This code will examine to hydrograph dataset, select matching days

and times and conduct a regression that can be used to fill in missing data
Author: Nicholas A. Sutfin

Date: Oct. 18th 2017, last modified May 8", 2020

library("plyr")

#library("smwrBase", lib.loc="~/R/win-library/3.2")
library("lattice") #, lib.loc="C:/Program Files/R/R-3.3.0/library")
library("lubridate")

library("hydroGOF")

Set user space

loadpath ='/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode/'

savepath = '/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode/Baseflow_1.91 BestFit/' #
Calculating slope as line between 1st and last points (2p)

setwd(loadpath)

All_DailyQ_1935_2020 = read.csv("All_DailyQ_1935_2020.csv", stringsAsFactors = F)
#"All_DailyQ_1910_2020.csv", stringsAsFactors = F)

Load ALmont data for 2015-2017 as csv file, convert to Sl units, code the date as a date, and
define the year

Alm_Q <- read.csv("ER_AImQ_2015-2019.csv", header=TRUE)

Alm_QSQ_cfs = as.numeric(as.character(Alm_QS$SQ_cfs))

Alm_QSAlm_Q_cms = Alm_QS$Q_cfs*0.0283168

Alm_DailyQ = as.data.frame(Alm_Q)

Alm_DailyQ = ddply(Alm_DailyQ, ~date, summarise, AlIm_Q_cms = mean(Alm_Q_cms))
Alm_Qdaily <- Alm_DailyQ[order(as.Date(Alm_DailyQSdate, format="%m/%d/%y")),]
Alm_QdailySDate = as.Date(Alm_QdailySdate, "%m/%d/%y")

Alm_QdailySyear = year(Alm_QdailySDate)

Alm_QdailySmonth = month(Alm_QdailySDate)

Alm_Qdaily$Calday = day(Alm_QdailySDate)

Alm_Qdaily$Sday = yday(Alm_QdailySDate)

Load Pump house data for 2015-2017 as csv file, convert to Sl units, code the date as a date,
and define the year

#PH_Qdaily <- read.csv("ER_PH_2015-17Q.csv", header=TRUE)

PH_Data <- read.csv("ER_PHQ_2014-2018.csv", header=TRUE)

PH_DailyQ = ddply(PH_Data, ~date, summarise, PHQ_cms = mean(PHQ_cms))

PH_Qdaily <- PH_DailyQ[order(as.Date(PH_DailyQSdate, format="%m/%d/%y")),]
PH_QdailySDate = as.Date(PH_QdailySdate, "%m/%d/%y")

PH_QdailySyear = year(PH_QdailySDate)

PH_QdailySmonth = month(PH_QdailySDate)

PH_Qdaily$Calday = day(PH_QdailySDate)

PH_QdailySday = yday(PH_QdailySDate)
names(PH_Qdaily)[2]<-paste("PH_Q_cms")

#

Find matching dates and create new dataset
DailyQ_diff <- setdiff(PH_QdailySDate, Alm_QdailySDate)
DailyQ_int <- intersect(PH_QdailySDate, Alm_QdailySDate)

Find PH Q data for dates overlapping the with Almont gage
PH_DailyQ_match <- PH_Qdaily[PH_QdailySDate %in% DailyQ_int,]

Find Almont gauge data that overlaps with pump house study site data
Alm_DailyQ_match <- Alm_Qdaily[Alm_QdailySDate %in% DailyQ_int,]
Merge the two overlapping datasets side my side by matching dates
All_DailyQ_15_18 <- chind(Alm_DailyQ_match, PH_DailyQ_match)

rows = length(All_DailyQ_15_18SPH_Q_cms) #[All_DailyQ_15_185day > 105 &
All_DailyQ_15_18$day < 319])

Qmat <- matrix(0, rows, 3)

Q = as.data.frame(Qmat)

names(Q)[1]=paste("PH")

names(Q)[2]=paste("AL")

names(Q)[3]=paste("day")

April 15th = 105 Nov 15th = 319, so 104-320 is good

QSPHDate = All_DailyQ_15_18SDate[which(is.na(All_DailyQ_15_18SPH_Q_cms) == FALSE)]
#[All_DailyQ_15_18$day > 105 & All_DailyQ_15_18%day < 319]

