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Abstract12

Free alternate bars are large-scale, downstream-migrating bedforms character-13

ized by an alternate sequence of three-dimensional scour and deposition patches that14

frequently develop in rivers as the result of an intrinsic instability of the erodible bed.15

Theoretical models based on two-dimensional shallow water and Exner equations have16

been successfully employed to capture the bar instability phenomenon, and to estimate17

bar properties such as height, wavelength and migration rate. However, the mathe-18

matical complexity of the problem hampered the understanding of the key physical19

mechanisms that sustain the bar formation. To fill this gap, we considered a simplified20

version of the equations, based on neglecting the deformation of the free surface, which21

allows us to: (i) provide the first complete explanation of the bar formation mechanism22

as the result of a simple bond between variations of the water weight and flow acceler-23

ation; (ii) derive a simplified, physically based formula for predicting bar formation in24

a river reach, depending on channel width-to-depth ratio, Shields number and relative25

submergence. Comparison with an unprecedented large set of laboratory experiments26

reveals that our simplified formula appropriately predicts alternate bar formation in a27

wide range of conditions. Noteworthy, the hypothesis of negligible free surface effect28

also implies that bars formation is fully independent of the Froude number. We show29

that this intriguing property is intimately related to the three-dimensional nature of30

river bars, which allows for a gentle lateral deviation of the flow without significant31

deformation of the water surface.32

1 Introduction33

Alternate bars are characterized by a sequence of large scale deposition and ero-34

sion patches that alternate themselves at the two sides of the channel, showing diagonal35

fronts as in the example of Figure 1. The formation of alternate bars in rivers is im-36

portant from an engineering perspective, as bars can affect navigability, enhance bank37

erosion and interact with instream engineering structures [e.g. Claude et al., 2014].38

Moreover, bars formation represents a fascinating example of self-sustained morpho-39

dynamic process, which that has been considered a precursor for the formation of river40

meandering and braiding [e.g., Fredsoe, 1978], and a main driver for channel widening41

[e.g. Repetto et al., 2002] and for the formation of channel bifurcations [e.g, Redolfi42

et al., 2016].43

A large number of laboratory experiments demonstrated that downstream-migrating44

alternate bars tends to spontaneously form in straight channels of constant width [e.g.45

Jaeggi , 1984; Fujita and Muramoto, 1982; Ikeda, 1984; Lanzoni , 2000; Crosato et al.,46

2012; Nelson and Morgan, 2018; Redolfi et al., 2020]. This kind of bars, often referred47

to as “free alternate bars”, are frequently observed in rivers [e.g. Jaballah et al., 2015;48

Rodrigues et al., 2015; Adami et al., 2016; Serlet et al., 2018; Church and Rice, 2009;49

Ferguson et al., 2011], especially in channelized, gravel-bed rivers.50

Two- and three-dimensional mathematical models have been employed to in-51

vestigate different morphodynamic characteristics of free alternate bars, including:52

the effect of sediment heterogeneity [Lanzoni and Tubino, 1999; Rodrigues et al., 2015;53

Qian et al., 2017; Cordier et al., 2019]; the effect of flow variability Tubino [1991]; Hall54

[2004]; the interaction between free and forced (or hybrid) bars [Tubino and Seminara,55

1990; Duró et al., 2016]; the effect of suspended sediment load [Tubino et al., 1999;56

Federici and Seminara, 2006; Bertagni and Camporeale, 2018]; the transition from al-57

ternate bars to to three-dimensional oblique dunes [Colombini and Stocchino, 2012];58

the morphodynamic effect of vegetation [Bertagni et al., 2018; Jourdain et al., 2019;59

Caponi et al., 2019].60
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Mathematical modelling allowed for the identification of the essential processes61

needed to reproduce the bar formation. They revealed that three-dimensional effects62

such as helical motion or flow separation are of secondary importance, so that the63

process of alternate bars formation can be effectively predicted by means of depth-64

averaged, two-dimensional shallow water and Exner equations. Specifically, linear sta-65

bility analyses [Callander , 1969; Parker , 1976; Fredsoe, 1978; Colombini et al., 1987]66

demonstrated that even for a straight channel of constant width the basic, uniform-flow67

solution is inherently unstable, which leads from the spontaneous formation of long,68

three-dimensional bed deformations representing free alternate bars. Moreover, these69

theoretical analyses provided an useful criterion to determine marginal stability con-70

ditions, which are mainly controlled by the channel width-to-depth ratio. Specifically,71

bars are expected to form when the width-to-depth ratio exceeds a critical threshold72

that depends on other river characteristics (primary relative roughness and Shields73

number).74

Nevertheless, the mathematical complexity of the problem limited the derivation75

of explicit, physically based expressions for the critical aspect ratio as a function of76

the controlling parameters, as also recently highlighted by [Crosato and Mosselman,77

2020]. As a consequence, application of the theory currently requires either to numer-78

ically solve a dispersion relation involving complex numbers, or to rely on plots made79

available by different authors, with limited possibility to explore the space of parame-80

ters and the effect of different transport and friction formulae. A possible alternative81

is based on empirical criteria proposed in the literature [e.g., Muramoto and Fujita,82

1978; Jaeggi , 1984; Yalin and Da Silva, 2001; Ahmari and Da Silva, 2011]. Despite83

being originally formulated in different ways, empirical relations can be re-expressed84

in terms of the threshold value of the width-to-depth ratio that needs to be exceeded85

to enable the formation of bars. However, the empirical nature of these criteria makes86

it difficult to extend predictions out of the set of conditions for which they are derived.87

Moreover, empirical relations do not allow for isolating the effect of the individual88

physical parameters, and to assimilate information that may come from site-specific89

estimations of hydraulic roughness or sediment transport relations.90

More fundamentally, the mathematical complexity highly limited the possibility91

to provide a satisfactory physical explanation of the mechanism of bar instability. A92

first tentative explanation was proposed by [Einstein and Shen, 1964], who suggested93

that bars may form as a consequence of helical motion, possibly reinforced by the94

presence of rough banks. However, subsequent models have conclusively demonstrated95

that neither three-dimensional flow nor rough banks are essential for capturing the bar96

instability mechanisms. More recent explanations Nelson [1990]; Tubino et al. [1999]97

are given in terms of the divergence of the flow field around bars, due to a sort of98

topographic steering. However, the mechanism that produces this flow field has not99

been clarified. Therefore, a complete physical description of the instability process is100

substantially missing.101

In this work, we consider a simplified version of the governing equations, in order102

to: (i) derive a simple, explicitly expression for predicting bar stability conditions and103

validate it by means of existing laboratory experiments; (ii) provide a physically based104

explanation of the bar formation mechanism.105

The paper is organized as follows: in Section 2 we define the governing equations106

and we specify the fundamental assumptions; in the Results Section 3 we introduce107

the simple criterion for predicting the formation of bars, we test it against existing108

laboratory data, and we provide a physical explanation of the bar formation mecha-109

nism; in Section 4 we discuss model hypotheses and associated limitations. Finally,110

details about the derivation of the explicit expression for the critical aspect ratio are111

reported in Appendix A .112
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Figure 1: Example: downstream-migrating alternate bars in the Alpine Rhine River in
Switzerland, 47◦02′N , 09◦29′E, 02-Apr-2012. From Google Earth, Digital Globe (2021).
Flow is from left to right.

