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Text S1.

1. RES data inconsistencies

By careful inspection we asses the consistency of the radio echo sounding data. In

particular we inspect the ice thickness estimates and search for (1) sudden and sustained

changes along flight lines (e.g. as highlighted at the bottom of Figure S1) and (2) sections

of flight line ice thickness estimates which cross several other flight lines and have sustained

different values (e.g. as highlighted in the center of Figure S1). These two criteria are

often found in conjunction. Note that Figure S1 is not the final dataset used here, but

illustrates the process of identifying inconsistencies.

Text S2.

2. Statistical properties of the bedrock topography

The information in this section is taken from Wernecke (2020), with minor adjustments,

and repeated here for the readers’ convenience.

2.1. Gaussian Process modelling

In the following we will describe our approach to generating new bedrock topographies

in more detail. The main novelty is that we use a stochastic model to represent the

bedrock topography at each location as a random variable and represent uncertainties

in these random variables (the spread) by sampling spatial fields of bedrock topography

which inhabit the local uncertainties and spatial covariance structure.
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The bedrock can be understood as continuous random variable B, approximated as a

Gaussian Process,

B = G(~̄b(~z, ~θ), c(~θ)), (1)

where G(·, ·) denotes a Gaussian Process. The bedrock topography at each location in

the horizontal model domain is therefore considered a random variable with Gaussian

distribution centered at ~̄b(~z, ~θ), depending on the observations ~z with covariance between

locations defined by the covariance function c(~θ). The covariance function parameters ~θ

define among other things the length scale of decorrelation, or in other words, how in-

formative the topography at one location is for the topography at surrounding locations.

We do not use a reference topography as prior nor do we subtract any mean function in

order to ensure independence from all published datasets. This will allow us to investi-

gate the consistency between the topographies statistically generated here and reference

topographies (Bedmap2 and Bedmachine) in the following analysis.

We assume the existence of an optimal set of covariance function parameters ~θ∗ and

constrain estimates of ~θ∗ with observations. To asses these covariance function parameters

we will in this section describe the analysis in more detail than possible in the main text.

Using conditional likelihoods we can express Equation 1 as:

B = G(~̄b(~z, ~θ∗), c(~θ∗)) |~θ∗ · π(~θ∗|~z) · π(~z) (2)

Due to computational constraints we have to use subsets of the whole set of observations

(~z), with ~z1 of O(10 000) measurements for ~̄b(~z, ~θ∗) and ~z2 of O(100 000) for π(~θ∗|~z). The

reason for the different sample sizes is that the computational expense associated with
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the size of ~z1 is of O(n3) the expense associated with the size of ~z2 is of O(n2) (see below).

Equation 2 becomes:

B = G(~̄b(~z1, ~θ∗), c(~θ∗)) |~θ∗ · π(~θ∗|~z2) · π(~z2) (3)

We constrain π(~θ∗|~z2) using semivariograms. In semivariograms the distances between

all possible pairs of ~z2 are binned, in our case in 250 m intervals and the covariance between

all pairs within each interval is calculated. It therefore illustrates how the correlation

in topography elevation diminishes with distance and can be used to infer the nugget

(variance at a distance of zero), range (characteristic correlation length scale) and sill

(far field variance) by a least squared error fit. We use an exponential function for the

semivariogram fit and the covariance function of the GP model which allows us to use the

fitted parameters as our best estimate of θ∗. A limitation of using semivariograms to find

the covariance function is the possible dependency of π(~θ∗|~z2) on the size of the domain

examined for the semivariograms. This additional uncertainty is taken into account by

using six different domains, from [0 km, 25 km] to [0 km, 50 km] (see Figure S2). That

is from the approximate width of contributory glaciers of PIG (25 km) to approximately

the largest data gap between flight-lines in the catchment area (50 km). The spatial

characteristics on scales larger than this will be well constrained by the observations

themselves. Note that the range parameter can lie outside of this domain, as this is

merely the domain used for fitting. The total number of pairs n samples can build is

n(n − 1)/2, which explains why the computational cost of semivariograms scales with

O(n2).
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The distribution of π(~z2) is represented by repeated random sub-sampling of ~z2 from