QS$PH = All_DailyQ_15_18$PH_Q_cms[which(is.na(All_DailyQ_15_18$PH_Q_cms) == FALSE)]
#[All_DailyQ_15_18$day > 105 & All_DailyQ_15_18%day < 319]

QSALDate = All_DailyQ_15_18SDate[which(is.na(All_DailyQ_15_18$PH_Q_cms) == FALSE)]
#[All_DailyQ_15_18$day > 105 & All_DailyQ_15_18%day < 319]

QSAL = All_DailyQ_15_18SAlm_Q_cms[which(is.na(All_DailyQ_15_18SAlm_Q_cms) == FALSE)]
#[All_DailyQ_15_18$day > 105 & All_DailyQ_15_18%day < 319]

QSday = All_DailyQ_15_18Sday[which(is.na(All_DailyQ_15_18SAlm_Q_cms) == FALSE)]
#[All_DailyQ_15_18$day > 105 & All_DailyQ_15_18%day < 319]

Qreg <- Im(QSPH ~ QSAL, data = Q)
summary(Qreg)

Qreg # adjusted R squared = 0.97

For all days: PHQ =-0.081804 + 0.211284(Alm)
Excluding frozen days, regression output: PHQ = 0.010948 + 0.211611(Alm)

par(mfrow=c(1,1), mar=c(4,5,2,2), cex = 1.5, lwd = 1)

plot(All_DailyQ_15_18SAlm_Q_cms, All_DailyQ_15_18SPH_Q_cmes, col = "blue",
xlab = expression(paste("Discharge at Almont (m"A"3", "s"A"-1",")")),
ylab = expression(paste("Discharge (m"A"3", "s"A"-1",")")))
lines(All_DailyQ_15_18SAIm_Q_cms, QregScoefficients[1] +
QregScoefficients[2]*All_DailyQ_15_18SAlm_Q_cms,
col = "black")
par(cex = 1)
#points(QSAL, QSPH, pch = 19, col = "red")
text(10, 15, expression("r"~{2} ~"=0.97"), cex = 1.5)

Load Almont discharge data from 1910 to 2020, cut data to timeframe of interest (1955-2015)
and convert to cms
#

Alm_Qdaily_1910_2020 <- read.csv("Alm_Q_cfs_1910_2020.csv", header=TRUE)
Alm_Qdaily_1910_2020$Alm_Q_cms = Alm_Qdaily_1910_2020$AIm_Q_cfs*0.0283168
Alm_Qdaily_1910_2020SDate = as.Date(Alm_Qdaily_1910_2020SDate, "%m/%d/%Y")

All_DailyQ_1910_2020 = Alm_Qdaily_1910_2020
All_DailyQ_1910_2020Syear = format(All_DailyQ_1910_2020SDate, "%Y")
All_DailyQ_1910_2020Smonth = format(All_DailyQ_1910_2020S$Date, "%m"
All_DailyQ_1910_2020$day = format(All_DailyQ_1910_2020S$Date, "%d")
All_DailyQ_1910_2020$yday = yday(All_DailyQ_1910_2020$Date)
All_DailyQ_1910_2020SMod_PH_Q_cms = QregScoefficients[1] +
QregScoefficients[2]*All_DailyQ_1910 2020SAlm_Q_cms

Use regression to extend daily Q for PH based on AlImont flow
#

regression output: PHQ = x + y(Alm)
par(mfrow=c(1,1), mar=c(4,5,3,2), cex = 1.5)
All_DailyQ_2014_2020 = All_DailyQ_1910_2020[37987:length(Alm_Qdaily_1910_2020$Date), |

#

plot observed vs. modeled data for East River and calculate Nash-Sutcille and RMSE
par(mfrow=c(1,1), mar=c(4,4,2,2), cex = 1.1)

Date = All_DailyQ_2014_2020$Date
Modeled_PHQ = subset(All_DailyQ_2014_2020, Date > "2014-9-30")
#min(WaterYearl5):max(WaterYear15)))

Select only unige values
Observed_PHQ = All_DailyQ_15_18[,c(3,9)]

