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Abstract 7 

Vegetation is an important component of terrestrial ecosystem as it supports other biological activities 8 

through the photosynthetic production. The biophysical and biochemical parameters of vegetation 9 

retrieved from satellite observations have been used extensively in studying the physiological states 10 

and growing conditions of vegetation that enabling global vegetation monitoring. Most of vegetation 11 

remote sensing applications using data from MODIS, Landsat, and Sentinel, though it would be 12 

beneficial, from the user perspective, to have an even more diverse data sources that not only secure 13 

data sustainability in case satellite retirement or sensor failure, but also enables research opportunities 14 

such as multi-sensor data fusion/integration and multi-angle remote sensing that can take advantage 15 

of observations acquired from different spaceborne sensors. In this regard, it would be worth to 16 

explore the potential of the large number of Chinese Earth Observation Satellites (CEOS) that have 17 

been put into orbit over past decade. Here we summarized the recent advances in applying CEOS 18 

remote sensing of vegetation and its associated applications. We focused on the uncertainty and 19 



 

 

limitations for retrieving several commonly-used vegetation parameters by critically examining the 20 

case studies conducted over different vegetation types. Suggestions for research opportunities that 21 

can benefit from the additional data from CEOS are also provided. The hope is to provide the 22 

community an overview of what could be useful to their specific ecological, environmental and global 23 

change studies by leveraging the growing data volume from the orbiting CEOS sensors.  24 
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1 Introduction 27 

Vegetation remote sensing refers to the retrieval of biochemical and biophysical parameters of 28 

vegetation using satellite observations (Aplin 2005). Commonly used vegetation parameters include 29 

vegetation indices (VI), leaf area index (LAI), fractional vegetation cover (FVC) and aboveground 30 

biomass (AGB) (Cohen and Goward 2004; Kerr and Ostrovsky 2003; Wulder et al. 2004). These 31 

parameters have been widely used as diagnostic proxy as well as input to prediction models in the 32 

field of agriculture, ecology, environmental science, and global change (Gianelle et al. 2009; Nara 33 

and Sawada 2021; Pettorelli et al. 2005)  34 

Over past few decades, the field of remote sensing of vegetation is witnessing rapid advances not 35 

only in retrieval algorithms, but also in its associated applications. Like many other natural sciences, 36 

instrument plays a fundamental role. As such, a large credit of the success of vegetation remote 37 

sensing should be given to the enormous amount of investment and efforts to launch and maintain the 38 

orbiting satellites, which is usually done by state government. Spaceborne sensors such as AVHRR 39 



 

 

(Advanced Very-High-Resolution Radiometer), MODIS (Moderate-resolution Imaging 40 

Spectroradiometer) and ETM (Enhanced Thematic Mapper), have acquired huge amount of science-41 

quality data that led to a surge of applications in vegetation remote sensing field(Davis et al. 2017; 42 

Liu et al. 2018; Mancino et al. 2020; Zhang et al. 2017; Zhou et al. 2018; Zoungrana et al. 2018)  43 

Over past decade, China has launched more than a dozen of Earth Observation satellites that carry 44 

instruments ranging from multispectral, hyperspectral, to Synthetic Aperture Rader (SAR), in 45 

together we termed as Chinese Earth Observation Satellites (CEOSs) (Figure 1). There have been 46 

many studies that used data from CEOSs for retrieving vegetation parameters, while a systemic 47 

review on the potentials and limitations of sensors onboard CEOSs for remote sensing of vegetation 48 

is not yet available. Questions such as to what extent the sensor specifications resemble the industry-49 

standard sensors such as MODIS or ETM/OLI, what are the retrieval accuracies for commonly-used 50 

vegetation parameters in different ecosystem types, and what kind of multi-sensor research 51 

opportunities are enabled by adding CEOSs to other commonly-used satellites? It would be good for 52 

the community to know these so that the end-users can better leverage the significant amount of 53 

investment on the CEOSs. This review is dedicated to answer above questions. To make this review 54 

reaching a broader community, most of the literatures we reviewed in English and published in well-55 

known journals, with the remaining published in Chinese journals with English abstract. In addition, 56 

the English weblink to the data portals of CEOSs are also provided.  57 



 

 

 58 

Figure 1 Timelines of several major CEOSs (FY: FengYun Meteorological Satellite; GF: GaoFen Satellite; ZY: 59 

ZiYuan Satellite; HJ: HuanJing satellite; SDGSAT: Sustainable Development Goals Satellite) 60 

2 Overview of the CEOS sensor specifications 61 

At present, the four major constellations of CEOS that can be used for land vegetation remote sensing 62 

include HJ (HuanJing, or literally in Chinese means “Environment”), GF (GaoFen, or “High-63 

resolution”), FY (FengYun, or “Wind and Cloud”) and ZY (ZiYuan, or “Resources”). Sensors 64 

onboard these satellites represent a wide range of spatial resolution from coarse (lower than 30 m), 65 

medium (20 – 30 m), to high (higher than 20 m). Instruments are also very diverse, ranging from 66 

panchromatic, visible, multispectral, hyperspectral to Synthetic Aperture Radar (SAR). Table 1 67 

provides a comprehensive summary of the CEOS sensor specifications and Figure 2 presents the 68 

comparison in spectral band configurations between the CEOS optical sensors and the sensors from 69 

other space agencies.  70 
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 73 

Figure 2 Spectral band comparison between sensors onboard CEOSs and satellites from other space agencies. (each bar represents a single band and the width of the bar 74 

indicates bandwidth. The number on the bar indicates the band number. Spatial resolution of each band is also indicated with grey-colour text. The background shows the 75 

atmospheric transmittance at the standard atmosphere configuration.) 76 



 

 

2.1 GaoFen Satellites 77 

GaoFen (GF) is a series of Chinese high-resolution Earth imaging satellite for the state-sponsored 78 

program Chine High-resolution Earth Observation System (CHEOS). The firs of the GF series 79 

satellites, GaoFen-1 (GF-1) was launched on April 26, 2013, with a designing life of 5-8 years. It 80 

carries a Wide-Field View multispectral sensors (WFV) with 16 m resolution, a Panchromatic / 81 

Multispectral sensors (PMS) with 2 m spatial resolution in panchromatic mode and 8 m spatial 82 

resolution in multispectral mode. So far there have been four nearly identical GF-1 launched into 83 

orbit. GaoFen-6 (GF-6) is another multispectral satellite launched on June 2, 2018, with a design life 84 

of 8 years. Equipped with the WFV and PMS sensor as GF-1, GF-6 also adds a "red edge" band to 85 

reflect the unique spectral characteristics of crops. GF-1/6 WFV and PMS sensors are similar to 86 

Sentinel-2/MSI and SPOT-6(7)/NAOMI, respectively (Appendix Table A1 and A2). 87 

GaoFen-2 (GF-2) is a high spatial resolution satellite, launched on August 19, 2014, with a designing 88 

life of 5-8 years. GF-2 carries a PMS which has a higher spatial resolution than that on GF-1/6, with 89 

a ground resolution of 0.8 m in panchromatic mode and 3.2 m in multispectral mode (Huang et al. 90 

2018; Pan 2015). GF-2/PMS is similar to QuickBird and WorldView satellites (Appendix Table A3). 91 

