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Additional figures62

Fig. S1. Change in 1 hr daily maximum (DM) NO2 in 2020 relative to the average of 2015 to 2019 at the California Air Resources Board sites throughout the South Coast Air
Basin.

Fig. S2. Change in 8 hr daily maximum (DM) O3 in 2020 relative to the average of 2015 to 2019 at the California Air Resources Board sites throughout the South Coast Air
Basin.
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Sites are ordered by longitude (from west to east)

Fig. S3. Average derivatives of O3 response vs. temperature between May and September at California Air Resources Board sites throughout the South Cost Air Basin for
years 2015–2020. Each group of bars is one site, and are ordered by longitude (west to east).
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Fig. S4. Simulated inorganic nitrate aerosol sensitivity at downtown LA for two model runs during March to May 2020. Dashed lines represent the run with lockdown-induced
emissions reductions (COVID-19), solid lines represent the business as usual (BAU) run. NOx emissions are shown in black, nitrate aerosol concentration in blue, and the gas
ratio in red. A gas ratio < 1 indicates NH3-limited (compared to NOx-limited chemistry). See the SI for more information.
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Fig. S5. Average change in gas ratios for March 2020 between a model simulation using business as usual (BAU) NOx emissions and one using emissions based on NO2
observations for March 2020 (COVID-19). The gas ratio is described in Eq. (3); a value < 1 indicates NH3 limited nitrate aerosol formation; a value > 1 indicates NOx

limited aerosol formation.
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Fig. S6. Same as Fig. S7, but for April 2020.
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Fig. S7. Same as Fig. S7, but for May 2020.
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Fig. S8. Trends in column average CO2 and CH4. (a) Trends in CO2 from the Orbiting Carbon Observatory 2 (OCO-2) for the northern and southern hemispheres. The pale
blue and red markers are daily values, calculated as described in the text. The vibrant blue and red markers represent deseasonalized values computed from the daily values
by fitting a fixed seasonal cycle described by a four-term harmonic equation (1, 2). The solid line is a robust linear fit to the 2016 through 2019 data. (b) Annual growth rate of
CO2 computed from OCO-2 data in the northern and southern hemispheres, as well as derived from fossil fuel emissions trends. See text for details. (c) As (a), but for CO2
from two Total Carbon Column Observing Network (TCCON) stations: Park Falls, WI, USA in the northen hemisphere and Lauder, New Zealand in the southern hemisphere.
(d) As (b), but derived from TCCON CO2. (e) As (c), but for CH4. (f) As (d), but for CH4. In all panels the vertical gray dashed line marks 1 March 2020.
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Fig. S9. Annual mean, globally integrated terrestrial net ecosystem production (NEP, positive into biosphere, excludes land use change) predicted from the CanESM5-COVID
ensemble (3). As in the main paper, black/gray lines derive from simulations forced with SSP2-RCP4.5 CO2 emissions, while red/pink lines derive from simulations forced with
a 25% peak CO2 emissions reduction in 2020. See (3) for more details. Thick lines are ensemble averages, and thin lines are individual ensemble members, each with different
phasing of internal variability.

Fig. S10. Theoretical ozone production efficiency as a function of NOx concentration and one other variable, computed in a steady-state model. In all panels, NOx concentration
is given on the x-axis, the second independent variable on the y-axis, and the color represents the ozone production efficiency. In panel (a), the y-axis is total VOC reactivity,
VOCR; in panel (b), it is total HOx production, P(HOx); in panel (c), it is the branching ratio (α) for the RO2 + NO reaction. Note that the y-axis in panel (b) is multiplied by 107

and the color scale for panel (c) has a higher maximum value than the other panels and is logarithmic, rather than linear. The default values for VOCR, P(HOx), and α when
not the second dependent variables are 5.0 s−1, 6.25 × 106 molec. cm−3 s−1, and 0.04, respectively.
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Supporting Information Text63

Methods64

Public data. All public datasets used in this study are shown in Table S1.65

Human activity metrics. The human activity metrics in Fig. 2 include the Oxford Coronavirus Government Response Index66

(4), Opensky-derived flight data (5, 24, 25), Port of LA container moves (https://www.portoflosangeles.org/business/statistics/67

container-statistics, last accessed 13 May 2021), Port of Long Beach container moves (https://www.polb.com/business/port-statistics/68