PH_Q_int <- intersect(Observed_PHQSDate[order(Observed_PHQSDate)],
Modeled_PHQSDate[order(Modeled_PHQSDate)])

Modeled_Q_match <- Modeled_PHQ[Modeled_PHQS$Date %in% PH_Q_int,]
Observed_Q_match <- Observed_PHQ[Observed_PHQS$Date %in% PH_Q_int,]
PHQ_15_18 = chind(Modeled_Q_match, Observed_Q_match)

Qreg2 <- Im(PHQ_15_18SPH_Q_cms ~ PHQ_15_18SAlm_Q_cms, data = All_DailyQ_15_18)
summary(Qreg2)
Qreg2

par(mfrow=c(1,1), mar=c(4,5,2,2), cex = 1.5, lwd = 1)
Plot Almont flow data
plot(All_DailyQ_15_18S$SDate, All_DailyQ_15_18SAIlm_Q_cms, lwd = 2, type ="I",
col = "black", xlab = "Year", ylab = expression(paste("Discharge (m"A"3", "s"A"-1"")")), Ity =
5, cex = 1.5)
Plot observed ER study site flow data
lines(PHQ_15_18SDate[order(PHQ_15_18SDate)],
PHQ_15_18SPH_Q_cms[order(PHQ_15_18SDate)], Ity = 1, col = "blue", lwd = 2, type ="I",
xlab = expression(paste("Discharge (m"A"3", "s"A"-1",")")), ylab = "Time (years)")
#polygon(PHQ_15_17Sdate, PHQ_15_17[,5], col = "blue")

Plot modeled ER study site flow data
lines(PHQ_15_18SDate[order(PHQ_15_18SDate)],
PHQ_15_185Mod_PH_Q_cms[order(PHQ_15_18SDate)], col = 'red', lwd = 2, Ity = 2)
legend("topright", col = c("black", "blue", "red"), Ity = ¢(5,1,2),

Ilwd =2, legend = ¢('Almont', 'Observed’, 'Modeled'))

NSE(PHQ_15_18[,10],PHQ_15_18[,8])
text(10, 15, expression("NSE = 0.97"), cex = 1.5)
Nash-Sutcliffe coeeficient = 0.97

#

Format data for hydrograph analysis
write.csv(All_DailyQ_2014_2020,"All_DailyQ_2014_2020.csv")
write.csv(All_DailyQ_1910_2020,"All_DailyQ_1910_2020.csv")

ER_Q_35_20 <- All_DailyQ_1910_2020[All_DailyQ_1910_2020S%year > 1934,]
write.csv(ER_Q_35_20, "All_DailyQ_1935_2020.csv")

A
Create plots of Almont and East Rlver

#

par(mfrow=c(1,1), mar=c(4,5,1,1), cex = 1)
All_Q_1910_2020 = All_DailyQ_1910_2020
ER_Q_55_20 <- All_Q_1910_2020[All_Q_1910_2020$year > 1954, |

#

Create a stacked plot of hydrographs for the period of record
#

par(mfrow=c(1,1), mar=c(4,5,2,2), cex = 1.5)

Create an initial plot to add hydrographs from all years
plot(ER_Q_55_20Syday[ER_Q_55_20Syear == 1955],
ER_Q_55 20SMod_PH_Q_cms[ER_Q_55_20Syear == 1955], type ="I",
ylim = ¢(0,25), xlab = "Day of Year",
ylab = expression(paste("Modeled discharge (m"A"3", "s"A"-1",")")), lwd = 1,
main = "East River 1955-2015")

Create a smaller zoomed in plot to add hydrographs from all years
#plot(ER_Q_55_20Sday[ER_Q_55_20Syear == 1955], ER_Q_55_20[ER_Q_55_20Syear == 1955,
3], type ="I",

ylim=c(0,11), xlim = ¢(160,220), xaxt = "n", xlab = "Day of Year", ylab = "Discharge (cms)",
Iwd = 1, main = "East River 1955-2017")

Create a list of unique years for the period of interest
years = unique(ER_Q_55_20Syear)