2 Mathematical formulation113

2.1 The governing equations114

We consider an infinitely-long channel, with straight, fixed banks and rectangu-115

lar cross-section of width W , whose bottom is formed by cohesionless particles with116

representative (e.g., median) grain size d. We adopt a two-dimensional, mobile-bed,117

depth-averaged shallow water model [e.g., Parker , 1976; Colombini et al., 1987; Siviglia118

et al., 2013], which can be written as a nonlinear differential system of four equations in119

the four dependent variables U , V , D and H (longitudinal and transverse velocity, wa-120

ter depth and water surface elevation), in the independent variables x, y (planimetric121

coordinates) and t (time). As sketched in Figure 2, the origin of the cartesian system122

of reference is positioned at the right bank, and elevations are calculated with respect123

to a sloping plane having longitudinal gradient S0. The depth-averaged equations that124

express the conservation of momentum, liquid and solid mass read:125

U
∂U

∂x
+ V

∂U

∂y
− gS0 + g

∂H

∂x
+

τx
ρD

= 0, (1a)

U
∂V

∂x
+ V

∂V

∂y
+ g

∂H

∂y
+

τy
ρD

= 0, (1b)

∂UD

∂x
+
∂V D

∂y
= 0, (1c)

(1− p)∂η
∂t

+
∂qsx
∂x

+
∂qsy
∂y

= 0, (1d)

where p denotes the sediment porosity and η = H −D indicates the bed elevation.126

The set of four differential equations is then completed by specifying closure127

relationships. Specifically, the two components of bed shear stress are estimated as128

follows:129

{τx, τy} = ρ
U2

c2
{sin γq, cos γq}, tan(γq) =

V

U
, (2)

where c(D/d) is the dimensionless Chézy coefficient and γq is the angle of the velocity130

vector ~U . The components of sediment transport are expressed as:131

{qsx, qsy} =
√
g∆d3Φ(θ){sin γs, cos γs}, (3)
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Figure 2: View of the channel of width W , showing the system of reference, {x, y, z}, and
the two components of the velocity vector, {U, V }. The water surface elevation H is given
by the sum of the bed elevation η and the water depth D. All the elevations are calcu-
lated with respect to the reference, z = 0, plane having a constant downstream gradient
S0.

where ∆ is the relative submerged weight of the sediment and Φ is the dimensionless132

sediment flux, which is considered to be a function of the Shields number only [e.g.133

Meyer-Peter and Muller , 1948; Parker , 1990]. The angle of the sediment transport134

vector, γs, is computed by taking into account the deflection exerted by the lateral135

bed slope, by means of the following expression [e.g., Engelund , 1981; Blondeaux and136

Seminara, 1985]:137

sin γs =
qsy
|~qs|

= sin γq −
r√
θ

∂η

∂y
, (4)

where r is a dimensionless empirical coefficient [see Baar et al., 2018].138

Despite neglecting three-dimensional flow structures, this model has been proven139

to be able to capture the essential characteristics of river alternate bars, at least140

in conditions where most of the sediment is transported as bedload [e.g., Blondeaux141

and Seminara, 1985]. Specifically, linear solutions allow for calculating bar formation142

conditions, while weakly-nonlinear and fully nonlinear theories enable for reproducing143

bar height and to estimate other bar properties.144

2.2 The key hypothesis145

The present manuscript is founded on the key hypothesis that the deformation of146

the free surface due to the incipient formation of bars is negligible. More precisely, we147

assume that: (i) the pressure term g ∂H/∂x in the equation of longitudinal momentum148

(1a), and (ii) the variation of H when computing the bed elevation as η = H − D149

in Equations (1d) and (4), are both negligible. It is worth noticing, however, that150

variations of the free surface elevation are still considered in the equation of transverse151

momentum (1a), in which the pressure term g ∂H/∂y can not be disregarded.152
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This hypothesis has been used to model the formation of steady alternate bars153

in rivers [e.g. Struiksma et al., 1985; Crosato and Mosselman, 2009], and constitutes154

the basis for the so-called second order models for the evolution of meandering chan-155

nels [see Camporeale et al., 2007]. The appropriateness of adopting this hypothesis for156

modelling the evolution of migrating bars is suggested by visual inspection of exper-157

imental data, where fluctuations are usually small, even at relatively high values of158

the Froude number Garćıa and Niño [1993]. Moreover, it is indirectly indicated by159

the weak dependence of alternate bars on Froude number [Wilkinson et al., 2008], as160

characteristic of processes where the influence of free surface variations is small.161

In the following Section 3, the comparison with the complete model and the162

validation against experimental data are used to demonstrate the suitability of this163

key hypothesis for predicting bar stability conditions. Moreover, in Section 4, we will164

discuss about the physical reasoning of why water surface deformation is negligible for165

typical hydrodynamic conditions on river bars.166

2.3 Expression for the critical width-to-depth ratio167

Neglecting the deformation of the free surface elevation allows for deriving an168

explicit formula for determining the possibility of migrating alternate bars to form,169

depending on channel characteristics and flow conditions. To this aim, we first need170

to specify a reference depth D0 and the associated reference Shields number θ0, which171

is given by the following uniform-flow relationship:172

θ0 =
S0D0

∆ d
. (5)

Bars formation primary depends on the channel aspect ratio, which for historical173

reasons is here defined as half the width-to-depth ratio, namely:174

β =
W

2D0
. (6)

Specifically, when the aspect ratio exceeds a critical threshold value (βC) the initial,175

plane-bed configuration is unstable, and alternate bars are expected to spontaneously176

form [Colombini et al., 1987].177

A very simple formula for this critical aspect ratio can be obtained by: (i) lineariz-178

ing the governing equations, (ii) considering the first mode of the Fourier expansion of179

the solution, (iii) analysing the time development of an initially-small bed perturba-180

tion, (iv) determining the set of parameters for which this initial perturbation tends181

to grow, eventually leading to finite-amplitude alternate bars. Considering that these182

mathematical procedure is rather standard and straightforward, we prefer avoid clut-183

tering this section with a large number of equations. Therefore, we reported all the all184

the mathematical details in Appendix A , here providing only the final result of the185

linear stability analysis, which gives the following expression:186

βC =
c0
2

[
ξ(θ0)

r
(1 + 2cD)− 1

c20λ
2

]−1/2
, (7)

where the empirical coefficient r can be assumed equal to 0.3, while the dimensionless187