#teus-archive-1995-to-present, last access 20 Feb 2021) Port of Oakland container moves (https://www.oaklandseaport.com/69

performance/facts-figures/, last accessed 13 May 2021), Caltrans PeMS daily vehicle counts (http://pems.dot.ca.gov/, last accessed70

30 Mar 2021), Apple driving mobility data (https://covid19.apple.com/mobility, last accessed 20 Feb 2021), and U.S. Energy71

Information Agency electricity consumption (https://www.eia.gov/electricity/data/browser/#/topic/, last accessed 20 Feb 2021).72

The CAADA Python package (26) was used to preprocess the PeMS vehicle counts and Strohmeier et al. (5) flight data,73

as well as download Port of LA and Port of Oakland container moves. For the purposes of Fig. 2, “Bay Area” is defined as74

Alameda, Contra Costa, Marin, San Mateo, San Francisco, Santa Clara, and Santa Cruz counties, while “LA” is defined as Los75

Angeles, Orange, Riverside, San Bernardino, Santa Barbara, and Ventura counties. For flight data, shipping data, and traffic76

data, daily values were normalized such that 15 Jan 2020 is 100% and monthly values were normalized such that Jan 2020 was77

100%. For electricity use data, each month’s value is the 2020 use as a percentage of 2019 use in the same month.78

Oxford stringency index: US vs. US state mean. The Oxford Stringency Index (27) includes stringency metrics labeled as US without79

a subregional code along with metrics for individual states. In Fig. 2, “United States” indicates that the US values without80

a subregional code are plotted, while “US (state mean)” indicates that the average of all the individual states’ stringency81

indices is plotted. The Oxford index subnational interpretation guide (https://github.com/OxCGRT/covid-policy-tracker/blob/master/82

documentation/subnational_interpretation.md, last accessed 13 May 2021) indicates that their primary dataset summarizes the83

totality of policies in the specified territory.84

While we include both the combined US and state mean metric to illustrate the general stringency of lockdown measures in85

the US, we do not ascribe specific meaning to the difference between them.86

Equivalent Emissions Year Calculations. For the CO2 emissions in Fig.3, we used 2005-2018 fossil fuel emissions from the87

Global Carbon Budget 2019 (28). For 2019, we assumed a +0.1% increase from 2018 based on Supplementary Data in Le88

Quere et al (29). For 2020 we used a 7% decrease from the 2019 value with a ± 1% uncertainty, based on Le Quere et al (29)89

and Liu et al (30). The 2020 emissions are 9.29 (± 0.10) GtC/yr; this corresponds to somewhere between 2010 (9.05 GtC/yr)90

and 2012 (9.50 GtC/yr). For CH4, we use the anthropogenic emissions based on the EDGARv4.3.2 and GFED4.1s emissions91

inventories as published in the Global Methane Budget 2000-2017 (31). To estimate the emissions trajectory beyond 2017, we92

assumed that the rate of increase for 2018 and 2019 was equal to the average rate for 2005 to 2017, then used the estimated93

10% reduction in 2020 from (32). For the global NOx emission trajectory in Fig. 3 we used 2005-2020 emissions from the94

assimilation system described in the subsection “Global ozone production efficiency calculation” below.95

For Fig 9, we again used the NOx emissions from the assimilation system. For countries whose emissions have been96

monotonically increasing since 2005, we calculate the prior year with the same emissions as 2020. For countries whose emissions97

decreased over all or part of the 2005-2019 period, we use the 2015-2019 rate of decline to project emissions into the future.98

Global CO2 emissions estimates. We calculated the daily global fossil CO2 emissions in 2020 (updated to December 31st), as99

well as the daily sectoral emissions from power sector, industry sector, transport sector (including ground transport, aviation and100

shipping), and residential sector respectively. The estimates are based on a set of near real time dataset including hourly to daily101

electrical power generation data from national electricity operation systems of 31 countries, real-time mobility data (TomTom102

city congestion index data of 416 cities worldwide and FlightRadar24 individual flight location data), monthly industrial103

production data (calculated separately by cement production, steel production, chemical production and other industrial104

production of 27 industries) or indices (primarily Industrial Production Index) from national statistics of 62 countries/regions,105

and monthly fuel consumption data corrected for the daily population-weighted air temperature in 206 countries.106