GaoFen-3 (GF-3) is a SAR constellation consists of two satellites, GF-3 01 and GF-3 02, launched in 92 

August 9, 2016 and November 22, 2021, respectively. Both satellites carry the C-band multi-93 

polarization SAR with a spatial resolution range from 1 m-500 m. GF-3 is very similar to ESA’s 94 

Sentinel-1 (Appendix Table A4). 95 

GaoFen-4 (GF-4) is a geostationary orbiting satellite that was launched on December 29, 2015 with 96 



 

 

a design life of 8 years. GF-4/PMS has 5 channels located between visible and near-infrared spectrum 97 

with a spatial resolution of 50 m, and 1 channel in mid-infrared spectrum with a spatial resolution of 98 

400 m. GF-4/PMS is similar to GOES-R/ABI and Himawari-8/AHI. 99 

GaoFen-5 (GF-5) is a full-spectrum hyperspectral satellite launched on May 9, 2018, with a design 100 

life of 8 years. GF-5 carries the Advanced Hyperspectral Imager (AHSI) that has 30 m spatial 101 

resolution and 330 bands from 400 – 2500 nm. GF-5/AHSI is similar to EO-1/Hyperion and 102 

DLR/DESIS(Appendix Table A5). 103 

Table 1 Chinese GaoFen satellites parameters 104 

Satellite Load Band 
No. 

Spectral 
Range 
(μm) 

Spatial 
Resolution 

(m) 

Swath Width 
(km) 

Revisit 
Cycle 
(days) 

Similar 
Sensors 

 

GF-1 

Panchromatic 
& 

Multispectral 
Camera 
(PMS) 

pan 0.45~0.90 2 

60                
(2 Cameras ) 4 SPOT-6(7)/ 

NAOMI 

 

1 0.45~0.52 

8 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

Wide-Field 
View 

Multispectral 
Camera 
(WFV) 

5 0.45~0.52 

16 800             
(4 Cameras) 2 Sentinel-2/   

MSI 

 

6 0.52~0.59  

7 0.63~0.69  

8 0.77~0.89  

GF-2 PMS 

pan 0.45~0.90 1 

45               
(2 Cameras ) 5 WorldView-3/ 

WV110 

 

1 0.45~0.52 

4 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

GF-3 
Synthetic 
Aperture 

Radar (SAR) 
- C-band:      

4-8 GHz 1-500 5-650 

Single   
Vision: 
<3d；    
Double 

Sentinel-1  



 

 

Vision: 
<1.5d 

GF-4 

PMS 

pan 0.45~0.90 

50 500 
20 

Seconds 
  

 

1 0.45~0.52  

2 0.52~0.60  

3 0.63~0.69  

4 0.76~0.90  

Infrared 
Multispectral 
Camera(IRS) 

5 3.50~4.10 400 400 
 

 

GF-5 

Advanced 
Hyperspectral 
Imager(AHSI) 

1-
300 0.40~2.50 - 

60 5 

DLR & 
PRISMA 

 

Visible and 
Infrared 

Multispectral 
Imager(VIMI) 

1 0.45~0.52 

20 

Sentinel-2/ 
MSI 

 

2 0.52~0.60  

3 0.62~0.68  

4 0.76~0.86  

5 1.55~1.75  

6 2.08~2.35  

7 3.50~3.90 

40 

 

8 4.85~5.05  

9 8.01~8.39  

10 8.42~8.83  

11 10.3~11.3  

12 11.4~12.5  

GF-6 

PMS Same as GF-1/PMS 90               
(2 Cameras ) 4 

Same as GF-1 

 
 
 
 
 

WFV 

1 0.45~0.52 

16 800             
(4 Cameras ) 2 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

5 0.69~0.73  

6 0.73~0.77  

7 0.40~0.45  

8 0.59~0.63  

2.2 ZiYuan-3 satellites 105 



 

 

ZiYuan-3 (ZY-3) is Chinese first civilian high-resolution optical stereo mapping satellite (Li 2012; 106 

Tang and Hu 2018; Wang et al. 2014a). ZY-3 01 and 02 satellites were launched on January 9, 2012 107 

and May 30, 2016, respectively, forming a constellation with a design life of 5 years. ZY-3 carries a 108 

forward-looking panchromatic TDI (Time Delayed and Integration) CCD camera with a resolution 109 

of 2.1 m, two forward-looking and backward-looking panchromatic TDI CCD cameras with a 110 

resolution of 3.5 m, and a forward-looking multispectral camera with a resolution of 5.8 m. ZY-3 can 111 

achieve seamless image coverage within 84° of the Earth's north and south latitudes by side-swinging, 112 

and can achieve global image coverage every 59 days, providing long-term, continuous, stable and 113 

rapid acquisition of 2.1 m resolution stereo images and 6 m multispectral images of the world. ZY-3 114 

also carries a multispectral camera (MUX) which is similar to GF-1/PMS. 115 

Table 2 Chinese ZiYuan-3 satellites parameters 116 

Satellite Load Band 
No. 

Spectral 
Range 
(μm) 

Spatial 
Resolution 

(m) 

Swath 
Width 
(km) 

Revisit 
Cycle 
(days) 

Similar 
Sensors 

 

ZY-3 
(01/02) 

CCD 

Forward 

1 0.50~0.80 
3.5 52 

5 

SPOT-6(7)/ 
NAOMI 

 

Backward  

Nadir 2.1 51  

Multispectral 
Camera (MUX) 

1 0.45~0.52 

6 51 3-5 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

 117 

2.3 HuanJing-1 satellites 118 



 

 

HJ-1 satellites are small Chinese EO satellites operated by the China Centre for Resources Satellite 119 

Data and Application (CRESDA) that is aiming to provide all-weather imagery. HJ-1 consists of two 120 

optical satellite 1A and 1B, and one radar satellite, 1C. HJ-1A and 1B were lunched on September 6, 121 

2008 and carried a 30 m resolution CCD camera and a 100 m resolution hyperspectral Imager (HSI), 122 

while the HJ-1B satellite carries a 30 m resolution CCD camera and a 150 m resolution Infrared 123 

Scanner (IRS). The HJ-1 satellite have a design life of 3 years and are still functioning in orbit. HJ-124 

1/ HSI and IRS are similar to EO-1/Hyperion and Landsat-8/TIRS, respectively. 125 

Table 3 Chinese HuanJing-1 satellites parameters 126 

Satellite Load Band 
No. 

