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Abstract16

The predicted Antarctic contribution to global-mean sea-level rise is one of the most17

uncertain among all major sources. Partly this is because of instability mechanisms of18

the ice flow over deep basins. Errors in bedrock topography can substantially impact19

the resilience of glaciers against such instabilities. Here we analyze the Pine Island20

Glacier topography to derive a statistical model representation. Our model allows21

for inhomogeneous and statistically dependent uncertainties and avoids unnecessary22

smoothing from spatial averaging or middle-of-the-road interpolation. A set of to-23

pographic fields is generated which properly represents the topographic uncertainty24

in our ice sheet model simulations with lower and upper end climate forcings. The25

bedrock uncertainty alone creates a 5% to 25% uncertainty in the predicted 100-year26

sea level rise contributions. Ice sheet model simulations on this new set are consis-27

tent with simulations on the frequently used BedMachine topography but diverge from28

Bedmap2 simulations.29

Plain Language Summary30

We investigate the impact of uncertainties in the elevation of the bedrock under-31

neath the ice of a particularly vulnerable glacier in Antarctica. Our approach allows32

us for the first time to estimate how much future projections depend on knowledge of33

the bedrock elevation. A main focus of this study is to represent our current expertise34

of the bedrock elevation as closely as possible so that our simulations accurately re-35

flect the extent of our knowledge of the future glacier behaviour. In summary, we find36

that the mass of ice lost in 100-year simulations, which contributes to the global mean37

sea level, can be affected by up to 25%. This highlights the value of closely-spaced38

bedrock measurement and of careful consideration of related uncertainties in ice-sheet39

simulations.40

1 Introduction41

The Antarctic ice sheet is one of the major sources of global sea level rise and42

is currently losing mass at a rate of around 0.5 to 0.6 mm global mean Sea Level43

Equivalent per year (mm SLE a−1), predominantly in the Amundsen Sea Embayment44

(ASE) area of the West Antarctic Ice Sheet (WAIS) (Shepherd et al., 2018; Bamber et45

al., 2018). The future response of the Antarctic ice sheet to a changing climate is one46

of the least well understood aspects of climate predictions (Oppenheimer et al., 2019).47

Changes in the Antarctic ice sheet mass balance are largely governed by changes48

in the Surface Mass Balance (SMB) and ocean forcing via dynamical processes such as49

changing buttressing from ice shelves. Ice shelves, the floating extensions of grounded50

ice streams, can be weakened by elevated ocean and/or atmospheric temperatures and51

consequently melt or collapse. Buttressing ice shelves have a stabilising effect on the52

ice sheet with the potential to suppress or delay Marine Ice Sheet Instability (MISI)53

(Schoof, 2007; Joughin & Alley, 2011). MISI can occur at ice sheets on retrograde (up-54

sloping in flow direction) topographies below sea level. Here a retreat of the grounding55

line (the transition from grounded to floating ice) will increase the ice thickness above56

it. For idealised conditions the mass flux across the grounding line increases rapidly57

with the ice thickness (Schoof, 2007). This additional mass loss can lead to an imbal-58

ance of the system causing a further retreat of the grounding line. Large areas of the59

WAIS, including Pine Island Glacier (PIG), one of the two major glacial systems of60

the ASE, lie on such retrograde slopes (Fretwell et al., 2013).61

In the satellite record the ASE shows significant rates of thinning (Rignot et62

al., 2008; Mouginot et al., 2014; Shepherd et al., 2018), which have been linked to63

enhanced ocean melt from warm Circumpolar Deep Water entering the continental64
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shelf (Dutrieux et al., 2014; Naughten et al., 2018; Rignot et al., 2014). This might65

have triggered Marine Ice Sheet Instability in the ASE at present (Joughin et al.,66

