezoidal, rectangular channel, 427 



manuscript submitted to Water Resources Research 

 

power channel). In this study, we select a simple rectangular shape, and use global river width databases to obtain 428 

the missing information about the mean width. An alternative approach could be to use a power-law to correlate the 429 

area and water depth and the conveyance and water depth, removing the need for an explicit definition of the 430 

channel shape.  431 

Neal et al. (2015) investigated incorporating the channel cross-section uncertainty into large-scale flood inundation 432 

models of data sparse areas and showed that performance improved in models with calibrated channel friction and 433 

rectangular channels. Their results suggest that a channel shape parameter, roughness and elevation could be fitted 434 

simultaneously, provided sufficient dynamic observations are available in the reach. Neal et al. (2015) also showed 435 

that informing the model with even basic information about the channel geomorphology, such as width-discharge 436 

curves from optical or radar satellite imagery improved model calibration against level observations. The shape and 437 

friction have similar effects locally, and calibrating the shape parameter may be more appropriate than calibrating 438 

friction for narrow channels, where the assumption of a rectangular shape is less appropriate.  439 

The calibration of local variations in channel roughness greatly increases the parameter space, and poses a further 440 

challenge. Jiang et al. (2019) demonstrated that altimetry alone is insufficient to calibrate geometry parameters as 441 

well as a spatially distributed channel roughness. The reason for this is clear: local channel conveyance depends on 442 

both the channel roughness and flow area. Thus, there is model ambiguity and additional datasets are required to 443 

constrain the increased parameter space (e.g. channel width under known flow conditions). The unknown channel 444 

bed elevation prevents a satisfactory calibration of the level to area relationship and channel roughness. Thus, an 445 

interesting future path could include exploring whether the geometry parameters could be sufficiently constrained 446 

from alternative or new remote sensing observations, or whether calibrating local changes in channel geometry may 447 

be more robust than calibrating the channel roughness.  448 

4.3. 1D versus 2D hydrodynamic model 449 

 The steady-state solver is one-dimensional and thus does not include bank overflow and floodplain processes. This 450 

will introduce errors in shallow reaches during extreme events, where the peak water level might be over-predicted 451 

to accommodate the high flow in a rectangular channel. The subgrid solver in LISFLOOD-FP calculates the 452 

floodplain water level when the level in the channel exceeds the bank elevation. This requires a robust match 453 

between bed and bank elevation. Figure 7 illustrates the calibrated cross-sections versus the DEM at selected 454 

locations of the five reaches. Because the steady-state solver only calibrates the bed elevation, the bank elevation is 455 

extracted from the DEM. This poses a challenge if the calibrated bed is equal to or higher than the DEM elevation 456 

height, e.g. in the Upper Zambezi (Figure 7). The calibration information then becomes obsolete. If the difference is 457 

too small, the channel might overflow too often (as might be the case at Kabompo). Thus to apply the results in a 2D 458 

modelling setup, the bank elevation must be corrected, to ensure the channel is correctly burnt into the floodplain, 459 

e.g. using SAR imagery to deduce the bank and bed elevation relationship (Wood et al., 2016).  460 

The DEM will usually give the elevation of the water surface in the channel at time of observation. This means that 461 

the calibrated bed elevation is more likely to be below than above the DEM elevation. The opposite occurs at 462 

Chavuma, where the slope is very high. CryoSat-2 observations before and after the drop in elevation force a 463 

compromise.  464 

5. Conclusion 465 

A reasonable hydraulic representation of river channels for large-scale flood modeling is essential but challenging to 466 

obtain in data poor regions. In this study, we propose using a steady-state solver to calibrate hydraulic parameters 467 

against geodetic altimetry observations. We propose an informed outlier rejection framework based on simulated 468 

discharge to select CryoSat-2 observations for calibration. The approach successfully removes obvious outliers, 469 

while allowing reasonably large deviations from the estimated mean level, provided there is coherence with the 470 

hydrological conditions on the day of observation. Furthermore, it ensures that only coherent forcing/observation 471 

pairs are included in the calibration. The method enables filtering spatially dense WSE observations from geodetic 472 

satellite altimetry missions in data sparse regions, where traditional outlier identification methods fail.  473 