Spectral 
Range (μm) 

Spatial 
Resolution 

(m) 
Swath Width (km) 

Revisit 
Cycle 
(days) 

Similar 
Sensors 

 

HJ-1A  

CCD 

1 0.43~0.52 

30 360(Single) 
700(Parallel) 4 

Landsat 
satellites 

 

2 0.52~0.60  

3 0.63~0.69  

4 0.76~0.9  

Hyperspectral 
Imager (HSI) - 

0.45~0.95 
(110-128 
bands) 

100 50 4  

HJ-1B  

CCD 

1 0.43~0.52 

30 360(Single) 
700(Parallel) 4 

 

2 0.52~0.60  

3 0.63~0.69  

4 0.76~0.90  

Infrared 
Scanner 
(IRS) 

5 0.75~1.10 
150 

720 4 

 

6 1.55~1.75  

7 3.50~3.90  

8 10.5~12.5 300  

 127 

2.4 FengYun-3 Satellites 128 



 

 

FengYun-3 (FY-3) are new generation of Chinese polar-orbiting meteorological satellites. FY-3A 129 

and FY-3B, launched on May 27, 2008 and November 5, 2011respectively, are the first two that carry 130 

a Visible and Infra-Red Radiometer (VIRR) and a Medium Resolution Spectral Imager (MERSI), 131 

among with other sensors for atmospheric sensing (Dong et al. 2009; Zhang et al. 2015). FY-3C and 132 

FY-3D, launched on September 23, 2013 and November 15, 2017 respectively, carry an upgraded 133 

second generation MERSI instrument (MERSI-II) (Wang et al. 2019). MERSI-II has a better ability 134 

on the infrared information detection than MERSI with the wide spectral channel expanded to six 135 

mid- and far-infrared channels. Except that, MERSI-II also adds the shortwave infrared channel 136 

(1.38!") and the onboard calibrate instrument for the cirrus detection and calibration. FY-3/VIRR is 137 

similar to NOAA/AVHRR while MERSI is very similar to EOS/MODIS. 138 

GF, ZY, HJ satellites data are available at China Centre For Resources Satellite Data and Application 139 

(http://www.cresda.com/EN/), while FY data are available at National Satellite Meteorological 140 

Center (http://www.nsmc.org.cn/nsmc/en/home/index.html). All data access platforms are featured 141 

with English language support. In the following section we review the recent applications of using 142 

above sensors for retrieving vegetation parameters. 143 

 144 
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Table 3 Chinese FengYun-3 satellites parameters 147 



 

 

Satellite Load Band 
No. 

Spectral 
Range (μm) 

Spatial 
Resolution 

(m) 

Swath 
Width 
(km) 

Revisit 
Cycle 
(days) 

Similar 
Sensors 

 

FY-3C 

Visible and 
Infra-Red 

Radiometer 
(VIRR) 

1 0.58-0.68 

1000 2800 5.5   

 

2 0.84-0.89  

3 3.55-3.93  

4 10.3-11.3  

5 11.5-12.5  

6 1.55-1.64  

7 0.43-0.48  

8 0.48-0.53  

9 0.53-0.58  

10 1.325-1.395  

Medium 
Resolution 

Spectral 
Imager 

(MERSI) 

1 0.42~0.52 

250 

2800 5.5 MODIS、
MERIS 

 

2 0.5~0.6  

3 0.6~0.7  

4 0.815~0.915  

5 8.75~13.75  

6 0.392~0.432 

1000 

 

7 0.423~0.463  

8 0.47~0.51  

9 0.5~0.54  

10 0.545~0.585  

11 0.63~0.67  

12 0.665~0.705  

13 0.745~0.785  

14 0.845~0.885  

15 0.885~0.925  

16 0.92~0.96  

17 0.96~1  

18 1.01~1.05  

19 1.59~1.69  

20 2.08~2.18  

FY-3D 

Medium 
Resolution 

Spectral 
Imager-Ⅱ 

(MERSI-Ⅱ) 

1 0.402~0.422 
1000 

2800 5.5 MODIS、
MERIS 

 

2 0.433~0.453  

3 0.445~0.495 250  

4 0.48~0.5 1000  

5 0.525~0.575 250  

6 0.545~0.565 1000  

7 0.625~0.675 250  



 

 

8 0.66~0.68 

1000 

 

9 0.699~0.719  

10 0.736~0.756  

11 0.855~0.875  

12 0.84~0.89 250  

13 0.895~0.915 

1000 

 

14 0.926~0.946  

15 0.915~0.965  

16 1.23~1.31  

17 1.365~1.395  

18 1.615~1.665  

19 2.105~2.155  

20 2.99~3.17  

21 3.9725~4.1275  

22 6.95~7.45  

23 8.4~8.7  

24 10.3~11.3 
250 

 

25 11.5~12.5  

148 



 

 

3 Vegetation parameters retrievals using CEOS sensors 149 

3.1 Vegetation Index 150 

Vegetation indices (VIs) such as normalized difference vegetation index (NDVI) are simple and 151 

effective parameter used to characterize vegetation cover and growth (Bannari et al. 1995; Kalaitzidis 152 

et al. 2010; Pettorelli 2013). With a spatial resolution as high as 16 m, VIs derived from GF-1/WFV 153 

provided enough spatial details for mapping vegetation in heterogeneous landscape (Zhao et al. 2019, 154 

2020).Zhao et al. (Zhao et al. 2013) and Yuan et al. (Yuan et al. 2015) analyzed the relationships of 155 

several commonly used vegetation indices (i.e. NDVI, SAVI, and EVI) derived from HJ-1/CCD and 156 

Landsat-5/TM or Landsat-7/ETM+ and found that there was a significant positive correlation for all 157 

indices derived HJ or Landsat (R² > 0.90). Specifically, HJ-1/CCD NDVI is higher than Landsat 158 

NDVI in areas with sparse vegetation cover, while the opposite is true in areas with high vegetation 159 

cover, which can be attributed to the fact that the upper limit of the spectral range in the red band and 160 

the lower limit of the spectral range in the NIR band of HJ-1/CCD were entered in the range of 161 

0.70~0.75 !", which generally has smaller reflectance than the SRF of red and NIR band not cross 162 

the range used by, leading to smaller HJ-1/CCD NDVI values. Due to the spectral band similarity, 163 

Chen et al. (2015) was able to establish translation equations between HJ-1/CCD NDVI and 164 

EOS/MODIS NDVI, offering the potential for multi-sensor data fusion. 165 

Wu et al. (2011) analyzed the relationship between FY-3A/MERSI and Terra/MODIS VIs and further 166 

verified them using ground VI measurements. Results showed that Terra/MODIS VIs correlated to 167 



 

 

field data better than FY-3A/MERSI VIs, which was attributed to the broader FY-3A/MERSI 168 

bandwidth that are more sensitive to atmospheric influences. Ge et al. (2007) found strong correlation 169 

between FY-3A/MERSI and Terra/MODIS VIs (R = 0.99) and further confirmed the sensitivity of 170 

MERSI reflectance to atmospheric water vapor content based on MODTRAN simulation (especially 171 

when water vapor content was greater than 5$/&"!).  172 

There are also several studies that utilized VI time series from CEOS sensors to study vegetation 173 

phenology(Li et al. 2017; Yang et al. 2017; Wang et al. 2014). For instance, Song et al. (2018) 174 

extracted phenological information for double-cropping rice using 30-m HJ-1/CCD data and results 175 

showed that sub-field rice growth can be reflected. Li et al. (2019) used same HJ-1/CCD data to study 176 

forest phenology and then analyzed how tree phenology responded to meteorological forcing.    177 

3.2 Fractional Vegetation Cover 178 

Fractional Vegetation Cover (FVC) is expressed as a percentage of the vertical projected area of 179 

vegetation (including stems, leaves, and branches) to the ground area (Gitelson et al. 2002), which is 180 

widely used in land degradation analysis and also an input to surface energy balance and hydrological 181 

models (Pettorelli et al. 2005b; Wang et al. 2020; Younes et al. 2019). Liu et al. (2019) performed 182 