CO2 and CH4 trends and CH4 box model. CO2 and CH4 trends were computed from version 10 column average CO2 (termed107

XCO2) measurements made by the Orbiting Carbon Observatory 2 (OCO-2) satellite instrument and ground based CO2 and108

CH4 column measurements from two Total Carbon Column Observing Network (TCCON) sites: one in Park Falls, WI, USA109

(45.945° N, 90.273° W) and Lauder, New Zealand (45.038° S, 169.684° E). OCO-2 data was subset to quality flag = 0 data110

collected in the ocean glint mode and all data averaged daily between 20° N and 55° N for the northern hemisphere and 55° S111

and 20° S for the southern hemisphere. TCCON data was limited to data with flag = 0; publicly available data is already112

filtered in this manner.113

To compute the trends, 15 day running averages of the daily data were computed and deseasonalized using the method114

in Liu et al. (1) which follows Graven et al. (2). A robust linear fit was applied to the 2016 through 2019 data. 2020 was115

excluded so as to test how the 2020 trend compared to the previous four years.116

Growth rates were computed from the deseasonalized data by taking the differences in time of three month averages of the117

OCO-2 or TCCON deseasonalized data, multiplied by four to convert from three-monthly to annual growth rates. The growth118
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Dataset Used for Link Last access Citation

Oxford Stringency Index Human activity metrics https://www.bsg.ox.ac.uk/
research/research-projects/
coronavirus-government-response-tracker

20 Feb 2021 (4)

OpenSky-derived flight data Human activity metrics https://zenodo.org/record/3928564 31 Mar 2021 (5)
Port of Oakland container moves Human activity metrics https://www.oaklandseaport.com/

performance/facts-figures/
13 May 2021

Port of LA container moves Human activity metrics https://www.portoflosangeles.org/business/
statistics/container-statistics

13 May 2021

Port of Long Beach container moves Human activity metrics https://www.polb.com/business/
port-statistics/#teus-archive-1995-to-present

20 Feb 2021

Caltrans PeMS Human activity & SF emissions https://pems.dot.ca.gov/ 30 Mar 2021
Apple mobility trends Human activity metrics https://covid19.apple.com/mobility 20 Feb 2021
US EIA electricity use Human activity metrics https://www.eia.gov/electricity/data/browser/

#/topic/
20 Feb 2021

CARB air quality data LA Basin analysis https://www.arb.ca.gov/aqmis2/aqdselect.
php

11 Nov 2020

OMI NO2 columns Global model assimilation (OPE) http://www.qa4ecv.eu/ecv/no2-pre/data 11 Nov 2020 (6, 7)
TROPOMI NO2 columns Global model assimilation (OPE) http://www.tropomi.eu/data-products/

nitrogen-dioxide
11 Nov 2020 (8)

MOPITT CO Global model assimilation (OPE) https://www2.acom.ucar.edu/mopitt 11 Nov 2020 (9)
OMI SO2 columns Global model assimilation (OPE) https://disc.gsfc.nasa.gov/datasets/OMSO2_

003/summary
11 Nov 2020 (10, 11)

MLS O3 Global model assimilation (OPE) https://mls.jpl.nasa.gov/products/o3_product.
php

11 Nov 2020 (12, 13)

MLS HNO3 Global model assimilation (OPE) https://mls.jpl.nasa.gov/products/hno3_
product.php

11 Nov 2020 (12, 14)

BEACO2N CO2 data SF CO2 emissions estimates https://beacon.berkeley.edu/ 11 Nov 2020
OCO-2 XCO2 V10 CO2 trends https://ocov2.jpl.nasa.gov/oco-2-data-center/ 2 Apr 2021 (15–17)
TCCON CO2 and CH4 GGG2014 data CO2 & CH4 trends https://tccondata.org/ 2 Apr 2021 (18–21)
ODIAC 2016–2019 CO2 emissions for FF

growth rate
https://www.odiac.org/index.html 2 Apr 2021 (22)

Carbon Monitor 2020 CO2 emissions for FF growth
rate and 2019/2020 emissions com-
parison

https://carbonmonitor.org/ 2 Apr 2021 (23)

NOAA HRRR meteorology SF CO2 emissions estimates https://rapidrefresh.noaa.gov/hrrr/ 11 Nov 2020
Ocean/land ensemble data Ocean and land flux responses http://crd-data-donnees-rdc.ec.gc.ca/