Hydraulic parameter retrieval was evaluated in synthetic experiments, focusing on the impacts of observation 474 

density and quality, and on the calibration setup. Bed elevation was retrieved with a RMSD of 42-75 cm and channel 475 

roughness with a RMSD of 0.007-0.009 s/m1/3. The calibration revealed a higher sensitivity to the elevation offset 476 

compared to the roughness parameter, resulting in a poor retrieval of the upstream channel roughness. Furthermore, 477 

we noted the effect of the WSE observation density, with the most successful performance occurring in densely 478 
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observed segments of the reach. Observation uncertainty affected the retrieval of parameters at ungauged cross-479 

sections, and performance was more similar at gauged cross-sections for the three investigated data quality 480 

scenarios.  481 

By carefully selecting observations where the steady-state assumption is reasonable, five reaches of the Zambezi 482 

were calibrated with satisfactory model performance using real CryoSat-2 observations. Calibration against real-483 

world CryoSat-2 observations was evaluated using a range of statistical diagnostics to confirm the model behavior 484 

and compared to Sentinel-3 and in-situ observations of WSE to evaluate the temporal patterns of WSE in the river 485 

channels. The method yielded at least as good performance as past studies at far reduced computational cost and the 486 

parameter transfer from the steady-state to the transient solver did not impact performance significantly. 487 

It is clear that geodetic altimetry missions hold valuable information for hydrological studies, particularly in 488 

ungauged basins. However, the dense spatial sampling requires careful data selection and comes at a computational 489 

cost because, in the hydraulic inversion, WSE must be simulated at all points of observation by the hydraulic 490 

forward model. The approach presented in this study integrates the altimetry observations in a fast and efficient, 491 

global calibration approach at low cost compared to a 1D hydrodynamic model.  492 
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Appendix A – In-situ data used in calibration for the RR-model 670 

Table A. 1 Summary of In-situ stations used to calibrate the hydrologic (discharge records) and 671 

validate the hydrodynamic model (stage records) and of the number of CryoSat-2 observations 672 

available for calibration of the hydraulic model in the three study areas. The mean annual 673 

discharge is over the time of simulation, 2001-2018. *: the discharge record at Kabompo Boma 674 

has been manually bias-corrected based on historical records from 1990-1992. 675 

Main river and 

tributaries 

Drainage 

area 

[km2] 

Length [km]/ 

tributary to 

Observations Stations Time of 

operation 

Mean annual 

discharge 

[m3/s] 

CryoSat-2 

observations 

after outlier 

removal 

Zambezi 238,667 468.9 Discharge, 

stage 

Chavuma 

(1105) 

Zambezi 

Pump house 

(1150) 

Lukulu 

(2030) 

1959-2019 

1990-2006 

 

1950-2018 

656 

911 

 

886 

140 

Luena 

(Angola) 

19,924 Zambezi        

Lumbala 24,183 Zambezi      

Kabompo 72,068 491.0  Kabompo 

Boma* 

(1650) 

Watopa 

(1950) 

2000-2008 

 

1958-2019 

165 

 

273 

83 

Lungwebungo 47,071 754.1     375 

Makondu 6,278 Zambezi      

Dongwe 20,911 Kabompo      

West Lunga  12,031 Kapombo      

Mwafwe 10,581 Kabompo      

Luena 

(Zambia) 

21,641 Zambezi      

Kafue 102,714 739,1 Discharge, 

stage 

Chilenga 

(4350) 

M’Swebi 

(4435) 

Lubungu 

(4450) 

Hook 

Pontoon 

(4670) 

1962-2007 

1953-2005 

1959-2007 

1973-2008 

153 

162 

147 

231 

180 

Lunga 24,517 Kafue   Chifumpa 

Pontoon 

(4560) 

1959-2007 87  

Lukanga 13,925 Kafue      

Lufupa 10,451 Kafue      

Luswishi 9,470 Kafue      

Luangwa 149,523 989.4 Discharge, 

stage 

Great East 

Rd. Bridge 

(5940) 

1948-2002 168 230 

Lunsemfwa 44,356 Luangwa      

Lukusashi 14,950 Lunsemfwa      

Mwomboshi 8,939 Luangwa      

 676 

We note a discrepancy in the discharge record at Kabompo Boma, in the Upper Zambezi (Figure A. 1). In the early 677 

1990s, the annual minimum flow is below 100 m3/s. Post-2000 there is a shift in the dry season flow. The same shift 678 

is seen in the water level records, suggesting the change may be due to a change in the reference height. Using the 679 

same rating curve results in the shift observed in the hydrograph. Closer inspection, reveals a bias in stage of 65 cm 680 
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between the pre- and post-2000 records. Comparison with the closest downstream station, Watopa, confirms the 681 

discrepancy. We therefore apply a bias correction to the post-2000 stage records and calculate the discharge using 682 

the station rating curve. The resulting corrected discharge was used to calibrate the model at Kabompo Boma. 683 