FVC retrieval using GF-1/WFV and PMS based on the image dimidiate pixel method and found that 183 

the uncertainty of PMS was lower than WFV due to higher spatial resolution, resulting more details 184 

about spatial soil/vegetation heterogeneity that is beneficial for land degradation assessment. Sun et 185 

al. (2015) found that GF-1/WFV provided FVC retrievals of better accuracy than Landsat-8/OLI in 186 



 

 

sparse grassland ecosystems and further reported that correction of view angle effect resulted from 187 

large swath of GF-1/WFV and HJ-1/CCD NDVI can reduce the FVC retrieval uncertainty by 7.5% - 188 

7.8% (Sun et al. 2020).  189 

Zhang et al. (Zhang et al. 2013) retrieved FVC using VIs calculated from HJ-1/HSI hyperspectral 190 

data through an optimal band combination approach and found a good accuracy (R²= 0.86, RMSE = 191 

0.11). Due to the high spatial resolution of HJ-1/HSI, Liao & Zhang (2020) was able to optimize the 192 

selection of endmember spectrum for theoretically pure vegetation, shaded, and soil based on Pixel 193 

Purity Index (PPI) and Endmember Average Root mean square error (EAR), and then retrieved FVC 194 

using the MESMA (Multiple Endmember Spectral Mixture Analysis) method. Results showed that 195 

with a good spatial resolution and high spectral resolution, the accuracy of the HJ-1/HSI FVC 196 

retrieval was high (RMSE = 0.19). Bian et al. (2017) proposed an adaptive endmember selection 197 

linear spectral mixture model (ASLSMM) based on HJ-1/CCD data to enhance the accuracy of FVC 198 

estimation and found that compared with the traditional LSMM and MESMA methods, the ASLSMM 199 

method is more representative of the ground truth, and the inversion results are efficient and accurate. 200 

Liu et al. (2021) applied FY-3B/MERSI data to estimate FVC using PROSAIL model and random 201 

forest method and the results showed good agreement with the EOLAB (Earth Observation 202 

Laboratory) reference FVC data (RMSE = 0.13). 203 

3.3 Leaf Area Index 204 

Leaf Area Index (LAI) refers to the total area of plant leaves per unit land area (Chen and Black 1992) 205 



 

 

and is a key determinant of net primary productivity of ecosystems and energy exchange between the 206 

atmosphere and land surface (Wang et al. 2019a; Yan et al. 2019). Li et al. (2016) used a statistical 207 

regression approach to estimate LAI in winter wheat cropland from HJ-1/CCD with good accuracy 208 

(RRMSE = 29.15%). Wei et al. (2017c) and Lei et al. (2018) applied the physical PROSAIL model 209 

to retrieve LAI from GF-1/WFV in maize crop and Acacia Ricchii plantation respectively and 210 

reported similar accuracies (RMSE = 0.5 m2 for maize crop, and RMSE = 0.13 m² for Acacia Ricchii 211 

plantation).  212 

In addition to empirical and physical model-based approach, machine learning (ML) has also been 213 

used to retrieve LAI from CEOS data. Lei et al. (2018) found ML-based approach offered higher 214 

accuracy (RMSE = 0.50 m²) in estimating LAI than the empirical VI-based regression approach 215 

(RMSE = 0.67 m²). Wei et al. (2017a) estimated LAI for cropland from GF-5/AHSI hyperspectral 216 

data using the RF-KNN model (RMSE = 0.70 m²).  217 

3.4 Aboveground Biomass 218 

Aboveground Biomass (AGB) refers to the total amount of plant-derived living and dead organic 219 

matter per unit of surface area, which is an important component of terrestrial carbon cycle. Accurate 220 

estimation of the spatial and temporal AGB variations is critical to many application such as crop 221 

yields estimation, pasture forage and forest timber production (Brown et al. 1996; Lu 2006). Wang et 222 

al. (2014b) estimated the AGB of the Yellow River Estuary wetlands from GF-1/WFV using 223 

statistical regression approach (MRE (Mean Relative Error) = 23.9%). Gou et al. (2019) used VIs in 224 



 

 

conjunction with texture information extracted from GF-2/PMS high-resolution images to estimate 225 

the AGB of Pinus tabuliformis plantations and obtained a similar accuracy (RMSE = 0.43 t/hm²). 226 

Gao et al. (2019) first retrieved AGB using high-resolution unmanned aerial vehicle (UAV) 227 

measurement and then scaled up to regional scale by establishing a regression model using GF-228 

1/WFV NDVI, the uncertainty is RMSE = 68.04 g/m², which is much smaller than using GF-1/WFV 229 

only with RMSE = 128.75 g/m².  230 

Gao et al. (2014) established the regression model between VIs acquired from ZY-3/MUX and ground 231 

measured shrub AGB in mountainous areas. Due to the capability for acquiring multi-angle 232 

observations with the three TDI cameras forming a camera array that can obtain stereo image, from 233 

which detailed topographic information can be used to improve AGB estimation by applying accurate 234 

topographic correction, leading to a reduction of SD (Standard Deviation) drop by 21.2%. Taking the 235 

advantage of the multitemporal high-resolution multispectral and stereo images taken by ZY-3/TDI, 236 

Li et al. (2019a) further proposed an improved workflow for estimating forest AGB based on the 237 

retrieval of relative canopy height, which led to a high accuracy in AGB estimation (RMSE = 24.49 238 

Mg/ha, RRMSE =21.37%) compared with using spectral data only (RMSE = 33.89 Mg/ha, RRMSE 239 

= 29.57%). 240 

4 Research opportunities offered by the addition of CEOS sensors 241 

4.1 Multi-sensor data fusion  242 

Observations from single satellite sensor often comprise spatial resolution for temporal resolution, or 243 



 

 

vice versa, resulted in sub-optimal monitoring of vegetation dynamics. Data fusion is an effective 244 

way for achieving both high spatial and temporal resolutions by fusing data from different sensors. 245 

Pi et al. (2021) reconstructed a NDVI dataset with 16 m spatial and 16-day temporal resolutions by 246 

fusing GF-1/WFV with MOD13Q1 NDVI based on the STARFM (Spatial and Temporal Adaptive 247 

Reflectance Fusion Model) algorithm. Yin et al. (2016) found that by fusing EOS/MODIS and FY-248 

3/MERSI observations, which share high similarity in terms of spectral band configuration, the 249 

spatio-temporal gaps of LAI retrievals were significantly reduced, leading to more valid data over the 250 

cloud-prone sub-tropical and tropical forests. Wu et al. (2015) applied the Spatial and Temporal Data 251 

Fusion Approach (STDFA) to create a daily NDVI time series for crop phenology monitoring through 252 

the fusion of HJ-1/CCD or GF-1/WFV with MODIS, with the output revealed detailed sub-field crop 253 

growth at daily time-step. 254 

4.2 Data continuity & data recovery 255 

For global change studies, it is critical to ensure long-term data continuity and high-level or data 256 

consistency. China is launching and planning to launch many new spaceborne sensors covering a 257 

wide range of sensor types and spatial-temporal resolutions, offering great potentials to achieve 258 

sustainable monitoring of global change into the foreseeing future, or at least used as backup for other 259 

commonly used sensors. For instance, the CEOS GF-5/AHSI hyperspectral instrument with 30 m 260 

spatial resolution and 330 narrow spectral bands, in together with ASI/PRISMA and DLR/DESIS, 261 

can be good successors for the highly-successful EO-1/Hyperion which has ceased operation since 262 