wavenumber, defined as λ = πW/L (with L indicating the bar wavelength), can be188

considered equal to 0.45 [Colombini et al., 1987]. The symbol ξ indicates a function189

on the reference value of the Shields number (see Equation A.14b), which depends on190

the choice of the sediment transport formula. Specifically, considering the sediment191

transport formula of Parker [1978] it reads:192

ξ(θ0) =

√
θ0
π2

(
9

θcr
θ0 − θcr

+ 2

)
, θcr = 0.03. (8a, b)
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Similarly, the reference dimensionless Chézy coefficient c0 and the associated cD co-193

efficient (equation A.6a) depends on the choice of the friction formula. Adopting the194

widely-used logarithmic expression [Engelund and Hansen, 1967] gives:195

c0 = 6 + 2.5 log

(
1

2.5

D0

d

)
, cD =

2.5

c0
, (9)

where the ratio D0/d represents the relative submergence. Alternatively, the friction196

coefficients can be calculated from the Manning formula as follows:197

c0 =
D

1/6
0

n
√
g
, cD = 1/6, (10)

where the Manning coefficient n needs to be estimated on the basis of the bed rough-198

ness.199

3 Results200

3.1 Why do bars form? A physical explanation201

The hypothesis of negligible variations of the water surface elevation allows for a202

great simplification of the problem, as needed to physically understand the mechanisms203

that drive the formation and suppression of free alternate bars.204

The bar-forming mechanism205

We consider the depth-averaged Equation of the streamwise momentum (1a),206

where we neglect the transverse flux of longitudinal momentum (second term), as207

appropriate when studying the initial stages of bar development (see Appendix A ):208

U
∂U

∂x
= gS0 − g

∂H

∂x
− τx
ρD

. (11)

By discarding the term related to the water surface deformation (i.e. according to our209

fundamental hypothesis), the above Equation (11), once multiplied by ρD, reads:210

ρUD
∂U

∂x︸ ︷︷ ︸
Inertia

= ρgDS0︸ ︷︷ ︸
Weight

− τx︸︷︷︸
Friction

, (12)

which simply states that any imbalance between the longitudinal component of the211

water weight and the bottom friction necessarily produces a flow acceleration or de-212

celeration.213

In plane-bed conditions the flow is uniform, weight and friction keep in balance214

(i.e. τx = ρgDS0) and no acceleration/deceleration occur. In this case, the sediment215

transport is also uniform, so that neither erosion nor deposition appear. Conversely,216

if a three-dimensional perturbation of the bed is introduced, the flow is no longer217

uniform. Let us consider for example a deposition patch on one side of the channel218

(i.e. a three-dimensional bed disturbance), having a length of several times the channel219

width and an initially-small height (Figure 3). Since the free surface deformation is220

negligible, the depth over the deposition patch does clearly reduce, and the weight of221

the water column decreases. Considering that the friction term does not substantially222

change until the flow velocity varies (it is actually possible to assume τx to be constant,223

as discussed later), the decrease of weight does necessarily produce a flow deceleration224

(∂U/∂x < 0). This implies a spatial decrease in the sediment flux and an associated225

deposition, which increases the height of the initial bed disturbance. This represents226

a self-sustained instability mechanism, which ultimately leads to the formation of the227

large-scale, finite-amplitude bedforms called free bars.228
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Flow deceleration Further depositionDeposition

Deposition patch

(b) Side view

(a) Plan view 

Flow

Figure 3: Illustration of the physical mechanism that sustains the bar growth. The
generic, initially-small, three-dimensional deposition patch located near the right bank
(see contour lines in the plan view) produces a decrease of the local water depth (D) and
an associated reduction of tracting force due to the weight of the water column (ρgDS0).
The imbalance between the reduced water weight and the bed friction τx necessarily
produces a flow deceleration (UOUT < UIN ), which induces further deposition, thus
producing a self-sustained bar growth.
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It is worth highlighting that the above-described mechanism is only valid for a229

three-dimensional bed perturbation, where the flow has enough space to move laterally230

around the obstacle without significant deformations of the free surface. Conversely,231

if the bed perturbation was purely two-dimensional, the flow would be obliged to232

entirely transit over the bedform, and the momentum balance would be affected by the233

pressure terms associated with the variations of the free surface. In these conditions,234

the shallow-water-Exner model invariably gives a suppression of the perturbation,235

which indicates that the basic uniform flow is always stable.236

The bar-suppressing mechanism237

The main contrasting mechanism is due to the gravitational effect on the direction238

of the bedload transport: the sediment tends to be deviated by an angle γs that239

depends on the lateral slope according to Equation (4). As illustrated in Figure 4240

this deviation produces a transverse sediment flux towards the lower part of the cross-241

section (bar pools). This mechanism tends to suppress three-dimensional bedforms,242

eventually leading to flat-bed conditions if no other, constructive forces exist.243

Specifically, the transverse flux of sediment (qsy) predicted by Equation (4) is244

proportional to the lateral slope ∂η/∂y. This represents the characteristic relation of245

diffusive processes, where the mass flux depends on the gradient, and is directed in the246

opposite direction [e.g., Crank , 1975]. As any diffusive process, the bed adaptation247

follows a timescale that is proportional to the square of the domain size (i.e. T ∝W 2).248

For example, considering a purely transverse bed deformation (no variations along249

the longitudinal direction - no constructive forces) the time needed to attain flat-bed250

conditions is proportional to the square of the channel width. Ultimately, this is the251

reason for which an exponent −1/2 appears in the expression for the critical aspect252

ratio (7) (i.e. the stability condition depends on the square of β, see also Equation253

(A.14)).254

In physical terms, this quadratic dependence can be easily understood by consid-255

ering that channel width as a twofold effect. On the one side, transverse bed gradient256

and the associated transverse flux of sediment are inversely proportional to the channel257

width. On the other hand, the volume of sediments that needs to be laterally trans-258

ferred is proportional to the width itself. Therefore, bed flattening in wider channel259

needs to a larger mass transfer with a lower flux, therefore requiring a much longer260

time.261

3.2 When do alternate bars form? Results from the simplified criterion262

The explicit expression for the critical aspect ratio (7) derived above provides a263

simple criterion for bar formations. Specifically, migrating alternate bars are predicted264

to form when the aspect ratio β exceeds the critical threshold βC , while in the opposite265

case plane-bed conditions are expected, despite the possible development of low-relief266

oblique dunes [e.g., Redolfi et al., 2020] or other kind of small-scale bedforms.267

As illustrated in Figure 5, the critical aspect ratio tends to initially increase with268

the Shields number while it tends to slightly decrease when θ0 exceeds 0.21, value at269

which the function ξ(θ0) is minimum. Moreover, βC significantly increases for higher270

values of the relative submergence, which according to Equation (9) are associated271

with higher values of the Chézy coefficient c0. In general, predictions by our simplified272

expression are very similar to those resulting from the complete model of Colombini273

et al. [1987]. Specifically, the critical aspect ratio shows a maximum relative error274

of 2.8% (for relatively high θ0 and the low D0/d), which seems acceptable for most275

applications.276
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(a) Plan view (b) Cross-sectional view

Bar suppressionStrong gravitational pull

Gravitational
pull

Figure 4: Effect of the gravitational pull on a laterally-sloping bed, which produces a
downward deviation of the sediment flux ~qs with respect to the flow velocity vector Û
as illustrated in the plan view (a). As a result, the sediment flux tends to laterally move
towards the most depressed areas, as illustrated in the cross-sectional view (b), which
tends to flatten the bed. The timescale of the bed adaptation (T ) is proportional to the
square of the channel width (W ) as typical of diffusive processes, which makes the bar-
suppressing mechanism much more effective in relatively narrow channels.