 684 

Appendix B – Performance of the hydrological model 685 

Performance measures used to calibrate the hydrological model include evaluation of the flow duration curve, using 686 

the performance measure presented in Westerberg et al. (2011) and the RMSD of the daily discharge climatology 687 

(Kittel et al., 2018). Values between 0 and 1 are deemed acceptable – perfect prediction yields scores of respectively 688 

1 and 0. In addition to these two performance measures, we calculate the non-parametric version of the Kling-Gupta 689 

Efficiency measure as proposed by Pool et al. (2018). 690 
 691 

Table B. 1 Summary of calibration setup of the rainfall-runoff model and performance statistics 692 

at the calibration and validation stations 693 

 Calibration zones Calibration and 

validation stations 

RMSD of 

discharge 

climatology 

Flow duration 

curve 

Non-parametric 

KGE 

Upper Zambezi 1. Low slope, 
dominant 
forest cover 

2. Low slope, 
land cover 
mosaic 

3. High slope, 
dominant 
forest cover 

1. Watopa (C) 
2. Chavuma 

(C) 
3. Kabompo 

Boma (C) 
 

1. 0.63 

2. 1.05 

3. 0.79 

1. 0.12 

2. 0.21 

3. 0.15 

1. 0.82 

2. 0.74 

3. 0.84 

Kafue 1. Low slope, 
forest cover 
> 75% 

2. Low slope, 
land cover 
mosaic 

3. High slope, 
forest and 
shrub 
mosaic 

4. High slope, 
forest cover 
> 80% 

1. Lubungu (C) 
2. Hook 

Pontoon (C) 
3. Chilenga (C) 
4. Chifumpa 

Pontoon (C) 

1. 1.47 

2. 0.83 

3. 0.57 

4. 1.64 

1. 0.08 

2. -0.36 

3. -1.04 

4. -0.72 

1. 0.88 

2. 0.87 

3. 0.90 

4. 0.74 

Luangwa 1. High cover, 
forest 
mosaic 

1. Great East 
Rd. Bridge 
(C) 

1. 0.58 1. 0.002 1. 0.37 

 694 

 695 

Appendix C – Steady-state solver with lateral inflow 696 

The Saint-Venant equations express the mass balance and momentum balance equations for gradually varied one-697 

dimensional flow in an open channel 698 
𝜕𝐴

𝑑𝑡
+

𝑑𝑄

𝑑𝑥
= 𝑞                       (𝐶. 1)  
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𝜕𝑄

𝜕𝑡
+

𝜕

𝜕𝑥
(

𝛽𝑄2

𝐴
) + 𝑔𝐴

𝜕ℎ

𝜕𝑥
− 𝑔𝐴(𝑆0 − 𝑆𝑓) = 0                      (𝐶. 2)  

If we assume steady flow, i.e. constant Q, and no lateral inflow, the mass balance equation (Eq. C.1) becomes equal 699 

to the lateral inflow and Saint-Venant equations simplify to  700 

𝑑ℎ

𝑑𝑥
−

𝑄2

𝑔𝐴3

𝑑𝐴

𝑑𝑥
− 𝑆0 +

𝑄2

𝐾2
= 0                      (𝐶. 3)  

By taking the partial derivative of the area relative to the chainage and width, and expanding the first term, Eq. C.2 701 

becomes: 702 

(1 −
𝑄2

𝑔𝐴3

𝜕𝐴

𝜕ℎ
)

𝑑ℎ

𝑑𝑥
−

𝑄2

𝑔𝐴3

𝜕𝐴

𝜕𝑥
− 𝑆0 +

𝑄2

𝐾2
= 0                      (𝐶. 4)  

Isolating the change in depth over the chainage gives the general form of the equation to solve 703 

𝑑ℎ

𝑑𝑥
=

(
𝑄2

𝑔𝐴3
𝜕𝐴
𝜕𝑥

+ 𝑆0 −
𝑄2

𝐾2)

(1 −
𝑄2

𝑔𝐴3
𝜕𝐴
𝜕ℎ

)

𝑑ℎ

𝑑𝑥
= 𝑅𝐻𝑆(𝑥, ℎ(𝑥))                      (𝐶. 5)

 