2014; Favier et al., 2014; Alley et al., 2015). Bamber and Dawson (2020) find a recent67

reduction of rates of mass loss from PIG even though it has maintained a negative68

mass balance and elevated flow speeds. This behaviour could be related to lower69

ocean temperatures in 2012-2013 compared with the 2000s (Milillo et al., 2017). In70

summary, PIG currently loses mass, shows strong sensitivity to ocean-induced melt71

and is situated on a bedrock topography which makes it more vulnerable.72

Predictions of the dynamic ice sheet response are challenging because of poorly73

observed local physical properties of the ice and the bedrock underneath. One of74

these factors concerns the bedrock elevation maps which suffer from errors from the75

instruments and gaps in the record. The lack of local measurements creates a need for76

spatial interpolation which adds additional uncertainties. It is worth highlighting that77

MISI depends on the topography gradient local to the grounding line. Topography78

measurement errors and interpolation are likely to have a stronger relative impact on79

gradients than on the absolute elevation.80

Here we generate statistically a set of bedrock topographies which represent the81

range of uncertainties from topographic observations and interpolation. These topogra-82

phies are therefore in agreement with observational constraints while aiming to fully83

represent their uncertainties. We then assess the impact of topographic uncertainties84

by using the set of bedrock topographies in an ensemble of ice sheet model simulations.85

We use the BISICLES ice sheet model to simulate PIG changes this century under two86

climate forcings – low, and strongly increasing - using three different friction laws.87

Thereby we show how bedrock uncertainty translates into predictive uncertainty for a88

large range of plausible future scenarios, friction laws and topographies.89

In Section 2 we will introduce the airborne radar measurements used here and90

analyse the geostatistical properties. Based on this we set up simulations of the ice91

sheet model BISICLES in Section 3, starting with the generation of topographies,92

initialisation and inversion of model parameters, followed by a description of the forcing93

we use for 100-year simulations. Simulation results are presented in Section 4 with94

focus on the contribution to uncertainty in sea level, and are discussed in Section 5.95

2 Data and Methods96

We summarize our knowledge of the real bedrock in a multivariate random vari-97

able which is approximated by a Gaussian Process (GP). By using this statistical98

model, we can represent uncertainties in elevation observations considered as random99

variables, by sampling spatial fields of bedrock topography within the range of local100

uncertainties and spatial covariance structure. To define a GP model we need training101

data and covariance function parameters. Ungridded airborne radar measurements102

are analysed to estimate the statistical characteristics of the bedrock topography and103

measurement uncertainties. This provides us with the required GP model covariance104

function parameters. We train the GP to match observed values, given the observa-105

tional uncertainty. From this GP model we draw random samples to represent the106

topography and its uncertainty in the ice sheet model BISICLES.107

The airborne Radar Echo Sounding (RES) dataset used here is compiled from108

two different sources, namely the one described in Holt et al. (2006), and Operation Ice109

Bridge IRMCR2 Level-2 data from October 2009 to December 2017 (Paden et al., 2010,110

NSIDC, last accessed in September 2019 through https://cmr.earthdata.nasa.gov).111

These radar measurements do not measure bedrock topography underneath ice shelves.112

The PIG catchment area is defined as in Mouginot et al. (2017) based on Rignot et al.113

(2013). About 1.5% of the 2.3 million measurements in this basin are removed here due114
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to inconsistencies. For training, the RES dataset has to be sub-sampled to reduce its115

size, due to computational constraints. This is done by imposing a 2 km × 2 km grid116

onto the region and randomly selecting one measurement from each box if available117

(about 25 000 measurements). This is done to ensure a good spatial coverage while118

avoiding smoothing effects from averaging. The covariance function is derived from119

semivariograms on fully random (no use of boxes) subsets of 100 000 measurements.120

Exponential functions are fitted to the semi-variance on scales of 25 km to 50 km to121

derive the nugget, length scale and far-field variance to describe the spatial correlation122

characteristics. These exponential fits capture the semivariance very well (Wernecke,123

2020, section 5.1.2) which motivates our use of an exponential covariance function for124

the GP.125

The exponential covariance function, cE , is defined as:

COV (x1, x2) = cE(r, σ2
c , `) = σ2

c exp
(
− r

2`

)
, (1)

where COV (x1.x2) is the covariance in the bedrock topography at the locations x1 and126

x2, σ2
c is the far-field variance (or sill), r is the physical distance between the locations127

x1 and x2 and ` is the characteristic correlation length scale. The randomized sub-128

sampling for deriving the covariance parameters and the training data is repeated to129

capture the impact on the final simulations. See Wernecke (2020) Section 5.1.2 for130

more information.131

We generate random two-dimensional sample fields within the range of the local132

measurement uncertainties which also adhere to the full spatial covariance matrix133

and with it the uncertainty estimate, as illustrated in Figure 1a. The topographic134

uncertainty is clearly increasing with distance to the closest measurement (flight line)135

and is often above 50 m (one standard deviation), even in regions with close sampling.136

The computational demand of sampling from a GP scales with the number of137

spawned grid cells n by O(n3), which imposes a limit on this number. We use the138

python GPy module to draw 12 samples on a 4 km×4 km grid in the PIG catchment139

area. We use Bedmap2 geometry (bedrock topography and ice thickness), brought to140

the same resolution by averaging, for the remainder of the rectangular model domain141

and ungrounded area. The ice surface elevation is considered well known and the ice142

thickness is adjusted for all statistically generated topographies to match the Bedmap2143

surface elevations. The resulting 12 topographies are accompanied by two reference144

topographies, Bedmap2 (Fretwell et al., 2013) and BedMachine (Morlighem, 2019;145

Morlighem et al., 2020), with the same resolution.146

3 Simulations147

We use all combinations of the 14 topographies described above with three fric-148

tion laws and two climate forcings, resulting in a total of 84 simulations. The simula-149

tions are performed by the adaptive mesh ice sheet model BISICLES (Cornford et al.,150

2013, 2015), which is a finite-volume model with vertically integrated stress approxima-151

tions (Wernecke, 2020, sections 2.1 and 5.2.2 for more information). Each topography152

is used separately to find basal traction coefficient and effective viscosity fields for PIG153

using the BISICLES inverse model framework with a compilation of satellite based154

ice surface velocities from Rignot et al. (2017, 2011). Figure 1b illustrates the initial155

velocity field of the main PIG trunk.156

The Weertman friction law is :157

τb = Cm · |ub|m−1 · ub
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Figure 1. a: One standard deviation of trained GP which increases with distance from mea-

surements (flight lines) and b: Initial PIG ice velocity direction (arrows) and speed (colours), for

the main trunk (left half of panel a) of PIG flow including the approximate central flow line (red

and brown).
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with τb being the basal stress tangential to the base of the ice, Cm is the spatially158

varying basal traction coefficient for a given friction law exponent m and ub is the159

basal ice velocity. We use m = 1 for linear friction, m = 1/3 for nonlinear friction and160

m = 1/8 for strongly nonlinear friction (called plastic friction in the following). Ice161

flow outside of the PIG catchment area is suppressed for numerical stability.162

3.1 Climate forcing163

For the model simulations we use two different climate forcings with changing164

ocean melt and SMB. These two forcings are intended to encompass the range of likely165

climate scenarios:166

• The low forcing uses an RCP2.6 SMB and constant-in-time ocean melt rates.167

• The high forcing uses an RCP8.5 SMB and linearly increasing ocean melt,168

starting at the low forcing rates at the beginning and adding 200 % by the end169

of the 100-year model simulations170

As SMB we use data from NorESM1-M, a CMIP5 atmosphere-ocean coupled171

global climate model (Bentsen et al., 2013). Of the three models selected in Barthel172

et al. (2020) for the ice sheet model intercomparison project ISMIP6 (Seroussi et al.,173

2020) for consistency with the CMIP5 multi-model ensemble, NorESM1-M has the174

highest rank in the CMIP5 cross-model performance analysis by Agosta et al. (2015).175

The simulations show below median atmospheric warming and relatively strong 21st176

century ocean warming compared with the multi-model ensemble (Barthel et al., 2020).177