0.05 0.1 0.15 0.2 0.25 0.3
4

6

8

10

12

14

Figure 5: Critical aspect ratio resulting from the complete model of Colombini et al.
[1987] (dashed lines) and by Equation (7) (solid lines), depending on Shields parameter
(θ0) and relative submergence (D0/d). Migrating alternate bars are expected to form
when the channel aspect ratio β = W/(2D0) exceeds the critical threshold βC . The max-
imum relative error of the simplified model is 2.8%, which reduces to 1.6% when limiting
the space of parameters to cases for which the Froude number is lower than 1.
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A further simplification can be obtained by neglecting the term 1/(c20λ
2) in Equa-277

tion (7), which gives a wavelength-independent stability condition. From a physical278

point of view, this means discarding the effect of velocity variations on the bed shear279

stress τx. If compared with the complete model of Colombini et al. [1987] this fur-280

ther reduced model leads to a maximum relative error of 4.5% within the range of281

parameters of Figure 5, which reduces to 3.2% when focussing on Fr < 1 cases only.282

Ultimately, a maximal simplification arises when considering also cD = 0, which im-283

plies assuming spatially invariant bed shear stress (i.e. τx = const). Though this may284

appear as an extreme hypothesis, it actually leads to an maximum relative error of285

about 16% with respect to the complete model.286

Comparison against experimental data287

Comparison between our formula and experimental data is performed by con-288

sidering the dataset reported by Colombini et al. [1987], encompassing experimental289

data from Kinoshita [1961]; Ashida and Shiomi [1966]; Chang et al. [1971]; Sukegawa290

[1971]; Muramoto and Fujita [1978]; Ikeda [1982]; Jäggi [1983] here expanded by in-291

cluding the more recent laboratory experiments by [Garćıa and Niño, 1993; Lan-292

zoni , 2000; Ahmari and Da Silva, 2011; Crosato et al., 2011; Garcia Lugo et al., 2015;293

Redolfi et al., 2020], for a total of 416 experiments. Alternate bars were observed in294

288 cases, where in the remaining 128 either plane bed or other bedforms (dunes,295

antidunes or diagonal bars) are observed.296

As illustrated in Figure 6 our simple equation is able to correctly classify most297

of the experimental outcomes, as most of the experiments with alternate bars fall in298

the region β > βC while the remaining cases are often characterized by β < βC . More299

specifically, 364 experiments (87.5%) are correctly classified, 35 (8.4%) can be desig-300

nated as “false negatives” (bars are observed to form, despite β < βC) and 17 (4.1%)301

“false positive” (bars do not develop, despite β > βC). It is worth highlighting that302

this result is obtained without any specific calibration of the empirical coefficient r303

or distinct choice of the sediment transport formula. In this sense, additional infor-304

mations about the sediment transport (e.g., measured transport rate) would enable305

for specifically calibrating the model parameters for each set of experiments, which is306

expected to improve the overall accuracy of the predictions.307

The capability of our formula to reproduce experimental results is then compared308

with analogue results from the application of the complete model and of the empiri-309

cal criteria by Muramoto and Fujita [1978], Jaeggi [1984], Yalin and Da Silva [2001]310

and Ahmari and Da Silva [2011], whose expressions are reported in Appendix B . To311

this aim we first consider classic indicators of classification performance, namely the312

accuracy (ACC) and the balanced accuracy (BA) [see Tharwat , 2018]. We considered313

all the experimental data, except those having a severely limited bed mobility, due to314

low Shields number (θ0 < 0.03) or bed armouring. Results reported in Table 1 sug-315

gest that our formula gives substantially the same performance as the complete model316

of Colombini et al. [1987], which is overall better with respect to the other empirical317

criteria.318

The above accuracy indicators are merely based on a binary (bars-no bars) classi-319

fication but do not take into account the “degree of stability” predicted by the different320

cases. For example, experiments that are very close to the threshold are expected to be321

easily misclassified, so that an error in this case is less important that a classification322

error for highly stable or unstable conditions. To overcome this limitation, we propose323

an indicator that accounts for the (logarithmic) distance of the incorrectly-classified324

measurements from the critical threshold:325

dev =

∑
{FP,FN} | log(β/βC)|∑
| log(β/βC)|

, (13)
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Figure 6: Comparison between our bar formation criterion and the dataset of laboratory
experimental observations. Red circles indicate conditions at which alternate bars were
observed, while blue circles refers to other bed configurations, including plane-bed, diago-
nal bars, dunes and antidunes. Free alternate bars are expected to form when points fall
above the dashed line that indicates the critical aspect ratio βC . The histograms represent
the frequency distribution of the experiments depending on Shields number (lower plot)
and scaled width-to-depth ratio β/βC (right plot).
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Table 1: Classification performances of different bar predictors. ACC indicates the accu-
racy, BA the balanced accuracy.

ACC BA dev

Muramoto and Fujita [1978] 83.2% 86.1% 8.1%
Jaeggi [1984] 80.3% 82.3% 15.8%
Yalin and Da Silva [2001] 77.4% 64.6% 11.8%
Ahmari and Da Silva [2011] 75.2% 61.3% 11.7%
Colombini et al. [1987] 87.0% 87.2% 5.2%
Present formula (7) 87.5% 87.3% 5.0%

where FP and FN indicate the set of false positive and false negative results, so that326

dev ranges from zero to one, with lower values indicating a good prediction. Values327

reported in Table 1 show that our formula provides similar results as the complete328

model of Colombini et al. [1987], with significantly less deviation than the other exist-329

ing criteria.330

4 Discussion331

In this work we provide a novel explanation of the physical mechanism that332

leads to the spontaneous formation of free alternate bars in rivers. Surprisingly, this333

mechanisms turns out to be extremely simple, to the point that it can be described334

as an unbalance between water weight and bottom friction, which causes deceleration335

near the top of bars and consequent further deposition. Specifically, the analysis of336

the two-dimensional solution of the shallow water model is to some extent simpler337

than its one-dimensional counterpart, as in the latter pressure terms due to the water338

surface deformation are rarely negligible. The bar formation is clearly counteracted by339

the effect of the lateral slope on the sediment transport, which tends to suppress bars340