CCCMA/publications/COVID19/.
27 May 2021 (3)

GEOS-Chem nitrate simulation Response of nitrate PM2.5 to NOx

reductions
https://doi.org/10.5281/zenodo.4849416 29 May 2021

Table S1. Public data sources used in this paper. The “Used for” column gives the part of the analysis in which that data was used.
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Year CO2 (Gt C/yr) CH4 (Tg CH4/yr) NOx (Tg N/yr)

2005 8.02 330.458 36.50
2006 8.29 341.481 37.02
2007 8.54 339.064 36.41
2008 8.73 341.426 36.47
2009 8.61 345.293 34.41
2010 9.05 352.484 36.16
2011 9.35 356.701 36.65
2012 9.50 363.326 35.75
2013 9.54 361.773 35.99
2014 9.61 369.790 37.04
2015 9.62 377.163 35.36
2016 9.66 371.620 33.77
2017 9.77 373.658 34.31
2018 9.98 - 34.30
2019 9.99 - 33.34
2020 9.29 - 30.58

Table S2. Emissions used in Figs. 3 and 9. A dash indicates that emissions data were not available for that year.
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rate for fossil fuel emissions was computed by using three month total of anthropogenic CO2 emissions from the Open-source119

Data Inventory for Anthropogenic CO2 (ODIAC) for 2016 through 2019 and carbonmonitor.org for 2020. The three month total120

emitted CO2 mass was converted to an atmospheric mixing ratio by:121

RFF = 4 · ECO2,3mo · 2.14 ppm
Gt C · f [1]122

where ECO2,3mo is the three month total CO2 emissions and f is the average airborne fraction computed from all of the123

OCO-2 data; each three-monthly airborne fraction (f) is computed as:124

f = ROCO−2,3mo

ECO2,3mo · 2.14 ppm/Gt C [2]125

where ROCO−2,3mo is the three-monthly growth rate computed from the OCO-2 data.126

The TCCON CH4 series shown in Fig. 6b are computed from the time series and trends in Fig. 6a. First, the percent127

difference of the northern and southern hemisphere data against their respective trends is computed. Then, monthly averages128

of these two percent differences are calculated. Finally, the two monthly time series are averaged together.129

The box model trend shown in Fig. 6b was calculated using the box model described in (33) and (34), available at130

https://github.com/alexjturner/BoxModel_PNAS_20161223. Briefly, this model treats the change in concentration of CH4 in each131

hemisphere as the sum of changes due to emissions, oxidation by OH, and interhemispheric transport. OH concentrations can132

either be directly prescribed or have a prescribed source with concentrations varying alongside CH4 and CO. The results in Fig.133

6b use prescribed OH concentrations, but the behavior is similar if the OH source is prescribed. For simplicity, CH4 emissions134

followed the “stabilized” scenario described in (34). The percent difference in CH4 shown in Fig. 6b is the difference between a135

model run with a 3% reduction in OH during 2020 and one without.136

We do note that, in the box model, the renewed CH4 growth after 2008 occurs earlier than indicated by in situ measurement.137

This is due to the timing of CH4 emissions growth in the EDGAR inventory. However, this does not affect our conclusions as138

(a) we use the difference of two model runs with the same CH4 emissions trends and (b) we focus on the behavior in 2020.139

TROPOMI NO2 timeseries. For our analysis we re-grid the operational TROPOMI tropospheric vertical column NO2, with native140

pixels of approximately 3.5 × 7 km2 for 2019 and 3.5 × 5.5 km2 for 2020, to a newly defined 0.01◦ × 0.01◦ grid (approximately141

1 × 1 km2) centered over each of the three cities: Los Angeles, Lima, and Shanghai. Before re-gridding, the data are filtered so142

as to use only the highest quality measurements (quality assurance flag (QA_flag) > 0.75). By restricting to this QA value, we143

are removing mostly cloudy scenes (cloud radiance fraction > 0.5) and observations over snow-ice. Once the re-gridding has144

been completed, the data is binned temporally during a 15-day rolling timeframe and spatially over the metropolitan area,145

which we loosely define as a 1◦ × 1◦ box over the city center. The rolling 75th percentile of the binned data during the first five146

months of 2019 annd 2020 are shown in top row of Figure 7. There is some evidence that the current TROPOMI operational147