The ocean melt at the beginning of the simulations is based on temperature and178

salinity profiles corresponding to the Warm0 setup in Favier et al. (2019) which is179

based on oceanographic measurements from Dutrieux et al. (2014). The profiles have180

warm and salty water at depth and colder, fresher water towards the surface. This181

structure is caused by the overturning circulation of warm Circumpolar Deep Water182

which mixes with glacial meltwater before being transported offshore near the surface.183

We use a local squared ocean melt forcing parameterisation since it is the best local184

parameterisation in Favier et al. (2019). The resulting total PIG initial melt rate of185

84.6 Gt a−1 (using Bedmap2 geometry) is in good agreement with other estimates186

(Jourdain et al., 2020; Dutrieux et al., 2014; Rignot et al., 2013).187

Predictions of future ocean melt forcing are highly uncertain, but cannot be188

ignored for 100-year model simulations. The two forcings used here are designed to189

represent reasonable low and high melt scenarios without being bound to specific190

climate projections. Naughten et al. (2018) use the Southern Ocean quality of 19191

CMIP5 models to select a forcings for the regional ocean model FESOM. The ocean192

model predicts a year 2100 ASE ocean melt increase of about 200% (multi-model mean)193

to 300% (ACCESS-1.0) for RCP8.5. However, Naughten et al. (2018) note a cold bias194

of about 2 K in the bottom water temperature on the Amundsen Sea continental shelf195

at the beginning of the simulations. They argue that the warming should be seen196

largely as reversal of a model bias which makes it very likely that the increase in melt197

is overestimated. This overestimation might be up to about 150% in melt increase198

(Wernecke, 2020, Section 5.2.3). We select an increase of 200% in 100 years as a best199

guess upper-end melt representation.200

We cannot rule out that current ocean conditions are a positive anomaly caused201

by internal variability. Climate projections of ice shelf ocean melt rates for the ASE202

often show positive trends (Naughten et al., 2018; Alevropoulos-Borrill et al., 2020;203

Jourdain et al., 2020), but some projections show temporarily negative ocean tempera-204

ture anomalies compared to the early 2000s (Jourdain et al., 2020; Alevropoulos-Borrill205
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et al., 2020). We apply a constant ocean melt forcing, consistent with recent past rates,206

as reasonable lower-end forcing.207

4 Results208

4.1 Simulations209

In the first years we see high-amplitude small spatial-scale rates of ice thickness210

change which diminish over time (Wernecke, 2020, Section 5.3.2). This is an adjust-211

ment of the model to a self-consistent state. In retrospect we should have implemented212

a spin-up period in the simulations with a constant forcing before the forced projec-213

tions start. Instead our simulations start with forcing, including SMB corresponding214

to year 2000 AD (used as start year). By careful inspection (Wernecke, 2020, Section215

5.3.2) we define the 15th year as reference which is used as baseline for the following216

calculations. In this way the impact of initial adjustments on the results is minimized.217

While the statistically generated topographies agree well with the reference to-218

pographies (in particular BedMachine) on average, the samples used for simulations219

(e.g. Figure 2, right) show stronger regional variability. The scale of this variability220

is in agreement with very high-resolution observations (Bingham et al., 2017; Wer-221

necke, 2020, Section 5.3.1). For GP samples topography uncertainties are represented222

within the sample while Bedmap2 and BedMachine use averaging and interpolation223

techniques which create smoother fields (with spatially localised uncertainties).224

The ice geometry and flow speed along the downstream sector of the central225

PIG flow line (from location B to D in Figure 1b) is illustrated for plastic friction226

and Bedmap2 as well as BedMachine in Figure 2, left. For low forcing the glacier227

thins slightly without the grounding line retreating much. At the same time the ice228

speed reduces, in particular in the fast-flowing ice shelf. Note that PIG is currently229

out-of-balance so that a (stabilizing) slow-down is not contradicting further mass loss.230