[Fredsoe, 1978; Seminara, 2010]. In this perspective, our analysis highlights the strong341

(i.e. quadratic) dependence of this effect on the channel width, which represents the342

hallmark of diffusive processes.343

Neglecting variations of the free surface elevation allows for obtaining an ex-344

plicit expression for calculating the critical width-to-depth ratio with an error of a few345

percent with respect to the complete model of Colombini et al. [1987]. Comparison346

with an unprecedented number of laboratory experiments, encompassing more than347

400 experimental runs from the existing literature, reveal that our explicit formula348

enables for predicting the bar formation in the vast majority of cases. Specifically,349

the resulting accuracy is comparable to that of the complete model and better with350

respect to existing empirical criteria. It is not our intention here to discuss what is the351

best criteria, as the answer is likely to depend on the specific objective of the analysis,352

on the availability of data and on the field of application. However, we find relevant to353

here highlight the main strengths of physically-based expressions, which are directly354

derived from the equations of Newtonian mechanics through well-defined and testable355

assumptions. Following this reductionist approach [see Seminara and Bolla Pittaluga,356

2012], the effect of all the essential parameters, including those that are normally fixed357

(e.g., the gravitational acceleration) is embodied, and can be directly associated with358

the underlying physical processes. In particular, our derivation allows for clarifying359

the following effects:360

• the decrease of the critical aspect ratio for lower values of the relative submer-361

gence D/d (i.e. for low values of the Chézy parameter c0) can be mechanically362
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explained by considering that to maintain comparable values of Shields number363

and water depth on a rough bed, weight and bottom friction need to be higher364

(i.e. the slope must be higher). In such conditions, any unbalance between365

the two terms on the right hand side of Equation (12) is expected to produce366

a stronger accelerations/decelerations, which reinforces the bar-forming mecha-367

nism;368

• the Shields number shows two distinct and opposite effects. On the one side,369

increasing θ0 makes the bar-forming mechanism less effective, as it reduces the370

sensitivity of the sediment transport to variations of velocity (i.e. the coef-371

ficient ΦT , see Appendix A ). On the other side, increasing θ0 weakens the372

bar-suppressing mechanism, as it reduces the deflection of the sediment trans-373

port predicted by Equation 4. While the former effect dominates at moderate374

values of the Shields number, the latter prevails when θ0 > 0.21, which explains375

the non-monotonic trend of βC appearing in Figure 5;376

• higher values of the empirical parameter r enhance the bar-suppressing mecha-377

nism, as they are associated with a stronger deflection of the sediment transport378

(see again Equation (4)). Therefore, the critical aspect ratio clearly increases379

with r.380

Knowing the effect of all the individual parameters allows for adapting the formula to381

the specific sediment transport and flow friction conditions, by assimilating information382

from measurements or antecedent studies. For example, if field calibrated values of the383

Manning coefficient are available it is possible to bypass Equation (9a), and to directly384

compute c0 from the Manning coefficient. This may be particularly important for the385

design and the interpretation of numerical simulations as in this case our formula can386

be adapted to consider the same friction and sediment transport formulas, and exactly387

the same value of the parameter r.388

4.1 The key hypothesis: physical reasoning and limitations389

The appropriateness of neglecting free surface deformations is evident from the390

comparison between results of the simplified and the complete model illustrated above.391

However, here we would like to analyse the reason for which this hypothesis can be392

accepted, depending on the characteristics scales of the problem. A reader who is not393

interested to deepen this topic can directly jump to Section 4.2.394

The validity of this hypothesis for modelling steady bars has been justified by395

Struiksma et al. [1985] by considering that when the Froude number is small, variations396

of the free surface elevation are small with respect to variations of the bed elevation.397

In these conditions it is possible to introduce the so-called rigid-lid assumption, which398

allows for computing variations of water depth on the basis of variations of the bed399

topography. However, this does not explain why variations of the free surface elevation400

can be neglected from the longitudinal momentum balance (1a), as the term g ∂H/∂x401

generally remains finite when Fr → 0, representing the pressure gradient that appears402

under the rigid-lid assumption. For this reason, we found important to further discuss403

the possibility to neglect this term when modelling free migrating bars (present paper)404

and steady bars [Crosato and Mosselman, 2009; Camporeale et al., 2007].405

Here we show that this simplification is generally valid for the case of three-406

dimensional bed deformations having a longitudinal scale of several channel widths,407

as typically the case of all river alternate bars. Though this can be demonstrated by408

a mathematically rigorous perturbation approach, an analogous result can be found409

by simply evaluating the order of magnitude of the main terms of the fundamental410

conservation equations. Specifically, if we denote with D̃ and (Ũ , Ṽ ) the order of411
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magnitude of the depth and velocity components, the continuity Equation (1a) gives:412

Ṽ D̃

∆ỹ
∼ ŨD̃

∆x̃
, (14)

where ∆x̃ and ∆ỹ are the longitudinal and the transverse scales of variation. Indicating413

with Λ the ratio ∆x/∆y, Equation (14) can be expressed as:414

Ṽ ∼ Ũ

Λ
, (15)

which reveals that the magnitude of the transverse velocity decreases with the longi-415

tudinal scale.416

The Equation of transverse momentum (1b) suggests that transverse acceleration417

and lateral inclination of the free surface have the same order magnitude, namely:418

g
∆H̃

∆ỹ
∼ Ũ Ṽ

∆x̃
, (16)

where ∆H̃ indicates the order of magnitude of the free surface variations. Combining419

equations (16) and (15)gives:420

g
∆H̃

∆x̃
∼ Ũ Ṽ

∆x̃

1

Λ
∼ Ũ Ũ

∆x̃

1

Λ2
, (17)

which implies that the gravitational term in the equation of longitudinal momentum421

(1a) is negligible when Λ is sufficiently large. The above condition (17) can be equiv-422

alently expressed in the Froude number as follows:423

∆H̃
˜Fr2D̃

∼ 1

Λ2
, F̃ r

2
:=

Ũ2

gD̃
, (18a, b)

To test this conclusion we consider a periodic, double-sinusoidal bed deformation424

of amplitude A and wavelength L (Figure 7a). In this case the longitudinal and425

transverse scales of variations (∆x̃ and ∆ỹ) can be quantified as the distance between426

wave crest and though (L/2 andW ), so that their ratio Λ is given by L/(2W ) = π/(2λ).427

We then computed the two-dimensional flow field by analytically solving Equations428