2014.  263 



 

 

In other occasions, orbiting sensor can encounter instrument failure that if similar instruments are 264 

available from other satellite, a virtual constellation can be formed to mimic the functioning (He et 265 

al. 2018; Yueh et al. 2016). One example is the recovery of the SMAP mission after the radar failure 266 

by ingesting data from ESA’s Sentinel-1 C-band SAR (Meyer et al. 2021), something that can also 267 

be done using GF-3 C-band SAR. Another example is filling the data gaps caused by the Scan-Line-268 

Corrector (SLC) failure of Landsat-7/ETM+ using Sentinel-2/MSI (Wang et al. 2021), resulted in 269 

seamless imagery that greatly improved the related scientific applications. This type of effort might 270 

be further improved by using HJ-1/CCD started operating from 2009 that has same 30-m resolution 271 

and nearly identify spectral band configuration as ETM+ (Figure 3). These are all beneficial to the 272 

end users in global vegetation and ecological remote sensing community.  273 

 274 

Figure 3 Spectral band comparisons among Landsat-7/ETM+, Landsat-8/OLI, HJ-1/CCD, HJ-1/IRS, and Sentinel-2/MSI.  275 

4.3 Multi-angle remote sensing 276 



 

 

Multi-angle remote sensing is an effective way to infer surface BRDF (Bidirectional Reflectance 277 

Distribution Function) that can be further used to retrieve albedo or estimate vegetation structure (Yan 278 

et al. 2021). BRDF retrieval using single-sensor data often suffers from the problem of limited angular 279 

sampling due to cloud or aerosols, e.g., MODIS has only a 75.8% probability that have more than 7 280 

cloud-free observations within a 16 d window (Wen 2015). Multi-sensor data can be combined to 281 

accumulate a sufficient number of multi-angle observations in a shorter time for improved BRDF 282 

retrievals. In addition, multi-angle data can also be used to improve the retrievals of vegetation 283 

parameters. Bicheron et al. (1999) reported that forest classification uncertainty can be reduced if 284 

multi-spectral data is used in conjunction with multi-angle data that providing additional information 285 

about forest canopy structure (Hyman and Barnsley 1997). For instance, Wen et al. (2016) developed 286 

a multi-sensor combined BRDF inversion (MCBI) by ingesting data from MODIS, AVHRR, VIIRS 287 

and FY-3/MERSI, leading to a much shortened retrieval window up to 4 days in comparison to the 288 

standard 16-day window of using MODIS only.  289 

5 Concluding remarks and future perspectives 290 

It is therefore all about the benefit to the end-users in scientific community. Over past half century 291 

the scientific community has benefited enormously from the ever-improving open EO data policy, 292 

one example is the boost of research after the release of full Landsat archive (Wulder et al. 2012). 293 

The past decade has overseen immense amount of investment from China on EO missions, creating 294 

now a spaceship fleet encompassing a full-suite of sensors to some extent resembling the fleet from 295 



 

 

NASA, ESA, JAXA and other major space agencies. More studies that attempting to use or integrate 296 

CEOS data are highly encouraged to not only gain experiences in using CEOS data for vegetation 297 

and ecological remote sensing. Meanwhile, and hence critically identify the pros and cons of these 298 

newly orbiting scientific instruments. Now most applications as we reviewed above are still from 299 

Chinese research community, therefore international users are also encouraged to access the data as 300 

most of the data we reviewed above are publicly available (with user registration sometimes required) 301 

and have data access webpage in English language. The valuable experiences and critics gain from 302 

both the domestic and international end-users would in turn be used to further improve all aspects of 303 

CEOS sensors and eventually lead to a better understanding of pressing scientific issues such global 304 

environmental change, sustainability development, food security and biodiversity conservation. 305 

While this article is being read, CEOS sensors are continuously measuring reflectance and echo over 306 

the entire planet. It is now the time to capitalize them for the benefit of global vegetation monitoring.  307 
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Appendix 314 



 

 

Table A1 Comparison between GF-1(6)/WFV and Sentinel-2/MSI 315 

Satellite Sensor 
Band 
No. 

Spectral 
Range (!") 

Spatial 
Resolution 

at nadir 
(m) 

Swath 
Width 
(km) 

Revisit Cycle 
(days) 

 

 

GF-1 

Wide-Field 
View 

Multispectral 
Camera 
(WFV) 

1 0.45~0.52 

16 

800 
(with 4 

Cameras) 
2 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

GF-6 

1 0.45~0.52 

16 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

5 0.69~0.73  

6 0.73~0.77  

7 0.40~0.45  

8 0.59~0.63  

Sentinel
-2 

Multi-
Spectral 

Instrument 
(MSI) 

2 0.458~0.523 

10 

290 5 

 

3 0.543~0.578  

4 0.65~0.68  

8 0.785~0.90  

5 0.698~0.713 

20 

 

6 0.733~0.748  

7 0.773~0.793  

8A 0.855~0.875  

11 1.565~1.655  

12 2.10~2.28  

1 0.433~0.453 
60 

 

9 0.935~0.955  

10 1.365~1.385  

 316 

 317 

Table A2 Comparison between GF-1(6)/PMS, ZY-3/MUX and SPOT-6(7)/NAOMI 318 



 

 

Satellite Sensor 
Band 
No. 

Spectral 
Range (!") 

Spatial 
Resolution 

at nadir 
(m) 

Swath 
Width 
(km) 

Revisit Cycle 
(days) 

 

 

GF-1/6 

Panchromatic 
& 

Multispectral 
Camera 
(PMS) 

pan 0.45~0.90 2 

60 (with 2 
Cameras) 

4 

 

1 0.45~0.52 

8 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

ZY-3 
Multispectral 

Camera 
(MUX) 

1 0.45~0.52 

6 51 5 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

SPOT-
6/7 

New Astrosat 
Optical 

Modular 
Instrument 
(NAOMI) 

pan 0.45~0.75 1.5 

60 
1 

(with 2 
Cameras) 

 

1 0.45~0.52 

6 

 

2 0.53~0.6  

3 0.62~0.69  

4 0.76~0.89  

 319 

Table A3 Comparison between GF-2/PMS and WorldView-3/WV110 320 

Satellite Sensor 
Band 
No. 