A partial slow-down of the PIG ice velocities is also predicted for the flow line model231

simulations in Gladstone et al. (2012) and is found in the optimized (central) simu-232

lations from Nias et al. (2016) for all combinations of bedrock and friction law (not233

shown).234

For the high forcing scenario we see very different pictures for BedMachine and235

Bedmap2 geometries: For BedMachine the ice near the grounding line accelerates over236

the 85 year projection period from less than 4000 m a−1 to more than 5000 m a−1. The237

speed-up extends more than 150 km upstream (red lines in Figure 2). For Bedmap2238

the high forcing scenario does not show noteworthy acceleration or thinning.239

The flow line characteristics of two topographies generated here are shown on the240

right of Figure 2. Simulations with statistically generated topographies share the same241

features of those using BedMachine: little changes to the ice geometry with some slow-242

down for low forcing, and pronounced thinning with significant grounding line retreat243

and accelerating ice for high forcing.244

4.2 Sea level rise contribution245

The ensemble behaviour can be categorized into two states, a steadily evolving246

state with approximately constant rates of mass loss (about 0.1 mm SLE a−1) and an247

unstable state with mass losses up to six times faster (Figure 3, top). The timing of an248

ensemble member to become unstable depends strongly on the topography and forcing:249

most high melt simulation become unstable between 2055 and 2075. This timing seems250

not to depend on the friction law (Figure 3, top right). Low melt ensemble members251

remain in the steadily evolving state without exception.252

–7–



manuscript submitted to Geophysical Research Letters

Figure 2. Profiles along PIG flow line from location B to D in Figure 1 with BedMachine (top

left) and Bedmap2 (bottom left) and two statistically generated topographies (right). Shown are

the bedrock underneath the ice (black), surface and basal ice boundaries (grey) and the ice speed

(red) after 15 years of simulation (used as baseline; solid lines) and at the end of the 100-year

simulations with high (dotted) and low (dashed) forcing, all using a plastic friction law.

Table 1. Mean 2100 sea level contribution estimates (relative to 2015) with one standard

deviation of the statistically generated bedrock ensemble (both in mm SLE)

Friction law: Linear Nonlinear Plastic

High Forcing: 11.3 ±2.08 15.5 ±3.86 19.4 ±5.15
Low Forcing: 6.7 ±0.31 5.6 ±0.62 4.7 ±0.87

The main effect of the friction law is an increase in the rate of mass loss in the253

unstable state with faster rates for more non-linear friction laws (Figure 3, middle).254

For low forcing the relationship is reversed, more linear friction leads to larger sea255

level contributions. This can be traced back to the slow down of the ice velocities as256

shown in Figure 2. Highly nonlinear friction laws facilitate decelerating ice to slow257

down even more and accelerating ice to speed up more than linear counterparts. This258

also explains why the predictive uncertainty due to the bedrock uncertainty strongly259

increases with non-linearity of the friction law and with stronger forcing. The standard260

deviation of the net sea level contribution over the 85-years ranges from 0.31 mm SLE261

for low forcing and linear friction to 5.15 mm SLE for high forcing and plastic friction262

which corresponds to about 5% to 25% of total sea level contribution (Figure 3 middle263

and Table 1).264

BedMachine based simulations agree with simulations based on topographies265

generated here regarding the total sea level contribution. In contrast, Bedmap2 runs266

with high forcing are not consistent with the behaviour for all other topographies267

used. Instead Bedmap2 sea level rise contributions remain in the more stable, steadily268

evolving state regardless of forcing (Figure 3 bottom). This suggests that Bedmap2269

has an overly stabilising effect on PIG, even for strong melt forcing and plastic friction.270
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Figure 3. Net sea level contribution (left) and yearly rate (right). Individual simulations

(top), grouped by friction law and forcing (middle) and grouped only by forcing including

Bedmap2 (bottom). Shades correspond to ± one standard deviation.
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5 Discussion271