NO2 product may have a low bias of 20 to 40% in polluted areas; much of this bias may be attributed to the air mass factor148

(35–37). We limit our analysis to relative trends, which reduces this uncertainty.149

LA Basin AQ analysis. The hourly ambient temperature and concentrations of PM2.5, NO2, and O3 in the South Coast Air150

Basin for the period of 1 Jan 2015 to 30 Sept 2020 were downloaded from the California Air Resources Board Air Quality Data151

Query Tool (https://www.arb.ca.gov/aqmis2/aqdselect.php). It should be noted that the 2020 data are preliminary, unvalidated,152

and subject to change. The following steps were taken for data analysis:153

1. Only the monitoring sites that had complete data between 2015 and 2020 were considered in this analysis. Near-road154

monitoring sites were not included in the analysis. Figure S11 and Table S3 show the location of the monitoring sites155

considered in this analysis and the parameters measured at each site, respectively.156

2. For every date and site, the 1hr daily maximum (DM) temperature, 24hr average PM2.5, 1hr DM NO2, and 8hr average157

DM O3 were calculated.158

3. For every date, the average of the above-mentioned parameters was calculated across all monitoring sites. 7-day moving159

averages were then calculated and presented by day of year in Figure 8 for 2020 and the average (± range) of [2015-2019].160

The background colors in Figure 8 illustrate the difference between the 7-day moving average temperature in 2020 and161

the average (±1σ) temperature in [2015-2019] by day of year.162

4. Using the data in step 2, the percent change in monthly average concentrations of 1hr DM NO2 and 8hr DM O3 between163

2020 and the average of [2015-2019] was calculated by month and site as shown in Figures S1 and S2.164

Global ozone production efficiency calculation. We evaluated the seasonal and regional changes in the global tropospheric165

ozone response to COVID-19 NOx emissions using a state-of-the-art chemical data assimilation system. Anthropogenic166

NOx emission reductions linked to the COVID-19 pandemic were estimated as the difference between 2020 emissions and167

climatological (baseline) emissions for 2010-2019 estimated from our decadal chemical reanalysis constrained by multiple168

satellite measurements. The assimilation system uses the MIROC-CHASER global chemical transport model and an ensemble169

Kalman filter technique (38). This approach allows us to capture temporal and spatial variations in transport and chemical170
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Fig. S11. Location of South Coast Air Basin monitoring sites included in this analysis.
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Site Temperature O3 PM2.5 NO2

Anaheim X X X X
Azusa X X X
Banning airport X X X X
Central LA X X X X
Compton X X X
Crestline X X X
Fontana X X X
Glendora X X X X
La Habra X X
Lake Elsinore X X X X
LAX X X
Mira Loma X X X X
Mission Viejo X X
Pasadena X X
Perris X X
Pico Rivera X X X
Pomona X X
Redlands X
Reseda X X X
Rubidoux X X X X
San Bernadino X X X
Santa Clarita X X X X
South Long Beach X
Upland X X X X
West LA X X
Temecula X X X

Table S3. Parameters used from each South Coast Air Basin monitoring site.
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reactions in the emission and concentration estimates. The results for 2020 were used previously to evaluate the air quality171

response to Chinese COVID-19 lockdown (39), and show reasonable agreements with the observed concentrations from in-situ,172

ozonesonde, and satellite ozone measurements globally for 2005-2018 (39) as well as for 2020 (40).173

In order to evaluate seasonal and regional differences in the ozone response, the ozone production efficiency (OPE) was174

estimated based on model sensitivity calculations using the 2020 and baseline emissions for February-July 2020. The OPE was175

calculated using the simulated global tropospheric ozone burden changes corresponding to changing NOx emissions (i.e., the176

COVID-19 emission anomaly); the analysis was performed separately for each of the selected megacities. The model simulations177

were conducted from the beginning to the end of each month for the time period February to June, 2020, using the same initial178

conditions. The simulated tropospheric ozone burden averaged over the last 5 days of each month was compared between the179

simulations using the 2020 and baseline emissions. The analysis thus provides information on monthly changes in the ozone180

response (Tg) to reduced NOx emissions (Tg per year) for each megacity separately. These data are presented in Table S4.181