Spectral 
Range (μm) 

Spatial 
Resolution 

at nadir 
(m) 

Swath 
Width 
(km) 

Revisit Cycle 
(days) 

 

 

GF-2 

Panchromatic 
& 

Multispectral 
Camera 
(PMS) 

pan 0.45~0.90 1 

45(with 2 
Cameras) 

5 

 

1 0.45~0.52 

4 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

WorldVi
ew-3 

WorldView-
110 camera 
(WV110) 

pan 0.45-0.80 0.31 

13.1 

1(4.5) day(s) 
at 1(0.59)-
meter GSD 
resolution 

 

1 0.40~0.45 

1.24 

 

2 0.45~0.51  

3 0.51~0.58  

4 0.585~0.625  

5 0.63~0.69  



 

 

6 0.705~0.745  

7 0.77~0.895  

8 0.86~1.04  

SWIR 1.195~2.365 3.7  

CAVIS 0.405~2.245 30  

 321 

Table A4 Comparison of SAR satellites between GF-3 and Sentinel-1 322 

Satellite Sensor 
Operational 

Mode 

Spatial 
Resolution 

at nadir 
(m) 

Swath 
Width 
(km) 

Polarization 
Mode(Selectable) 

 

 

GF-3 

C-band 
Synthetic 
Aperture 

Radar (SAR) 

SL 1 10 
single-

polarization 
 

UFS 3 30 
single-

polarization 
 

FS1 5 50 dual-polarization  

FS2 10 100 dual-polarization  

SS 25 130 dual-polarization  

NSC 50 300 dual-polarization  

WSC 100 500 dual-polarization  

QPS1 8 30 full polarization  

QPS2 25 40 full polarization  

WAVE 10 5 full polarization  

GLOGAL 500 650 dual-polarization  

EXTENDED1 25 130 dual-polarization  

EXTENDED2 25 80 dual-polarization  

Sentinel-
1 

C-band 
Synthetic 
Aperture 

Radar (SAR) 

SM 5 80 full polarization  

IW 5×20 250 full polarization  

EW 25×100 400 full polarization  

WV 
5×20 20 

single-
polarization 

 

 323 



 

 

Table A5 Comparison of Hyperspectral satellites between GF-5/AHSI, HJ-1A/HIS, DLR/DESIS and PRISM 324 

Satellite Sensor 

 
Number 

of 
Bands 

Spectral 
Range 
(!") 

Spectral 
Resolution(nm) 

Spatial 
Resolution 

at nadir 
(m) 

Swath 
Width 
(km) 

Revisit Cycle 
(days) 

 

 

HJ-1A 
Hyperspectral 
Imager (HSI) 

110-
128 

0.45~0.95 3.9~4.5 100 50 4 

 

 
 

GF-5 

Advanced 
Hyperspectral 

Imager 
(AHSI) 

300 0.40~2.50 
5(VNIR) 

10(SWIR) 
30 60 5 

 

 

 

DLR 

DLR Earth 
Sensing 
Imaging 

Spectrometer 
(DESIS) 

235 0.40~1.00 2.55 30 30 3-5 

 

 

 

PRISMA - 240 0.40~2.50 ＜12 30 30 7 

 

 
 

 325 

 326 

 327 

 328 

 329 

 330 

 331 



 

 

References 332 

Aplin, P. (2005). Remote sensing：ecology. Progress in Physical Geography, 104-113 333 

Bannari, A., Morin, D., Bonn, F., & Huete, A. (1995). A review of vegetation indices. Remote 334 

sensing reviews, 13, 95-120 335 

Bian, J.H., Li, A.N., Zhang, Z.J., Zhao, W., Lei, G.B., Yin, G.F., Jin, H.A., Tan, J.B., & Huang, 336 

C.Q. (2017). Monitoring fractional green vegetation cover dynamics over a seasonally inundated 337 

alpine wetland using dense time series HJ-1A/B constellation images and an adaptive endmember 338 

selection LSMM model. Remote Sensing of Environment, 197, 98-114 339 

Bicheron, P., & Marc, L. (1999). A method of biophysical parameter retrieval at global scale by 340 

inversion of a vegetation reflectance model. Remote Sensing of Environment, 1999, 251-266 341 

Brown, S., Sathaye, J.A., & Kauppi, P. (1996). Mitigation of carbon emissions to the atmosphere by 342 

forest management. Commonwealth Forestry Review 343 

Chen, J.M., & Black, T.A. (1992). Defining Leaf-Area Index for Non-Flat Leaves. Plant Cell and 344 

Environment, 15, 421-429 345 

Chen, X., & Liu, Z. (2015). Quantitative Analysis of Relationship Between HJ-1NDVI and MODIS 346 

NDVI. Remote Sensing Information 347 

Cohen, W.B., & Goward, S.N. (2004). Landsat’s role in ecological applications of remote sensing. 348 

BioScience, 54, 535-545 349 

Davis, C.L., Hoffman, M.T., & Roberts, W. (2017). Long-term trends in vegetation phenology and 350 

productivity over Namaqualand using the GIMMS AVHRR NDVI3g data from 1982 to 2011. 351 

South African Journal of Botany, 111, 76-85 352 



 

 

Dong, C.H., Yang, J., Zhang, W.J., Yang, Z.D., Lu, N.M., Shi, J.M., Zhang, P., Liu, Y.J., & Cai, B. 353 

(2009). An Overview of a New Chinese Weather Satellite FY-3A. Bulletin of the American 354 

Meteorological Society, 90, 1531-+ 355 

Feng, L., Guo, S., Zhu, L.J., Fang, X.Q., & Zhou, Y.A. (2017). Urban vegetation phenology 356 

analysis and the response to the temperature change. 2017 Ieee International Geoscience and 357 

Remote Sensing Symposium (Igarss), 5743-5746 358 

Gao, M.L., Zhao, W.J., Gong, Z.N., Gong, H.L., Chen, Z., & Tang, X.M. (2014). Topographic 359 

Correction of ZY-3 Satellite Images and Its Effects on Estimation of Shrub Leaf Biomass in 360 

Mountainous Areas. Remote Sensing, 6, 2745-2764 361 

Gao, Y., Liang, Z., Wang, B., Wu, Y., & Liu, S. (2019). UAV and satellite remote sensing images 362 

based aboveground biomass inversion in the meadows of Lake Shengjin. Journal of Lake Sciences, 363 

31, 517-528 364 

Ge, M., Zhao, J., Zhong, B., & Yang, A. (2017). Comparison of the Vegetation Indexes between 365 

FY-3/VIRR,FY-3/MERSI and EOS/MODIS Data. Remote Sensing Technology and Application, 366 

32, 12 367 

Gianelle, D., Vescovo, L., & Mason, F. (2009). Estimation of grassland biophysical parameters 368 

using hyperspectral reflectance for fire risk map prediction. International journal of wildland fire, 369 

18, 815-824 370 

Gitelson, A.A., Kaufman, Y.J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote 371 

estimation of vegetation fraction. Remote Sensing of Environment, 80, 76-87 372 

Gou, R., Chen, J., Duan, G., Yang, R., Bu, Y., Zhao, J., & Zhao, P. (2019). Inversion of 373 

aboveground biomass of Pinus tabuliformis plantations based on GF-2 data. Chinese Journal of 374 

Applied Ecology, 30, 4031-4040 375 



 

 

He, L., Hong, Y., Wu, X., Ye, N., Walker, J.P., & Chen, X. (2018). Investigation of SMAP Active–376 

Passive Downscaling Algorithms Using Combined Sentinel-1 SAR and SMAP Radiometer Data. 377 

IEEE Transactions on Geoscience and Remote Sensing, 56, 4906-4918 378 

Huang, W., Sun, S.R., Jiang, H.B., Gao, C., & Zong, X.Y. (2018). GF-2 Satellite 1m/4m Camera 379 