~z. Six different sets of ~z2 are then used for π(~θ∗|~z2) together with six different fitting

domains, increasing the upper bound in 5 km steps from 25 to 50 km to represent the

distribution of π(~θ∗|~z2). The six resulting semivariograms are shown in Figure S2 and

the corresponding estimates of θ∗ are shown in Table S1. The relatively small spread

of estimates of θ∗ (Table S1) illustrates that the combined impact of sub-sampling and

fitting interval size on θ∗ is small, supporting the robustness of this approach. All those

estimates are used successively for the GP model G(~̄b(~z1, ~θ∗), c(~θ∗)) |~θ∗ (technically these

are six separate GP models which are handled in the same way at all times). In order

to ensure good spatial coverage by ~z1 we impose a regular grid with 2 km resolution on

the region and randomly select one measurement from each non-empty grid cell. This

semi-random selection is repeated for each estimate of θ∗.

To address the correspondence of parameters from the semivariogram fit and the covari-

ance function it can be illustrative to discuss particularly the role of σ2
c . It is derived as

the sill of the exponential fit to the semivariance, representing the semivariance at large

distances where spatial correlations are negligible and enters the covariance function as

scaling parameter of the exponentially decaying covariance. For very small distances r,

COV (xi, xi) ≈ σ2
c . The covariance of the topography at xi with xi is simply the variance

at this location. The semivariance (y) for a given distance (r) between the locations xi and

xj is defined as: y(xi, xj) = 0.5 ·V AR(f(xi)−f(xj)), where f() represents the mapping of

locations to topography values. For locations far from each other (r � `) the topography
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is considered uncorrelated so that the semivariance simplifies to:

y(xi, xj) = 0.5 · V AR(f(xi)) + 0.5 · V AR(f(xj)).

We have seen before that for our covariance function, the variance at xi approaches σ2
c ,

so that y(xi, xj) = σ2
c if xi and xj are far from each other. Therefore the parameter σc

in the covariance function can be approximated by the sill of the semivariance. In other

words, the semivariance is reduced where the covariance is still large, but the maximum

semivariance (σ2
c ) informs the total variance which is defined by the covariance at very

small r.

Considering a set of training point locations ~x1 with corresponding topography values

~z1, the random distribution of a GP model at a new, finite set of locations ~x∗ is found

(see e.g. Rasmussen and Williams (2006)) by:

G(~̄b(~z1, ~θ∗), c(~θ∗)) = N(~̄b(~z1, ~θ∗),Σ∗) (4)

~̄b(~z1, ~θ∗) = K( ~x∗, ~x1)K( ~x1, ~x1)
−1~z1 (5)

Σ∗ = K( ~x∗, ~x∗)−K( ~x∗, ~x1)K( ~x1, ~x1)
−1K( ~x1, ~x∗)) (6)

where N(~µ,Σ) represents a multivariate normal distribution with mean vector ~µ and

covariance matrix Σ. The values of K(~x, ~x)ij = c(~xi, ~xj) are derived from evaluations of

the GP covariance function c(·, ·) of the ith and jth member of ~x (see covariance equation

in the main text). The diagonal of Σ∗ is the total variance at locations ~x∗, as shown, in

terms of its square root, in Figure 1(a) and shading in Figure S5.
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2.2. GP samples

For the application in this work it is essential that the samples from the Gaussian Process

(GP) are continuous so that no unreasonable jumps in the topography are created. The

only way to ensure continuous samples, representing the full PIG topography covariance

structure is to avoid any subdivision of the PIG basin in the topography generation

process. As will be shown in the following, this influences the numerical demands and

achievable topography resolution of this approach.

We use the GPy Python toolbox (specifically: posterior samples f()) to generate those

samples. It is however informative to follow Rasmussen and Williams (2006, Section A.2)

to give a short introduction on how samples can be generated without a specific toolbox.

A scalar random number generator and an implementation of a Cholesky decomposition

algorithm will be assumed, both widely available in mathematical software. First we use

the Cholesky decomposition to find the lower triangular matrix L for the positive-definite

symmetric covariance matrix ΣG which satisfies LLT = ΣG. ΣG is the GP covariance ma-

trix with element i,j: ΣG,i,j = COV (xi, xj). We then generate n∗ independent standard-

normally distributed random numbers stacked to the vector ~p where n∗ is the number of

evaluation points ~x∗. A sample of the distribution G is then found by ~o∗ = ~µG + L~p,

where ~µG is the mean field of the GP. By construction the covariance matrix of ~o∗ is

E[~o∗ ~o∗
T ] = LE[~p~pT ]LT = LLT = ΣG. Cholesky decompositions scale with order n3, cre-

ating comparable restrictions for the number of training data for GPs without additional

approximations and evaluation locations of GP samples. On modern workstations this

limit is of the order of a few 10 000 evaluation locations.
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Text S3.