(1a,b,c) under the hypothesis of small perturbations (linear analysis), by varying the429

wavelength of the bed oscillation (L) and the Froude number Fr, keeping all the other430

flow parameters invariant. Results illustrated in Figure 7 confirm that when increasing431

the value L/W (i.e. the value of Λ) transverse velocity and variations of the water432

surface elevation decrease, as predicted by Equations (15) and (17). Moreover, for433

characteristic wavelengths of migrating bars (L/W from 5 to 12, with typical value434

around 7, corresponding to λ = 0.45) and steady bars (L/W > 12) the complete435

solution is nearly independent of the Froude number, and is correctly reproduced436

by the simplified model, which corroborates the hypothesis of negligible free surface437

deformation.438

This explains why alternate bars are essentially independent of the Froude num-439

ber, to the point that they are weakly sensitive to the transition from sub- to super-440

critical flow regimes [Wilkinson et al., 2008]. In this perspective, it is interesting441

to notice that this property has been recentlty observed by Ragno et al. [2021] for442

bifurcation-confluence loops, where the river splits in two anabranches than then re-443

join downstream. This suggests that the weak dependence on the Froude number may444

represent a rather general, remarkable property of three-dimensional morphodynamic445

systems, such as multi-thread braided rivers, where the water flow is free to laterally446

move across bars and among different anabranches.447
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Figure 7: Effect of the bar wavelength on transverse velocity (V ) and water surface defor-
mation (∆H), obtained by imposing a double-sinusoidal bed deformation of dimensionless
amplitude A and wavelength L (a), and solving the linearized shallow water equations.
Specifically, panels (b) and (c) report maximum values of V/U and ∆H/(Fr2D) for in-
creasing values of L/W , considering an unitary dimensionless amplitude and two extreme
values of the reference Froude number Fr. The solid lines refer to the complete linear
solution, while the dashed line indicates the (Froude-independent) solution from the sim-
plified model. For the typical wavelength of migrating and steady bars (shaded areas)
the three lines tend to converge, which indicates the appropriateness of the fundamental
hypothesis. The dotted line indicates the wavelength λ = 0.45 we adopted when applying
Equation (7). Example with β = 12 and D/d = 100.
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Similarly, the present analysis justifies why shorter three-dimensional bedforms448

like oblique dunes or diagonal bars [see Colombini and Stocchino, 2012] are instead449

significantly influenced by the Froude number. This is also the case of two-dimensional450

bed deformations, for which the independence of the Froude number is achieved only451

when the length scale of the bed slope variations is longer than the length of the452

backwater profiles (i.e. the so-called backwater length), so that the flow inertia is453

negligible and the morphological evolution is essentially diffusive [e.g., Paola, 2000;454

Redolfi and Tubino, 2014; Shaw and McElroy , 2016].455

Ultimately, this analysis reveals that the model simplification adopted in this456

manuscript is possible thanks to the peculiar characteristic of bars being long, three457

dimensional bedforms, which allows the flow to deflect around bars without produc-458

ing significant deformations of the water surface, even at moderate Froude numbers.459

For this reason, this hypothesis is usually not satisfied for two-dimensional bed de-460

formations, for which the flow is obliged to surmount the bedforms, thus producing461

mechanically significant variations of the free surface.462

4.2 Limitations and future perspectives463

This work demonstrates that neglecting variations of the free surface elevation464

allows for a satisfactory prediction of the alternate bar formation. However, it is worth465

highlighting that, differently from the complete linear theories [e.g. Colombini et al.,466

1987], our model does not enable to determine the bar wavelength, because it predicts467

a monotonically-increasing instability for decreasing bar wavelength. This is clearly468

related to the fact that, as demonstrated above, the key assumption is not valid for469

relatively short wavelengths. However, this limitation does not prevent for an accurate470

prediction of the critical aspect ratio, for two reasons: (i) the wavenumber resulting471

from complete theories is relatively constant, so that its average value λ = 0.45 can be472

considered representative; (ii) the critical aspect ratio is weakly sensitive to variations473

of the wavenumber, to the point that even setting λ → ∞ in Equation (7) gives an474

error of a few percent only.475

Our expression for the marginal stability condition is meant for predicting the476

formation of alternate (i.e first mode) bars only, and does not provide indications about477

the transition to higher bar modes (i.e. central or multiple-row bars) that is expected478

in wider channels [Fredsoe, 1978; Crosato and Mosselman, 2009]. Our approach can479

be easily extended to predict the growth rate of higher modes, and would allow to480

determine the most unstable bar mode depending on conditions [see Tubino et al.,481

1999]. However, this clearly goes beyond the purpose of the paper.482

When applying our criterion to river, the following question arises: “how to se-483

lect an appropriate value of dominant, formative discharge that can be adopted to484

represent the bar response?”. Previous works usually rely on either the bankfull dis-485

charge [e.g., Crosato and Mosselman, 2009; Ahmari and Da Silva, 2011; Crosato and486

Mosselman, 2020] or on the discharge with 2-year return period [e.g., Adami et al.,487

2016], as commonly suggested for reproducing river morphodynamic processes. How-488

ever, a specific methodology to derive formative conditions for migrating bars has been489

recently proposed by Carlin et al. [2021], who suggested that the possibility of bars to490

form depends on the average growth rate, calculated by considering all the possible491

discharge states, namely:492

Ω =

∫ ∞
0

Ω fQ dQ, (19)

where fQ indicates the probability density function of the flow events. In this perspec-493

tive, our work analysis provides all the necessary information for directly computing494

the bar growth rate Ω as a function of discharge by means of Equation (A.13).495
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Finally, the present analysis is limited to conditions where most of the sediment496

is transported as bedload, as reproducing the effect of suspended load on bar stability497

requires a more sophisticated model, based on either a non-equilibrium stress-transport498

relation [Federici and Seminara, 2006; Bertagni and Camporeale, 2018] or on a fully499

three-dimensional approach [Tubino et al., 1999]. However, our model allows for qual-500

itatively explaining the increase of bar instability in observed in suspension-dominated501

channels: since the suspended load is substantially not affected by the gravitational502

pull predicted by Equation (4), the bar suppressing mechanisms is expected to be503

weaker, which promotes bar formation.504

5 Conclusions505

Neglecting the deformation of the water surface in the classic two-dimensional506

shallow water and Exner model allowed for a considerable simplification of the math-507

ematical description of the process of bar formation, which facilitated the physical508

understanding of the phenomenon. This led to the following conclusions:509

• The physical mechanism that leads to a self-sustained development of free mi-510

grating bars is surprisingly simple, as it results from an imbalance between wa-511

ter weight and bottom friction. Specifically, if a three-dimensional, depositional512

patch is introduced, water depth and associated weight reduce, which produces513

a flow deceleration and further deposition. This bar-forming instability pro-514

cess tends to be counteracted by the effect of the gravitational pull on the bed515

particle transported as bed load. The importance of this bar-suppressing effect516

increases quadratically when reducing the channel width, which explains why517

bar formation is strongly discourages when the channel width-to-depth ratio is518

low.519

• An explicit, physically-based formula for predicting conditions for the formation520

of migrating alternate bars can be derived. Testing based on a very large number521

of laboratory experiment, suggests that the formula we propose is on average522

more accurate than existing empirical predictors. Moreover, the physically-523

based derivation of the formula allows for assessing the effect of all the essential524

parameters that concur in determining the bar stability, and it therefore suitable525

to be adapted and extended to a wide range of conditions.526

• The hypothesis of negligible deformation of the water surface is intimately re-527

lated to two essential characteristics of bars: (i) the three-dimensional structure;528