Design and In-Orbit Commissioning. Chinese Journal of Electronics, 27, 1316-1321 380 

Hyman, A.H., & Barnsley, M.J. (1997). On the potential for land cover mapping from multiple-381 

view-angle (MVA) remotely-sensed images. International Journal of Remote Sensing, 18, 2471-382 

2475 383 

Kalaitzidis, C., Heinzel, V., & Zianis, D. (2010). A review of multispectral vegetation indices for 384 

biomass estimation. In, Proceedings of the 29th symposium of the European association of remote 385 

sensing laboratories, Chania, Greece. IOS Press Ebook (pp. 201-208) 386 

Kerr, J.T., & Ostrovsky, M. (2003). From space to species: ecological applications for remote 387 

sensing. Trends in Ecology & Evolution, 18, 299-305 388 

Lei, Y., Zhu, S., Guo, Y., Li, D., Liu, L., & Liu, N. (2018). Inversion of Leaf Area Index Based on 389 

Extreme Learning Machine Regression in Road Vegetation. Bulletin of Surveying and Mapping, 5 390 

Li, D. (2012). China’s First Civilian Three-line-array Stereo Mapping Satellite: ZY-3 Acta 391 

Geodaetica et Cartographica Sinica, 41, 317-322 392 

Li, G.Y., Xie, Z.L., Jiang, X.D., Lu, D.S., & Chen, E.X. (2019a). Integration of ZiYuan-3 393 

Multispectral and Stereo Data for Modeling Aboveground Biomass of Larch Plantations in North 394 

China. Remote Sensing, 11 395 

Li, H., Chen, Z.X., Jiang, Z.W., Wu, W.B., Ren, J.Q., Liu, B., & Hasi, T. (2017). Comparative 396 

analysis of GF-1, HJ-1, and Landsat-8 data for estimating the leaf area index of winter wheat. 397 

Journal of Integrative Agriculture, 16, 266-285 398 



 

 

Li, H., Peng, R., Li, W., Zhu, X., Huang, Y., & Nie, Q. (2019 b). Filtering algorithms of HJ-1 A/B 399 

NDVI time series data and phenology of typical tree species in Xiamen. Chinese Journal of Ecology 400 

Li, X., Zhang, Y., Luo, J., Jin, X., Xu, Y., & Yang, W. (2016). Quantification winter wheat LAI 401 

with HJ-1CCD image features over multiple growing seasons. International Journal of Applied 402 

Earth Observation and Geoinformation, 44, 104-112 403 

Li, F., Song, G., Liujun, Z., Xiuqin, F., & Yanan, Z. (2017). Urban vegetation phenology analysis 404 

and the response to the temperature change. In, 2017 IEEE International Geoscience and Remote 405 

Sensing Symposium (IGARSS) (pp. 5743-5746): IEEE 406 

Liu, D.Y., Jia, K., Jiang, H.Y., Xia, M., Tao, G.F., Wang, B., Chen, Z.L., Yuan, B., & Li, J. (2021). 407 

Fractional Vegetation Cover Estimation Algorithm for FY-3B Reflectance Data Based on Random 408 

Forest Regression Method. Remote Sensing, 13 409 

Liu, R., Ren, H., Liu, S., Liu, Q., Yan, B., & Gan, F. (2018). Generalized FPAR estimation methods 410 

from various satellite sensors and validation. Agricultural and Forest Meteorology, 260, 55-72 411 

Liu, Z., Mo, R., Sun, X., & Lv, X. (2019). Analysis of Influence of GFn-1 Data Resolution on 412 

Extraction of Vegetation Coverage Information. Rural Economy and Science-Technology, 30, 80-413 

82 414 

Lu, D. (2006). The potential and challenge of remote sensing‐based biomass estimation. 415 

International Journal of Remote Sensing, 27, 1297-1328 416 

Mancino, G., Ferrara, A., Padula, A., & Nolè, A. (2020). Cross-Comparison between Landsat 8 417 

(OLI) and Landsat 7 (ETM+) Derived Vegetation Indices in a Mediterranean Environment. Remote 418 

Sensing, 12 419 



 

 

Meyer R, Zhang W, Kragh S J, et al. Exploring the combined use of SMAP and Sentinel-1 data for 420 

downscaling soil moisture beyond the 1 km scale[J]. Hydrology and Earth System Sciences 421 

Discussions, 2021: 1-25. 422 

Nara, H., & Sawada, Y. (2021). Global Change in Terrestrial Ecosystem Detected by Fusion of 423 

Microwave and Optical Satellite Observations. Remote Sensing, 13 424 

Pan, T. (2015). Technical Characteristics of GF-2 Satellite. Aerospace China, 3-9 425 

Pettorelli, N. (2013). The normalized difference vegetation index. Oxford University Press 426 

Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.-M., Tucker, C.J., & Stenseth, N.C. (2005). Using 427 

the satellite-derived NDVI to assess ecological responses to environmental change. Trends in 428 

ecology & evolution, 20, 503-510 429 

Pi, X., Zeng, Y., & He, C. (2021). Estimating urban vegetation coverage on the basis of multi-430 

source remote sensing data and temporal mixture analysis. Journal of Remote Sensing, 25, 1216-431 

1226 432 

Song, D., Wang, Z., Li, Y., & Hu, Y. (2018). Cropland Phenology Detection Based on HJ-1A/B 433 

CCD Data in Jianghan Plain. Geomatics & Spatial Information Technology, 41, 5 434 

Sun, Z., Liu, S., Jiang, J., Bai, X., Chen, Y., Zhu, C., & Guo, W. (2017). Coordination inversion 435 

methods for vegetation cover of winter wheat by multi-source satellite images. Transactions of the 436 

Chinese Society of Agricultural Engineering, 33, 7 437 

Tang, X., & Hu, F. (2018). Development Status and Trend of Satellite Mapping. Spacecraft 438 

Recovery & Remote Sensing, 39, 26-35 439 



 

 

Wang, J., Li, X., & Fan, W. (2014a). Monitoring Vegetation Phenology Using HJ-CCD Image of 440 

High and Moderate Resolution Remote Sensing Data:A Case Study in Upper Stream of Miyun 441 

Reservoir. Journal of Northeast Forestry University, 88-94 442 

Wang, J., Zhang, J., Ma, Y., & Ren, G. (2014b). Study on the Above Ground Vegetation Biomass 443 

Estimation Model Based on GF-1 WFV Satellite Image in the Yellow River Estuary Wetland. Acta 444 

Laser Biology Sinica, 604-608 445 

Wang, Q., Wang, L., Wei, C., Jin, Y., Li, Z., Tong, X., & Atkinson, P.M. (2021). Filling gaps in 446 

Landsat ETM+ SLC-off images with Sentinel-2 MSI images. International Journal of Applied Earth 447 

Observation and Geoinformation, 101 448 

Wang, S., Zhang, B., Zhai, X., & Sun, H.-l. (2020). Vegetation cover changes and sand-fixing 449 

service responses in the Beijing–Tianjin sandstorm source control project area. Environmental 450 

Development, 34, 100455 451 

Wang, Y.C., Liu, Y.X., Li, M.C., & Tan, L. (2014). The reconstruction of abnormal segments in 452 