PM2.5 simulations. We used the GEOS-Chem (v9-02) model with a bi-directional NH3 flux scheme (41) at the nested resolution182

of 0.3125◦ × 0.25◦ latitude to explore the sensitivity of inorganic aerosol formation to NOx emission reductions in Los Angeles183

(118.239° W, 34.052° N) during COVID-19. Our detailed O3-NOx-VOC-aerosol simulations were driven by Goddard Earth184

Observing System (GEOS-FP 5.22.0) assimilated meteorological fields and include anthropgenic/biogenic/biomass burning185

emissions (42–44), gas-phase chemistry (45) and inorganic aerosol partitioning (46), wet/dry depositions (47–49) and transport.186

We first scaled anthropogenic NOx and SO2 emissions from HTAP v2 (42) (originally for the year 2010) to the year 2017 using187

satellite-derived SO2 and NOx emission reduction ratios (50) as our base emissions, which refer to emissions before lockdown188

during COVID-19. We scaled our base anthropogenic NOx emissions in March by BAU/COVID monthly NOx emission ratios189

from Miyazaki et al. (39) as our BAU/COVID emissions. In the COVID-19 simulations, the NOx emissions started to decrease190

on March 1st.191

We calculated the gas ratio (51) shown in Fig. S4 using Eq. (3):192

gas ratio = [NH3] + [NH+
4 ] − 2[SO2−

4 ]
[HNO3] + [NO−

3 ]
[3]193

[NH3], [NH+
4 ], [SO2−

4 ], [HNO3] and [NO−
3 ] are in units of molar concentrations (mol m−3) and include both gas-phase and194

aerosol-phase. This gas ratio is an indicator of NH4NO3 production sensitivity to NOx emission change and NH3 emission195

change. Values > 1 indicate that NH4NO3 production is NOx limited; values < 1 indicate it is NH3 limited.196

Ozone production efficiency steady state model. The ozone production efficiency (OPE) values in Fig. S10 were computed197

from a HOx-NOx steady state model similar to that used in Laughner et al. (52) (available at https://github.com/joshua-laughner/198

HSSModel/releases/tag/v0.1.0, an example notebook is available at https://github.com/joshua-laughner/HOx-NOx-model-PNAS-2021).199

Briefly, this model takes fixed values for NO and NO2 concentrations, VOC reactivity (VOCR), HOx productions (P(HOx)),200

and RO2 + NO branching ratio (α) and solves for RO2, HO2, and OH concentrations, assuming that HO2, RO2, and the whole201

HOx family (RO2 + HO2 + OH) are in steady state.202

Theoretical OPE is computed from the model steady state as the ratio of ozone production to NOx loss, similar to Kleinman203

et al. (53) except that formation of alkyl nitrates is counted as NOx loss:204

OPEmodel = P (O3)
L(NOx)

= kNO+HO2[NO][HO2] + (1 − α)kNO+RO2[NO][RO2]
kNO2+OH[NO2][OH] + αkNO+RO2[NO][RO2] [4]
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Feb 2020 Mar 2020 Apr 2020 May 2020 Jun 2020
Country City

∆
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3
)

China Shanghai -0.0159 -0.054 -0.0196 -0.079 -0.1659
Pakistan Karachi -0.0009 -0.0023 -0.0039 0.0031 -0.0069
India Mumbai -0.0075 -0.0067 -0.0077 -0.0053 -0.0538
China Beijing -0.0064 -0.0087 0.0049 0.0033 -0.0227
Turkey Istanbul -0.0032 -0.0136 -0.0041 -0.0151 -0.0353
China Guangzhou -0.0127 -0.02 -0.0164 -0.0281 -0.0277
India Delhi 0.0014 0.0096 -0.0268 -0.0152 -0.0313
Nigeria Lagos -0.0186 -0.0336 -0.0532 -0.0912 -0.0594
South Korea Seoul -0.0155 -0.0246 -0.0386 -0.0476 -0.0553
Brazil São Paulo -0.0226 -0.034 -0.0499 -0.039 -0.0308
Indonesia Jakarta 0.0043 -0.1095 -0.1149 -0.1084 -0.0961
Mexico Mexico City -0.0221 -0.0376 -0.0817 -0.1191 -0.0879
Japan Tokyo -0.0131 -0.014 -0.0107 -0.0116 -0.019
United States New York City -0.0072 -0.0082 -0.0187 -0.0129 -0.014
Egypt Cairo 0.003 -0.0018 -0.0089 -0.0149 -0.0184
Peru Lima -0.0095 -0.0396 -0.0686 -0.0518 -0.0558
United Kingdom London -0.0076 -0.0104 -0.0113 -0.0102 -0.0149
Iran Tehran -0.0141 -0.0105 -0.0442 -0.051 -0.0503
Australia Sydney -0.3071 -0.3481 -0.3528 -0.3601 -0.2905
United States Los Angeles -0.01 -0.02 -0.01 -0.07 -0.11