3. Model Inversion

The information in this section is taken from Wernecke (2020), with minor adjustments,

and repeated here for the readers’ convenience.

Each topography is used separately to find basal traction coefficient and effective vis-

cosity fields for PIG using the BISICLES inverse model framework with surface velocities

from (Rignot et al., 2017, 2011) which have been re-gridded from 450 m to 1 km resolution

using bilinear interpolation. The velocity data have been compiled from a large range of

satellite missions, spanning in total the period from 1996 to 2016. It should however be

noted that the data acquisition is not homogeneous throughout time. For example, only

two of eight satellite missions used provide any data before 2006 and the start of the

Landsat-8 and Sentinel-1 missions in 2013/2014 creates elevated data density towards the

end of the 20-year period.

All datasets used for model inversion and initialisation are collected relatively close

to the the year 2000 and even though a robust definition of a start year is challenging,

the timestamp of the SMB forcing allows us to date the start of the simulations to year

2000 AD.

We use a linear Weertman friction law for inversions as in our experience it increases

numerical stability in the optimisations compared with nonlinear Weertman friction laws.

The effective viscosity is not influenced by the friction law but the inverted fields of basal

traction coefficients have to be transformed to nonlinear equivalents as described below.

The Weertman friction law is:
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τb = Cm · |ub|m−1 · ub

with m = 1 for linear friction, m = 1/3 for nonlinear friction and m = 1/8 for strongly

nonlinear friction. In the following we will refer to the m = 1/8 friction law as plastic

friction law (see also Joughin, Smith, and Schoof (2019)). Here τb is the basal stress

tangential to the base of the ice, Cm is the spatially varying basal traction coefficient for

a given friction law exponent m and ub is the basal ice velocity. With the optimal initial

basal shear stress τb being independent of the friction law it follows that

C1 · |ub0|0 · ub0 = C1/3 · |ub0|(−2/3) · ub0

and hence C1/3 = C1|ub0|(2/3), where ub0 is the basal velocity at the beginning of the model

period (as used for the inversion). An equivalent transformation is performed for plastic

friction with m = 1/8.

Ice flow outside of the catchment area is expected to have minimal influence on the PIG

flow. Therefore we drastically increase the basal traction coefficient for all friction laws

to 106 Ns m−3 for grounded areas outside of the catchment area to effectively prevent ice

from flowing. This is done for numerical stability at the quadratic domain boundaries

and for numerical speed since suppressed ice flow allows the adaptive mesh to use lower

resolutions.

Text S4.
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4. Initial model behaviour

The information in this section is taken from Wernecke (2020), with minor adjustments,

and repeated here for the readers’ convenience.

Here we address the initial model behaviour and define a reference year for later projec-

tions. Figure S3 shows the yearly change in ice thickness (ds/dt, based on finite differences

of the yearly data) for one of the randomly generated ensemble members (set Br) with

low forcing and plastic friction as an example. In the first years we see high-amplitude

small-spatial-scale rates of ice thickness change which diminish with time to larger scale

rates with smaller amplitude (as can be seen for year 15 of the simulation in Figure S3).

These initial very high rates of ice thickness change can be attributed to an adjustment

of the model to a self-consistent state. It indicates that, before adjusting, the flow regime

and geometry are initially inconsistent with the model physics. The challenge here is to

define the time when the persistent response dominates over the initial adjustments.

In retrospect we should have implemented a spin-up period in the simulations with

a constant forcing (ocean melt and SMB) for the model to find a self-consistent state

before the forced projections start. Instead the imposed SMB in all of our simulations

use estimates for year 2000 in the beginning of the simulations which is why we define

the beginning of the simulations as year 2000. In the same way, the basal melt starts

to increase from the first year in the high forcing runs. In the following we will instead

define a reference year which is used as baseline for calculations, e.g. of sea level rise

contributions, in order to minimize the impact of initial adjustments on the results.