(ii) the long longitudinal extension, which allow for a gentle deviation of the flow,529

without significant variations of the water surface elevation. For this reason it530

does not apply to two-dimensional or comparatively short three-dimensional531

bedforms, such as two-dimensional dunes or oblique dunes. Ultimately, this532

hypothesis implies a that the Froude number plays a negligible role in the for-533

mation of bars. This suggests that a substantial independedence of the Froude534

parameter may be a general, remarkable property of all morphodynamics sys-535

tems characterized by a three-dimensional bed topography, such as multi-thread536

braided rivers.537

Appendix A Derivation of an explicit expression for the critical as-538

pect ratio539

The linear stability analysis of the system of partial differential equations (1) is540

obtained by considering small perturbations with respect to a reference, undisturbed541

flow, here denoted with the subscript 0. Specifically, we consider an expression of the542
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dependent variables in the form:543

U = U0 [1 + U∗1 ], (A.1a)

V = U0 [0 + V ∗1 ], (A.1b)

D = D0 [1 +D∗1 ], (A.1c)

H = D0 [0 +H∗1 ], (A.1d)

where U∗1 , V
∗
1 , D

∗
1 , H

∗
1 represent the dimensionless perturbations.544

Moreover, it is convenient to express also the independent variables in dimen-545

sionless form. Specifically, planimetric coordinates are scaled with half the channel546

width Colombini et al. [1987], namely:547

x∗ =
x

W/2
, y∗ =

y

W/2
, (A.2a, b)

while time is made dimensionless by means of the Exner timescale (i.e. that naturally548

arising from the sediment continuity equation), namely:549

t∗ = t
qs0

(1− p)D0W/2
. (A.3)

Substituting the above expressions in the system of four differential equations550

(1), considering the closure relations (2-4), and neglecting the nonlinear terms, gives551

the following linear system:552

∂U∗1
∂x∗

+
�
��

��H
HHHH

1

Fr2
∂H∗1
∂x∗

+
β

c20
[2 U∗1 −D∗1 (1 + 2 cD)] = 0, (A.4a)

∂V ∗1
∂x∗

+
1

Fr2
∂H∗1
∂y∗

+
β

c20
V1 = 0, (A.4b)

∂D∗1
∂x∗

+
∂U∗1
∂x∗

+
∂V ∗1
∂y∗

= 0, (A.4c)

∂(��ZZH
∗
1 −D∗1)

∂t∗
+
∂V ∗1
∂y∗

− r

β
√
θ0

∂2(��ZZH
∗
1 −D∗1)

∂y∗2
+ 2ΦT

∂U∗1
∂x∗

− 2ΦT cD
∂D∗1
∂x∗

= 0, (A.4d)

where the reference Froude number and aspect ratio are given by:553

Fr =
U0√
gD0

, β =
W/2

D0
. (A.5a, b)

The dimensionless coefficients ΦT and cD, which measure the nonlinearity of the re-554

sponse of bedload and flow resistance to variations of Shields stress and water depth,555

are defined as:556

ΦT :=
θ0
Φ0

∂Φ

∂θ

∣∣∣
θ=θ0

, cD :=
D0

c0

∂c

∂D

∣∣∣
D=D0

, (A.6a, b)

and their explicit expression depends on the choice of the sediment transport and557

friction formulae.558

The spatial variations of the free surface elevations, can be neglected from the559

water and sediment continuity equations, and from the longitudinal momentum equa-560

tions (red-crossed terms). Conversely, they are still important to satisfy the equation561

of transverse momentum, as the water surface deformation is needed to guide the lat-562

eral flow movement. However, this simplification allows for decoupling the problem, as563

Equations (A.4a,c,d) can be resolved independently from Equation (A.4b). Moreover,564

isolating the term ∂V1/∂y from the water continuity Equation (A.4c) and substituting565

it into the Exner equation (A.4d) allows for reducing Equations (A.4a,c,d) into the566

following differential system of two equations in the two unknowns U1 and D1:567

∂U∗1
∂x∗

+
β

c20
[2 U∗1 −D∗1 (1 + 2 cD)] = 0, (A.7a)

−∂D
∗
1

∂t∗
− ∂D∗1
∂x∗

− ∂U∗1
∂x∗

+
r

β
√
θ0

∂2D∗1
∂y∗2

+ 2ΦT
∂U∗1
∂x∗

− 2ΦT cD
∂D∗1
∂x∗

= 0. (A.7b)
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Considering the simplified shallow water equations, we look for a wavelike so-568

lution where spatial variations assume the form of a double sinusoid as illustrated in569

Figure 7a. Specifically:570

U∗1 = û exp [iλx∗ + (Ω− iω)t∗] cos(πy∗/2) + c.c., (A.8a)

D∗1 = d̂ exp [iλx∗ + (Ω− iω)t∗] cos(πy∗/2) + c.c., (A.8b)

where û and d̂ are complex coefficients, i =
√
−1 denotes the imaginary unit, c.c.571

indicates the complex conjugate. The real coefficients Ω and ω represent the dimen-572

sionless growth rate and angular frequency, while λ is the dimensionless longitudinal573

wavenumber, defined as λ = πW/L, where L is the bar wavelength [see Colombini574

et al., 1987].575

Substituting Equation (A.8) into the system of linear Equations A.7 leads to a576

system of algebraic equations in the unknowns û and d̂ that can be expressed in the577

following matrix form:578 [
iλ+ a1 a2
iλ(1− a4) iλ(1− a5) + π2/4 a6 + Ω− iω

]
×
[
û

d̂

]
=

[
0
0

]
, (A.9)

while the “a” coefficients are defined as in Camporeale et al. [2007], namely:579

a1 = 2β/c20, a2 = −(1 + 2cD)β/c20, a4 = 2ΦT , a5 = −2cDΦT , a6 =
r

β
√
θ0
. (A.10)

A non-trivial solution of the linear system A.9 exists when the determinant of the580

matrix of coefficients vanishes, which gives:581

Ω− iω = −iλ(1− a5)− π2

4
a6 + a2(1− a4)

iλ

a1 + iλ
, (A.11)

whose real part reads:582

Ω = −π
2

4
a6 + a2(1− a4)

λ2

a21 + λ2
, (A.12)

which, substituting the coefficients (A.10), provides an expression for the bar growth583

rate Ω, namely:584

Ω = −π
2

4

r

β
√
θ0

+ (1 + 2cD)
β

c20
(2ΦT − 1)

λ2

4β2/c40 + λ2
. (A.13)