∆
N

O
x

em
is

si
on

s
(T

g
N

)

China Shanghai -0.553854 -0.646131 -0.245612 -0.359558 -0.396624
Pakistan Karachi 0.00108 -0.01083 -0.013907 -0.010837 -0.020179
India Mumbai -0.024593 -0.027663 -0.024419 -0.061499 -0.139134
China Beijing -0.198961 -0.099599 -0.009603 -0.011923 -0.145126
Turkey Istanbul -0.130658 -0.174579 -0.03314 -0.088187 -0.089888
China Guangzhou -0.078471 -0.132469 -0.067583 -0.066167 -0.113306
India Delhi 0.013419 0.018727 -0.039327 -0.03435 -0.032617
Nigeria Lagos -0.009639 -0.007365 -0.007956 -0.013574 -0.005402
South Korea Seoul -0.149712 -0.159186 -0.203807 -0.148556 -0.29208
Brazil São Paulo -0.008472 -0.027171 -0.0432 -0.039373 -0.033903
Indonesia Jakarta 0.002877 -0.047226 -0.064194 -0.026963 -0.05354
Mexico Mexico City -0.01537 -0.06882 -0.061191 -0.137199 -0.054954
Japan Tokyo -0.041926 -0.034649 -0.029087 -0.039731 -0.059888
United States New York City -0.044813 -0.052346 -0.070999 -0.061666 -0.091085
Egypt Cairo 0.024929 -0.012549 -0.023062 -0.04617 -0.050889
Peru Lima -0.002643 -0.01057 -0.015109 -0.017799 -0.020392
United Kingdom London -0.056416 -0.086728 -0.136076 -0.114414 -0.143172
Iran Tehran -0.108269 -0.081617 -0.12622 -0.145247 -0.140058
Australia Sydney -0.122616 -0.090462 -0.125676 -0.177362 -0.151404
United States Los Angeles -0.61 -0.53 -0.19 -0.31 -0.43

O
P

E
(T

g
O

3
/T

g
N

)

China Shanghai 0.028708 0.083574 0.079801 0.219714 0.41828
Pakistan Karachi -0.833333 0.212373 0.280434 -0.286057 0.34194
India Mumbai 0.304965 0.242201 0.315328 0.08618 0.386678
China Beijing 0.032167 0.08735 -0.510257 -0.276776 0.156416
Turkey Istanbul 0.024491 0.077902 0.123718 0.171227 0.392711
China Guangzhou 0.161843 0.150979 0.242665 0.424683 0.244471
India Delhi 0.10433 0.512629 0.681466 0.442504 0.959622
Nigeria Lagos 1.929661 4.562118 6.686777 6.718727 10.995927
South Korea Seoul 0.103532 0.154536 0.189395 0.320418 0.189332
Brazil São Paulo 2.667611 1.251334 1.155093 0.990527 0.908474
Indonesia Jakarta 1.494612 2.318638 1.789887 4.020324 1.79492
Mexico Mexico City 1.437866 0.546353 1.335164 0.868082 1.59952
Japan Tokyo 0.312455 0.404052 0.367862 0.291963 0.317259
United States New York City 0.160668 0.15665 0.263384 0.209191 0.153703
Egypt Cairo 0.120342 0.143438 0.385916 0.32272 0.361571
Peru Lima 3.5944 3.746452 4.54034 2.910276 2.736367
United Kingdom London 0.134714 0.119915 0.083042 0.08915 0.104071
Iran Tehran 0.130231 0.12865 0.350182 0.351126 0.359137
Australia Sydney 2.504567 3.848025 2.807219 2.030311 1.918708
United States Los Angeles 0.016393 0.037736 0.052632 0.225806 0.255814

Table S4. Changes in NOx emissions, O3, and ozone production efficiency inferred from the multi-satellite data assimilation system.
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