March 11, 2022, 6:32pm



: X - 11

Defining a reference year by inspecting each of the 84 ensemble members (12+2 topogra-

phies times two forcings and three friction laws) in the style of Figure S3 is impractical.

Therefore we calculate the spatial mean of the absolute ds/dt values and plot the de-

velopment for each ensemble member using a Br, Bedmap2 or BedMachine topography

in Figure S4. Following a maximum ice thickness change in the first year, all ensemble

members level out to a stable rate after a few decades or less. Bedmap2 and BedMachine

start from slightly lower values in the beginning but take a similar period of time to reach

a stable rate. It is not clear whether this slightly reduced period of adjustment indi-

cates a more consistent initial state or reflects the smoother nature of those topographies.

Based on Figure S4 we choose the 15th year of simulation as reference and consider this

a conservative (on the larger end) value.

Text S5.

5. Possible explanations for the outlier behaviour of Bedmap2 simulations

In this section we discuss possible explanations for the outlier behaviour of Bedmap2

simulations, which remain in a steadily evolving state even for strong increasing ocean

melt and RCP8.5 SMB. As stated in the main text, we cannot conclusively identify the

cause of this behaviour but can show that there is no particular topographic height or

feature in the basal friction field that offers a likely explanation.

5.1. Comparison of the topographic maps

Figure S5 shows all topographies used here, and the GP mean field, which was not used

for the simulations. It can be seen that the GP mean and Bedmachine agree well along

this flowline. Bedmap2 largely follows the same shape but is some 50 m higher. In two
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dimensions (Figure S6) a similar picture emerges. The average of the statistically gener-

ated fields is largely below Bedmap2 but this offset is relatively homogeneous within the

main trunk of PIG (along the line in Figure S6, left). There are only sporadic locations

where Bedmap2 is above (red) or below (blue) all individual members of the statistically

generated ensemble (Figure S6, right). There are a few grid cells where Bedmap2 is higher

than all statistically generated topographies (red cells highlighted by orange frame in Fig-

ure S6, right) which resembles what could be interpreted as topographic elevation crossing

the PIG trunk. However these consist of only approximately three grid cells which are

not always adjacent. In fact, this corresponds not to a topographic high but a local de-

pression which is also highlighted by an orange line in Figure S5 about 20 km upstream

of the GL. A less deep depression in Bedmap2 compared to the other topographies is not

as straightforward to associate dynamically with flow stabilization than a topographic

high. Nevertheless, Nias, Cornford, and Payne (2018) argue that a small regional depres-

sion (20-30 m in amplitude, 4 km in diameter) can cause an dynamic thinning impulse

which propagates upstream and is sustained even when another stabilising GL location is

reached.

Figure 2 in the main text shows a topographic high near the GLs of the statistically

generated topographies and Bedmap2. Considering the different behaviour of simulations

on those topographies, this rise is not a defining factor for the response. This seems to be

because the topographic high is hardly in contact with the ice in the first place. This could

(but does not have to be) a sign that the reason for Bedmap2 to have this topographic

high is the misclassification of RES reflection from the bottom of a floating ice shelf as
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topographic reflections from grounded ice. In that case the base of the falsely assumed-

grounded ice would coincide with the hydrostatic equilibrium and hence unground very

easily. The statistically generated topographies have the same topographic high because

they use the Bedmap2 geometry where no clear contact with the ground can be established.

We use the Bedmap2 ice shelf mask to distinguish between grounded and ungrounded

locations in the topography generation process, which is derived directly from satellite

observations.

5.2. Basal friction coefficient

All topographies have their own inversion for basal friction coefficients which are held

constant for the simulations. In the supplemented media (.gif) files we show animations of

the grounding line retreating within the 100-year long simulations for Bedmap2, Bedma-

chine and two statistically generated topographies along with the basal friction coefficients

(in all cases with strongly nonlinear friction law and strong forcing). This highlights the

existence of linear features across the PIG trunk in all cases and shows how the retreat

of the corresponding grounding lines is influenced by these features. The initial situation

for the statistically generated topographies and Bedmap2 is such that the closest linear

feature of high friction is not close to the grounding line. For the statistically generated

topograpies the retreat is much faster and widespread, not through a specific gap in a

high-friction feature, while for Bedmap2 there is limited retreat. The initial Bedmachine

GL is much closer to a linear high friction feature compared to the other topographies

used, the grounding line subsequently retreats, starting at the southern side of the ice

stream and settling temporarily at a second, upstream high-friction feature later in the
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simulation. Again, we cannot identify a particular feature in the friction coefficient that

would be a likely explanation for the difference in simulation behaviour.