Where RHS (Right Hand Side) is the collection of terms not containing the derivative of the depth with respect to 704 

the chainage. We can replace 
𝜕𝐴

𝜕ℎ
 and 

𝜕𝐴

𝜕𝑥
 with channel properties. For a rectangular channel with variable width 705 

𝑤 = 𝑤(𝑥) 706 

𝑑ℎ

𝑑𝑥
=

(
𝑄2

𝑔𝐴3
𝑑𝑤
𝑑𝑥

+ 𝑆0 −
𝑄2

𝐾2)

(1 −
𝑄2

𝑔𝐴3 𝑏)
                      (𝐶. 6)  

If we apply this method to larger river networks, there will be lateral inflow, q, at certain points. Therefore, we must 707 

take into account 708 

𝑑

𝑑𝑥

𝑄2

𝐴
=

𝐴
𝑑𝑄2

𝑑𝑥
− 𝑄2 𝑑𝐴

𝑑𝑥
𝐴2

                       (𝐶. 7)
 

𝑑𝑄2

𝑑𝑥
=

𝑑(𝑄2)

𝑑𝑄

𝑑𝑄

𝑑𝑥
= 2𝑄 × 𝑞                       (𝐶. 8)   

Eq. 10 becomes 709 

𝑑ℎ

𝑑𝑥
=

(
𝑄2

𝑔𝐴3
𝜕𝐴
𝜕𝑥

+ 𝑆0 −
𝑄2

𝐾2 +
2𝑄 × 𝑞

𝑔𝐴2 )

(1 −
𝑄2

𝑔𝐴3
𝜕𝐴
𝜕ℎ

)

𝑑ℎ

𝑑𝑥
= 𝑅𝐻𝑆(𝑥, ℎ(𝑥))                      (𝐶. 9)

 

 710 
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 712 

 713 

 714 

 715 
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 717 

 718 
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 720 

 721 

 722 

 723 

 724 
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Figure 1 Study area and in-situ gauging stations. Calibration is performed for the five 725 

highlighted reaches (Lungwebungo, Kabompo, Upper Zambezi, Kafue and Luangwa). 726 

Figure 2 Selection of CryoSat-2 observations in the Zambezi. Left: longitudinal profile of each 727 

studied river reach, right: illustration of the outlier filtering process for a subset of each reach. 728 

Figure 3 Top: Simulated against synthetic water level (the calibrated bed elevation is subtracted) 729 

for the six experiments. Bottom: Retrieval of synthetic Manning’s roughness, n (left) and offset 730 

from the initial datum guess (right) by the model. The black crosses indicate the chainage of the 731 

synthetic observations consistent with the CryoSat-2 observation density.  732 

Figure 4 Top: FAST sensitivity analysis of the synthetic calibration test with 20 cm standard 733 

deviation; the parameters are numbered from downstream to upstream cross-sections. Bottom: 734 

Sampling pattern and model performance during calibration at six randomly selected cross-735 

sections. Cross-section numbering is from downstream to upstream. The objective is lowered 736 

during calibration. 737 

Figure 5 Calibrated longitudinal profile of the bed elevation and the WSE simulated by the 738 

steady-state solver for the five subreaches in the Zambezi – the calibrated WSE is computed 739 

using the discharge of the corresponding day of observation by CryoSat-2 assuming steady-state. 740 

Figure 6 WSE at in-situ stations Chavuma (Upper Zambezi – top row) and Watopa (Kabompo – 741 

middle row) and simulated by LISFLOOD-FP and Sentinel-3 WSE versus simulated WSE by 742 

LISFLOOD-FP at Sentinel-3 VS (bottom row). The shaded area represents the expected 743 

uncertainty of Sentinel-3 of up to 50 cm. 744 

Figure 7 Selected calibrated river cross-sections versus MERIT DEM bed and bank elevations 745 

(left) and calibrated bed elevation versus the MERIT DEM river surface longitudinal profiles 746 

(right).  747 

 748 

Figure A. 1 Water level at Kabompa Boma over the years of observation with at least 250 days 749 

of record and discharge record before and after record.  Watopa is the next downstream station. 750 

The corrected minimum discharge is coherent when projecting the water level onto the pre-2000 751 

datum.  752 



manuscript submitted to Water Resources Research 

 

 753 



Figure 1.





Figure 2.





Figure 3.





Figure 4.





Figure 5.





Figure 6.





Figure 7.





Figure A1.




	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6
	Figure 7 legend
	Figure 7
	Figure A1 legend
	Figure A1