Present-day bedrock topography uncertainty has been shown to have a strong272

influence on ice sheet simulations in the mid-Pliocene where the sea level contribu-273

tion in 3000-year simulations varies between 12.6 and 17.9 m SLE for different noise274

realisations (Gasson et al., 2015). The sensitivity of BISICLES to roughness in the275

topography has been investigated by Sun et al. (2014) by adding noise of different276

spatial scales to a reference topography. The strongest impact is found for the largest277

scale (50 km) which, just as for our high forcing scenario, determines the timing of the278

system to transition into a more unstable state. In contrast to such sensitivity studies,279

our sample is representative of our knowledge about the topography, including likely280

correlation length scales and an increase in topography uncertainty with distance to281

measurements.282

Simulations based on Bedmap2 for PIG show less sensitivity to strong climate283

forcing than the statistically generated topographies and BedMachine. Since our to-284

pographies agree qualitatively with BedMachine it is unclear what aspect causes the285

difference: BedMachine uses a mass conservation approach where topographies are286

relaxed to avoid large mass flux divergence (positive or negative) from unreasonable287

ice geometry-velocity combinations. Our topographies and Bedmap2 do not include288

such considerations but share a sill near the grounding line. Our topographies show289

at the same time considerably more variability than the relatively smooth Bedmap2290

and BedMachine. We do note, however, that the Bedmap2 topography lies largely291

above the others within the first approximately 150 km upstream from the grounding292

line and that, for the same surface elevation of the ice, an elevated topography is fur-293

ther from hydrostatic equilibrium and could hence be less prone to retreat. Whatever294

the reason, the striking underestimation of mass loss for Bedmap2 simulations and295

high forcing relative to the other topographies (Figure 3, bottom), calls for caution in296

interpreting modelling results obtained with this topography.297

The simulations used here have no representation of Marine Ice Cliff Instability298

which cannot be ruled out on these timescales. It seems, however, not possible at the299

moment to represent it in a well constrained way, or to predict how strong its impact300

could be on simulations up to year 2100.301

Another clear limitation of our simulations is the resolution of statistically gen-302

erated topographies of 4 km × 4 km (which is interpolated up to 500 m within the303

adaptive grid refinement of BISICLES). The reason for this is not so much the Gaussian304

Process approach itself but the relatively high computational demand of a Cholesky de-305

composition which is used to generate random samples from a large covariance matrix.306

Evaluations of the mean field (’best estimate’) would have been possible on fine resolu-307

tions, but would not have covered all of the uncertainties. It is challenging to quantify308

the impact of the bedrock resolution, but it should be noted that the statistically gen-309

erated topographies contain much more variability than both reference topographies,310

and that finer resolutions would, if anything, amplify this property. Simulations using311

Bedmap2 topography at 1 km resolution behave very similarly to those with degraded312

4 km resolution (not shown).313

To represent bedrock uncertainty in future simulations it would be desirable to314

have reference realizations, like the set of topographies we generated here but for more315

general setups (ideally continent wide). This would allow different modelling groups to316

represent topographic uncertainty in predictions while retaining comparability (since317

the same samples are used). Similar approaches could be used to assess the value of318

additional measurements, e.g. for planning future campaigns.319

In conclusion, we have been able to couple the representation of the bedrock320

uncertainty more closely to observational constraints in combination with the use of321
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realistic climate forcings. In particular we have shown how the uncertainty from to-322

pography interacts with other model parameters. This uncertainty increases with non-323

linearity of the friction law and with stronger (melt) forcing. One standard deviation324

can make up between 5% and about 25% (=5 mm SLE) of the 85-year signal, solely325

due to uncertainties in topography measurements and interpolation. These predictive326

uncertainties have been known to exist but until now remained largely omitted and327

unquantified. The low forcing scenario, which is more likely to be realized in very low328

greenhouse gas emission scenarios, would limit the PIG contribution to global mean329

sea level in this century. In addition we find the use of Bedmap2 to be likely to lead330

to an underestimation of the dynamic response of PIG and recommend the use of331

BedMachine if a reference topography has to be used.332
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