HJ-1A/B NDVI time series using MODIS: a statistical method. International Journal of Remote 453 

Sensing, 35, 7991-8007 454 

Wang, Z.Z., Li, J.Y., He, J.Y., Zhang, S.W., Gu, S.Y., Li, Y., Guo, Y., & He, B.Y. (2019). 455 

Performance Analysis of Microwave Humidity and Temperature Sounder Onboard the FY-3D 456 

Satellite From Prelaunch Multiangle Calibration Data in Thermal/Vacuum Test. IEEE Transactions 457 

on Geoscience and Remote Sensing, 57, 1664-1683 458 

Wei, X., Gu, X., Meng, Q., Yu, T., Zhou, X., Wei, Z., Jia, K., & Wang, C. (2017a). Leaf Area Index 459 

Estimation Using Chinese GF-1 Wide Field View Data in an Agriculture Region. Sensors (Basel), 460 

17 461 



 

 

Wei, X.Q., Gu, X.F., Meng, Q.Y., Yu, T., Jia, K., Zhan, Y.L., & Wang, C.M. (2017b). Cross-462 

Comparative Analysis of GF-1 Wide Field View and Landsat-7 Enhanced Thematic Mapper Plus 463 

Data. Journal of Applied Spectroscopy, 84, 829-836 464 

Wei, X.Q., Gu, X.F., Meng, Q.Y., Yu, T., Zhou, X., Wei, Z., Jia, K., & Wang, C.M. (2017c). Leaf 465 

Area Index Estimation Using Chinese GF-1 Wide Field View Data in an Agriculture Region. 466 

Sensors, 17 467 

Wen, J. (2015). Remote Sensing Modeling and Albedo Inversion of Land Surface Bidirectional 468 

Reflectance Characteristics. Science Press 469 

Wen J, Dou B, You D, et al. Forward a small-timescale BRDF/Albedo by multisensor combined 470 

brdf inversion model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(2): 683-471 

697. 472 

Wu, M.Q., Zhang, X.Y., Huang, W.J., Niu, Z., Wang, C.Y., Li, W., & Hao, P.Y. (2015). 473 

Reconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS Data for Crop 474 

Monitoring. Remote Sensing, 7, 16293-16314 475 

Wu, P., Hu, L., Li, G., Feng, Z., & Chen, C. (2011). Relationship between FY-3A/MERSI and 476 

MODIS Vegetation Indexes Based on Cotton Spectrum. Desert and Oasis Meteorology, 5, 4 477 

Wulder, M.A., Hall, R.J., Coops, N.C., & Franklin, S.E. (2004). High spatial resolution remotely 478 

sensed data for ecosystem characterization. BioScience, 54, 511-521 479 

Yan, G., Hu, R., Luo, J., Weiss, M., Jiang, H., Mu, X., Xie, D., & Zhang, W. (2019). Review of 480 

indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives. 481 

Agricultural and Forest Meteorology, 265, 390-411 482 



 

 

Yan, G., Jiang, H., Yan, K., Cheng, S., Song, W., Tong, Y., Liu, Y., Qi, J., Mu, X., Zhang, W., Xie, 483 

D., & zhou, H. (2021). Review of optical multi-angle quantitative remote sensing. National Remote 484 

Sensing Bulletin, 25, 83-108 485 

Yang, Z., Shao, Y., Li, K., Liu, Q., Liu, L., & Brisco, B. (2017). An improved scheme for rice 486 

phenology estimation based on time-series multispectral HJ-1A/B and polarimetric RADARSAT-2 487 

data. Remote Sensing of Environment, 195, 184-201 488 

Yin, G., Li, J., Liu, Q., Zhong, B., & Li, A. (2016). Improving LAI spatio-temporal continuity using 489 

a combination of MODIS and MERSI data. Remote Sensing Letters, 7, 771-780 490 

Younes, N., Joyce, K.E., Northfield, T.D., & Maier, S.W. (2019). The effects of water depth on 491 

estimating Fractional Vegetation Cover in mangrove forests. International Journal of Applied Earth 492 

Observation and Geoinformation, 83 493 

Yuan, Z., Yang, A., & Zhong, B. (2015). Cross comparison of the vegetation indexes between 494 

Landsat TM and HJ CCD. Remote Sensing for Land & Resources, 27, 5 495 

Yueh, S., Entekhabi, D., O’Neill, P., Njoku, E., & Entin, J. (2016). NASA soil moisture active 496 

passive mission status and science performance. 2016 IEEE International Geoscience and Remote 497 

Sensing Symposium (IGARSS) 498 

Zhang, X., Zhou, M., Wang, W., & Li, X. (2015). Progress of global satellite remote sensing of 499 

atmospheric compositions and its’ applications. Science & Technology Review, 33, 13-22 500 

Zhang, X.F., Liao, C.H., Li, J., & Sun, Q. (2013). Fractional vegetation cover estimation in arid and 501 

semi-arid environments using HJ-1 satellite hyperspectral data. International Journal of Applied 502 

Earth Observation and Geoinformation, 21, 506-512 503 



 

 

Zhang, Y., Song, C., Band, L.E., Sun, G., & Li, J. (2017). Reanalysis of global terrestrial vegetation 504 

trends from MODIS products: Browning or greening? Remote Sensing of Environment, 191, 145-505 

155 506 

Zhao, B., Wang, H., & Zhang, A. (2019). Inter-sensor comparison and quantitative relationships 507 

between GF-1 WFV and Landsat 8 OLI NDVI data. Journal of Geomatics, 44, 6 508 

Zhao, J., Li, J., Liu, Q., Wang, H., Chen, C., Xu, B., & Wu, S. (2018). Comparative Analysis of 509 

Chinese HJ-1 CCD, GF-1 WFV and ZY-3 MUX Sensor Data for Leaf Area Index Estimations for 510 

Maize. Remote Sensing, 10 511 

Zhao, K., Xu, J., Zhao, Z., Song, L., & Xiao, K. (2013). Cross Comparison of HJ-1A/B CCD and 512 

Landsat TM/ETM+ Multispectral Measurements for NDVI, SAVI and EVI Vegetation Index. 513 

Remote Sensing Technology and Application, 28, 8 514 

Zhao, L., Zhang, R., Liu, Y., & Zhu, X. (2020). The differences between extracting vegetation 515 

information from GF1-WFV and Landsat8-OLI. Acta Ecologica Sinica, 40, 12 516 

Zhou, X., Yamaguchi, Y., & Arjasakusuma, S. (2018). Distinguishing the vegetation dynamics 517 

induced by anthropogenic factors using vegetation optical depth and AVHRR NDVI: A cross-518 

border study on the Mongolian Plateau. Sci Total Environ, 616-617, 730-743 519 

Zoungrana, B.J.B., Conrad, C., Thiel, M., Amekudzi, L.K., & Da, E.D. (2018). MODIS NDVI 520 

trends and fractional land cover change for improved assessments of vegetation degradation in 521 

Burkina Faso, West Africa. Journal of Arid Environments, 153, 66-75 522 

Rahman, A. F., Sims, D. A., Cordove, V. D., El-Marsri, B. Z. (2005). Potential of MODIS EVI and 523 

surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophysical Research 524 

Letters, 32(19), L19404. 525 