A for loop to plot hydrographs for all years on top of one another
for (i in 1:65) {

years2plot = years|i]

print(years2plot)

dat.yr = subset(ER_Q_55_20, year == years2plot)

print(dat.yr)

lines(dat.yrSyday, dat.yrSMod_PH_Q_cmes, col = "royalbluel", lwd = 1)
}

Calculate the mean and 95% confidence level for all hydrographs in the period of interest
AllFlow = ddply(ER_Q_55_20, ~yday, summarise,

MeanFlow = mean(Mod_PH_Q_cms),

LCI = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE),

UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE))

Plot a transparent band representing the 95% confidence level
polygon(c(AllFlowSyday,rev(AllIFlowSyday)),c(AlIFlowSLCl, rev(AllIFlowSUCIH)),border=NA,
col =rgb(red = 0.0, green = 0.0, blue = 0.5, alpha = 0.25))

#
Plot mean hydrographs for 6 time intervals

Q_55_73 = ER_Q_55_20[ER_Q_55_20Syear < 1974, |

Q_74_83=ER_Q_55_20[ER_Q_55_20Syear > 1973 & ER_Q_55_20Syear < 1984,]
Q_84_90=ER_Q_55_20[ER_Q_55_20Syear > 1983 & ER_Q_55_20S%year < 1991,]
Q_91 01=ER_Q_55_20[ER_Q_55_20Syear > 1990 & ER_Q_55_20Syear < 2002,]
Q_02_11=ER_Q_55_20[ER_Q_55_20Syear >2001 & ER_Q_55_20Syear < 2012,]
Q_12_17 = ER_Q_55_20[ER_Q_55_20Syear > 2011,]

Q_12_15=ER_Q_55_20[ER_Q_55_20Syear >2011 & ER_Q_55_20Syear < 2016,]

par(mfrow=c(1,1), mar=c(4,4,2,2), cex = 1.5)

Calculate the mean and 95% confidence level for all hydrographs in the period of interest
Flow73 = ddply(Q_55_73, ~yday, summarise,
MeanFlow = mean(Mod_PH_Q_cms),
LCl = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE),
UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE))
lines(Flow73Syday, type = "line", #ylim = ¢(0, 11),
Flow735MeanFlow, col = "red", lwd = 2.5,
xlab = "Day of the year", ylab = "Discharge (cms)") # Plot the mean hydrograph value

Calculate the mean and 95% confidence level for all hydrographs in the period of interest
Flow83 = ddply(Q_74_83, ~yday, summarise,
MeanFlow = mean(Mod_PH_Q_cms),
LCI = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE),
UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE))
lines(Flow83Syday,
Flow83SMeanFlow, col = "orange", lwd = 2.5) # Plot the mean hydrograph value

Calculate the mean and 95% confidence level for all hydrographs in the period of interest
Flow90 = ddply(Q_84_90, ~yday, summarise,
MeanFlow = mean(Mod_PH_Q_cms),
LCl = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE),
UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE))
lines(Flow90Syday,
Flow90$SMeanFlow, col = "yellow", lwd = 2.5) # Plot the mean hydrograph value

Calculate the mean and 95% confidence level for all hydrographs in the period of interest
Flow01 = ddply(Q_91_01, ~yday, summarise,
MeanFlow = mean(Mod_PH_Q_cms),
LCl = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE),
UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE))
lines(Flow01Syday,
FlowO1$SMeanFlow, col = "green", Iwd = 2.5) # Plot the mean hydrograph value

Calculate the mean and 95% confidence level for all hydrographs in the period of interest
Flow1l = ddply(Q_02_11, ~yday, summarise,
MeanFlow = mean(Mod_PH_Q_cms),
LCl = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE),
UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE))
lines(Flow11Syday,
Flowl1SMeanFlow, col = "darkblue", lwd = 3.5) # Plot the mean hydrograph value