Marginal stability conditions are found by setting zero growth rate (Ω = 0) in Equation585

(A.13), which gives:586

4β2
C

c20

[
ξ(θ0)

r
(1 + 2cD)− 1

c20λ
2

]
= 0, ξ(θ0) :=

√
θ0
π2

(2ΦT − 1) , (A.14a, b)

from which it is easy to derive an explicit expression for the critical aspect ratio βC .587

Appendix B Critical aspect ratio according to empirical free bars pre-588

dictors589

In this section, we re-express existing empirical criteria in terms of the critical590

width-to-depth ratio, as needed for a direct comparison with our formula (7).591

The criterion of Muramoto and Fujita [1978]592

This criterion for the formation of free alternate bars can be expressed as [see593

Jaeggi , 1984]:594

D0/d

(W/d)
0.67 < 0.45, (B.1)
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Once expressed in terms of the channel aspect ratio, Equation (B.1) reads:595

β > βC =
1

2
0.45−1/0.67

(
D0

d

)1/0.67−1

= 1.647

(
D0

d

)0.493

, (B.2)

which depends on the relative submergence D0/d as illustrated in Figure B.1.596

The criterion of Jaeggi [1984]597

The bar formation criterion provided Jaeggi [1984] (see their Equation (8)), ex-598

pressed by means of our notation, reads:599

θ

θi
< 2.93 log

(
θ

θi

W

D

)
− 3.13

(
W

d

)0.15

, (B.3)

which can be also rewritten in terms of the channel aspect ratio β as:600

2.93 log

(
θ

θi
2β

)
− 3.13

(
D0

d
2β

)0.15

− θ

θi
> 0. (B.4)

Despite not allowing for deriving an explicit expression, Equation B.7 can be numeri-601

cally solved to obtain the critical aspect ratio βC .602

However, it is worth highlighting that a critical aspect ratio does not always exist.603

This can be noticed by analyzing the left hand side of the inequality (B.7), which does604

not increase monotonically with β but it shows a maximum when:605

β = k
d

D0
, k =

1

2

(
2.93

3.13 · 0.15

)1/0.15

= 1.00 · 105. (B.5)

A critical value of the aspect ratio exists only if the maximum value is positive, as606

given by substituting (B.5) into (B.7):607

2.93 log

(
θ

θi
2k

d

D0

)
− 2.93

0.15
− θ

θi
> 0, (B.6)

which can be expressed in terms of the relative submergence as follows:608

D0

d
<

θ

θi
k2 exp

(
− 1

2.93

θ

θi

)
, k2 = 2k exp

(
− 1

0.15

)
= 254.5. (B.7)

For Shields numbers in the range 1−6 times θi, as usually the case of gravel bed rivers at609

bankfull conditions [Parker et al., 2007], Equation (B.7) gives minimum values of D0/d610

between 181 and 274. For higher relative submergence D/d, Equation (B.3) is never611

satisfied, which implies that bars are not expected to form regardless of the value of β612

(see Figure B.1). It is worth noticing, however, that this prediction seems essentially613

a mathematical artifact, as the empirical formula was derived from observations in614

conditions of relatively low submergence (D0/d < 30).615

The criterion of Yalin and Da Silva [2001]616

This criterion is based on the empirical definition of a threshold value of the chan-617

nel aspect ratio that only depends on the relative submergence (D0/d). Specifically,618

it can be expressed by means on the following piecewise-linear function:619

βC =

{
1
8
D0

d if D0

d < 100

12.5 if D0

d >= 100
. (B.8)
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Figure B.1: Critical aspect ratio for the formation of free migrating bars according to
the empirical criteria of Muramoto and Fujita [1978] (dotted line), Jaeggi [1984] (solid
lines, depending on the Shields number θ0), Yalin and Da Silva [2001] (dashed line) and
[Ahmari and Da Silva, 2011] (dashed-dotted line). For all the criteria, bars are expected
to form when the width-to-depth ratio exceeds the critical threshold.

The criterion of Ahmari and Da Silva [2011]620

This criterion can be regarded as an updated version of Yalin and Da Silva621

[2001], where the constant aspect ratio for high values of D0/d is slightly reduced,622

and where a third branch of the solution is introduce to consider a decrease of the623

critical width-to-depth ratio for small values of the relative submergence. Specifically,624

the authors proposed the following piecewise-linear function:625

βC =


12.5

(
D0

d

)−0.55
if D0

d < 26.69
1
13

D0

d if 26.69 <= D0

d < 130

10 if D0

d >= 130

. (B.9)

A comparison among the different expressions is illustrated in Figure B.1.626
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Interactions between flow structure and morphodynamic of bars in a channel expan-669

sion/contraction, Loire River, France, Water Resources Research, 50 (4), 2850–2873,670

doi:10.1002/2013WR015182.671

Colombini, M., and A. Stocchino (2012), Three-dimensional river bed forms, J. Fluid672

Mech, 695, 63–80, doi:10.1017/jfm.2011.556.673

Colombini, M., G. Seminara, and M. Tubino (1987), Finite-amplitude alternate bars,674

Journal of Fluid Mechanics, 181 (HY9), 213–232, doi:10.1017/S0022112087002064.675

Cordier, F., P. Tassi, N. Claude, A. Crosato, S. Rodrigues, and D. Pham Van676

Bang (2019), Numerical Study of Alternate Bars in Alluvial Channels With677

–23–

https://bitbucket.org/Marco_Redolfi/free_bars_analysis
https://bitbucket.org/Marco_Redolfi/free_bars_analysis
https://bitbucket.org/Marco_Redolfi/free_bars_analysis


Confidential manuscript submitted to Water Resources Research

Nonuniform Sediment, Water Resources Research, 55 (4), 2976–3003, doi:10.1029/678

2017WR022420.679

Crank, J. (1975), The mathematics of diffusion, Oxford university press, doi:10.1088/680

0031-9112/26/11/044.681

Crosato, A., and E. Mosselman (2009), Simple physics-based predictor for the number682

of river bars and the transition between meandering and braiding, Water Resources683

Research, 45 (3), 1–14, doi:10.1029/2008WR007242.684

Crosato, A., and E. Mosselman (2020), An Integrated Review of River Bars for En-685

gineering, Management and Transdisciplinary Research, Water, 12 (2), 596, doi:686

10.3390/w12020596.687

Crosato, A., E. Mosselman, F. Beidmariam Desta, and W. S. J. Uijttewaal (2011),688

Experimental and numerical evidence for intrinsic nonmigrating bars in alluvial689

channels, Water Resources Research, 47 (3), W03,511, doi:10.1029/2010WR009714.690

Crosato, A., F. B. Desta, J. Cornelisse, F. Schuurman, and W. S. J. Uijttewaal691

(2012), Experimental and numerical findings on the long-term evolution of mi-692

grating alternate bars in alluvial channels, Water Resources Research, 48 (6), doi:693

10.1029/2011WR011320.694
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