We further note that the Bedmap2 topography lies largely above the others within

the first approximately 150 km upstream from the GL (Figure S5) and that, for the same

surface elevation of the ice, an elevated topography is further from hydrostatic equilibrium

and could hence be less prone to retreat. The about 50 m difference in ice thickness

corresponds to an additional couple of metres of ice which need to be removed before

ungrounding, which is small compared to the locally more than 250 m of melt per year.

This indicates that the, on average, higher Bedmap2 topography and its corresponding

thinner ice thickness alone is not a likely explanation for the outlier behaviour of Bedmap2

simulations either.
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Figure S1. Ungridded RES ice thickness estimates (from zero - dark blue to 2300 m - red)

before (left) and after (right) removal of some inconsistent data. Locations inconsistent data are

highligterd by red rectangles. Data from Holt et al. (2006) and Paden et al. (2010)

Table S1. Estimates of ~θ∗

θ∗25 θ∗30 θ∗35 θ∗40 θ∗45 θ∗50
Fitting interval [km] 25 30 35 40 45 50
Nugget σ2

n [m2] 563 647 652 477 583 661
Range ` [km] 19 18 18 17 19 20
Sill α2 [×103m2] 82 82 79 79 83 86
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Figure S2. Semivariograms of bedrock topography for Pine Island Glacier from ungridded

airborne RES observations described in the main text with exponential least-squared-error fits

(lines). Different fitting intervals are used (as quoted in each panel) to investigate the impact of

the fitting interval on the parameter values, which are shown in Table S1.
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Figure S3. Ice thickness change across PIG model domain in the beginning of the simulations

after initializing with velocity data from 1996 to 2016 (years of simulation shown in the lower

right corners). Based on a statistically generated topography (Br #5) with low forcing and

plastic friction. Note the smaller colour range in the lower right panel.
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Figure S4. Spatial mean of absolute ice thickness change across PIG model domain for the

beginning of the simulations. The initial drop can be associated with BISICLES adjusting to a

self-consistent state.
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Figure S5. Bedrock topographies on 4 km resolution for Bedmap2, BedMachine, 12 topogra-

phies statistically generated here (Br; for illustration interpolated with a quadratic spline) and

the GP model trained on 30 km domain for which shading illustrates ±σ. The cross-section

roughly follows the center of PIG, as shown in Figure 1 in the main text from point A (left)

to point D (right). Grounding line location (x=0) is based on BedMachine geometry which

coincides for this section with the extent of the GP models. Under the ice shelf (as defined

by Bedmap2) the topographies statistically generated here use the Bedmap2 topography. The

orange line highlights a location mentioned in the text.
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Figure S6. Left: Difference of Bedmap2 and the mean of all statistically generated topogra-

phies used here. Right: Difference between Bedmap2 and the closest member of the statistically

generated ensemble where Bedmap2 is outside of the envelope of those topographies. At locations

where Bedmap2 lies within the range of the statistically generated topographies, the Bedmap2

topography itself is shown (grey shading in background). For comparison, the central flow line

of PIG as in Figure 1 in the main text. The orange frame highlights a region mentioned in the

text.
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6. Additional Supporting Information (Files uploaded separately)

Movie S 0.1. Basal stress parameter τb in Pa. Where ice is ungrounded the basal friction is set

to zero, otherwise the parameter from the initial model inversion is shown. The animation shows

the retreat of the grounded ice by an expansion of zero valued τb over 100 years (also highlighted

by black line) with Weertman friction law and exponent of m = 1/8 and Bedmap2 topography.

Movie S 0.2. as Movie S0.1 but for BedMachine topography.

Movie S 0.3. as Movie S0.1 but for statistically generated topography ’Br001’.

Movie S 0.4. as Movie S0.1 but for statistically generated topography ’Br002’.
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