Calculate the mean and 95% confidence level for all hydrographs in the period of interest
Flow17 = ddply(Q_12_15, ~yday, summarise,
MeanFlow = mean(Mod_PH_Q_cms),
LCI = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE),
UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE))
lines(Flow17Syday,
Flowl7$SMeanFlow, col = "black", lwd = 2.5) # Plot the mean hydrograph value

par(mfrow=c(1,1), mar=c(4,4,2,2), cex = 1.2)
legend(280, 25, legend = ¢("1955-1973", "1974-1983", "1984-1990", "1991-2001", "2002-2011",
"2012-2015"),

col =c("red", "orange", "yellow", "green", "darkblue", "black"),

Ity = 1.2, lwd = 2.5, bg = "gray85")

#**

###Stream Flow Frequency Analysis and Recession Limb Quantification

HEH
From time lapse photos and the stage data, bankfull stage appears to occur at about 4 cms
HEH

#setwd(loadpath)

#All_DailyQ_1935_2020 = read.csv("All_DailyQ_1935_2020.csv", stringsAsFactors = F)
#"All_DailyQ_1910_2020.csv", stringsAsFactors = F)

data = All_DailyQ_1935_2020 #"All_DailyQ_1910_2020.csv", stringsAsFactors = F)
dat.er = data[,c(2,3,5:9)]

dat.erSflow.er = dat.erSMod_PH_Q_cms

estimate lowflow conditions and a reference basflow by which to measure the recession limb
Lowflow = mean(na.omit(dat.erSflow.er[dat.erSmonth %in% list("10","11","12","1","2","3")]))
Baseflow = 1.91 #Lowflow #mean(na.omit(dat.er$flow.er[dat.erSmonth %in% list("9")]))

BFQ = 8 # define a threshold approximation for bankfull discharge

Estimated bankkfull at 8 cms

Initialize storage variables
years = unique(dat.erSyear) # Unique years for indexing (using water years (10/01-9/30))
years = years[years > 1934]

Aggregate Yearly (or monthly) data by mean, median, max, and min (or anything else)

X = subset(dat.er, year %in% c(1935:2019))

statistics = as.data.frame(as.list(aggregate(flow.er ~ year ,data = x, FUN=function(x) c(mean
=mean(x), median=median(x), max = max(x),min = min(x)))))

maxflow = as.data.frame(matrix(ncol=10,nrow =85))#length(years)))

define the list of column names for the dataframe

names(maxflow) = c("year","peakdate","flow.er","BFflow", "BF_EndDay", "enddate",
"TotalSlope","BFslope","BF_StartDay","PeakSlope")

for (k in 2:85){
Skip years where insufficient data was collected using a # of days in year as threshold. bad
if (length(dat.erSDate[dat.erSyear == years[k]]) < 250) {
}
else {
find peak flows greater than 500cfs and corresponding year and Date
dat.sub = subset(dat.er, year == years[k]) # Subset larger data set
dat.subSDate = as.Date(dat.subSDate, format="%Y-%m-%d")
medianflow = mean(dat.subSflow.er[dat.subSmonth %in% list("10","11","12")])
#median(na.omit(dat.subSflow)) # find median flow (used as a threshold, need better method)
maxflow([k,3] = max(na.omit(dat.subSflow.er)) # find and store peak flows
maxflow[k,1] = years[k] # store year
index = tail(which(dat.subSflow.er == maxflow[k,3]), n=1) # find index of peak flow to
detrmine the exact Date
maxflow([k,2] = as.character(dat.subSDate[index]) # Date of peak flow
#as.Date(index, origin = dat.subSDate[1]) #

Bankfull flow

if (max(dat.subSflow.er >= 8)) {
indX1 = min(which(dat.subSflow.er >= 8)) # index the date flow rises above BF
indX = max(which(dat.subSflow.er >= 8)) # index the date flow drops below BF
BF_start = as.character(dat.subSDate[indX1]) # Assign first date flow exceeds BF

maxflow[k,9] = BF_start # Assign first date flow exceeds BF
BF_end = as.character(dat.subSDate[indX]) # Assign last date flow drops below BF
maxflow[k,5] = BF_end # Assign last date flow drops below BF
maxflow[k,4] = dat.subSflow.er[indX]
}
else {
maxflow[k,5] = NA
maxflow[k,4] = NA
maxflow[k,9] = NA
indX = NA
BF_start = NA
BF_end = NA
print(years[k])
}

Extracting Recession limb
This section finds the Dates corresponding to the peakflow (already found above) and a
later
Date corresponding to "normal" flow conditions. | am currently using the median but it's a
bad
metric.
Starting at the index of the peak flow Date, step forward one day (increasing the index by 1)
and
check if the flow that day is a certain percentage from the median value.
PeakDate = as.character(dat.subSDate[index]) # used for extracting recession limb
maxdepth = maxflow[k,3] # used for extracting recession limb
repeat{
index = index+1
maxdepth = dat.subSflow.er[index] # flow one day later
if (is.na(maxdepth)){ # check if no flow was recorded
} else if (Baseflow > (maxdepth)){ # Check if flow is within X% of median value
break # was preiously ((medianflow) + Qmin) > maxdepth))
The "index" term now identifies the obs where Q reaches a baseflow condition ~0.8cms
} else if (index == length(dat.subSflow.er)) {
print(paste(dat.subSyear[1])) # identify the year
break
This forces the loop to break if Q never falls below baseflow
}
}

#***************************************

Indexing for bankfull slope calculation
BFDate = maxflow[k,5]

if (is.na(maxflow[k,5]) == FALSE) {

repeat{
indX = indX+1 #increment one more day after last BF flow
BFQ = dat.subSflow.er[indX] # flow one day later
if (is.na(BFQ)){ # check if no flow was recorded and do nothing
} else if (Baseflow > (BFQ)){ # Check if flow is within threshold of median value was
previously ((medianflow) + Qmin > (BFQ))
break # Exist loop if Q drops below baseflow and saved that Q value as BFQ
} else if (indX == length(dat.subSflow.er)) {
print(paste(dat.subSyear[1]))
break # Exit loop if flow does not drop below baseflow
}
}
}

BaseDate = as.character(dat.subSDate[index])
maxflow[k,6] = as.character(dat.subSDate[index])
#FirstDate = dat.subSDate[1] #Set the first date of the year

Convert Dates to yday for duration calculations
BaseDay=yday(BaseDate)

PeakDay=yday(PeakDate)

BF_endDay=yday(BF_end)

BF_startDay=yday(BF_start)
Last_index=length(dat.subSDate)

LastDay = yday(dat.subSDate[Last_index])

BaseFlow_Date = as.Date(BaseDay, origin = dat.subSDate[1])

A
Calculate and plot slopes of recession limb at various stages
#

Calculate recession slope based on best fit regression line between all points
TotSlopeQ = dat.subSMod_PH_Q_cms[dat.subSyday %in% c(PeakDay:BaseDay)]
TotSlopeDate = dat.subSDate[dat.subSyday %in% c(PeakDay:BaseDay)]
TotSlopeReg = Im(TotSlopeQ ~ TotSlopeDate)

summary(TotSlopeReg)

maxflow([k,7] = -1*TotSlopeRegScoefficients[2] #((maxflow(k,3])-Baseflow)/(BaseDay-
PeakDay) # Slope of line from start to end of recession limb
plot(dat.subSDate, dat.subSMod_PH_Q_cms, type = "line", main = paste(years[k]),
ylab = "Discharge (cms)", xlab = NA)
points(TotSlopeDate, TotSlopeQ, pch = 19, col = "violet")
lines(TotSlopeDate, predict(TotSlopeReg), col = "purple"”, lwd = 2)

Calculate slope as line between two points

#maxflow([k,7] = (maxflow[k,3]-Baseflow)/(BaseDay-PeakDay)

#plot(dat.subSDate, dat.subSMod_PH_Q_cms, type = "line", main = paste(years[k]),
vylab ="Discharge (cms)", xlab = NA)

#points(TotSlopeDate, TotSlopeQ, pch =19, col = "violet")

#QPoints = c(maxflow[k,3],Baseflow)

#TotDayPts =c(PeakDate, BaseDate)

#DayPoints = as.Date(TotDayPts, "%Y-%m-%d")

#lines(DayPoints, QPoints, col = "purple", lwd = 2)

Calculate the recession slope from the peak to bankfull flow as the best fit line
if (is.na(maxflow[k,4])) {

maxflow[k,10] = NA #Calculate slope of highest peak lower than bankfull to baseflow
}

else {

Calculate recession slope based on best fit regression line between all points

PeakSlopeQ = dat.subSMod_PH_Q_cms[dat.subSyday %in% c(PeakDay:BF_endDay)]

PeakSlopeDate = dat.subSDate[dat.subSyday %in% c(PeakDay:BF_endDay)]

PeakSlopeReg = Im(PeakSlopeQ ~ PeakSlopeDate)

summary(PeakSlopeReg)

points(PeakSlopeDate, PeakSlopeQ, pch = 20, col = "pink")

lines(PeakSlopeDate, predict(PeakSlopeReg), col = "red", lwd = 2)

maxflow[k,10] = -1*PeakSlopeRegScoefficients[2] #((maxflow(k,3])-
(maxflow[k,4]))/(BF_endDay-PeakDay) #SLope from peak to bankfull

Calculate slope as line between two points

#maxflow[k,10] = (maxflow[k,3]-maxflow[k,4])/(BF_endDay-PeakDay)
#points(PeakSlopeDate, PeakSlopeQ, pch = 20, col = "pink")

#QPoints = c(maxflow[k,3],maxflow[k,4])

#PeakDayPts =c(PeakDate, BF_end)

#DayPoints = as.Date(PeakDayPts, "%Y-%m-%d")

#lines(DayPoints, QPoints, col = "red", lwd = 2)

}

Calculate the bankfull slope from bankfull to base flow
if (is.na(maxflow[k,4])) {
maxflow[k,8] = NA #Calculate slope of highest peak lower than bankfull to baseflow
}
else {
Calculate recession slope based on best fit regression line between all points
BFSlopeQ = dat.subSMod_PH_Q_cms[dat.subSyday %in% c(BF_endDay:BaseDay)]
BFSlopeDate = dat.subSDate[dat.subSyday %in% c(BF_endDay:BaseDay)]

BFSlopeReg = Im(BFSlopeQ ~ BFSlopeDate)
summary(BFSlopeReg)

points(BFSlopeDate, BFSlopeQ, pch = 20, col = "lightblue")
lines(BFSlopeDate, predict(BFSlopeReg), col = "blue", Iwd = 2)
maxflow[k,8] = -1*BFSlopeRegScoefficients[2]

Calculate slope as line between two points

#maxflow([k,8] = (maxflow[k,4]-Baseflow)/(BaseDay-BF _endDay)
#points(BFSlopeDate, BFSlopeQ, pch = 20, col = "lightblue")
#QPoints = c(maxflow[k,4],Baseflow)

#BFDayPts =c(BF_end,BaseDate)

#DayPoints = as.Date(BFDayPts, "%Y-%m-%d")
#lines(DayPoints, QPoints, col = "blue", lwd = 2)

}

Save year-days for duration calculations

maxflow[k,11] = BF_startDay

maxflow[k,12] = PeakDay

maxflow[k,13] = BF_endDay

maxflow[k,14] = BaseDay

maxflow[k,15] = BF_endDay - BF_startDay # Duration Of recession Limb
maxflow[k,16] = BaseDay - PeakDay # Duration Of recession Limb
maxflow[k,17] = BaseFlow_Date

maxflow[k,18] = LastDay # Last recorded day of the year

Cumulative days before and after bankfull
if (is.na(BF_endDay)==FALSE) { # If there was a bankfull flow (i.e., BF_endDay is not NA)
maxflow[k,19] = LastDay - BF_endDay # Calculate the days since BF ended
}
else { # if there was no bankfull flow that year...
maxflow[k,19] = LastDay + maxflow[k-1,19] # add the total number of days in the year to the
days since BF in the previous year

}

if (is.na(BF_endDay)==FALSE) { # If there was a bankfull flow (i.e., BF_endDay is not NA)
maxflow[k,20] = BF_startDay + maxflow[k-1,19] # Days since bankfull

}

else {

maxflow[k,20] = LastDay + maxflow[k-1,19]

}

BaseStart = min(which(dat.subSflow.er >= Baseflow))

maxflow[k,21] = dat.subSyday[BaseStart]

}
}

names(maxflow) = c("year","peakdate","flow.er","BFflow", "BF_EndDate", "enddate",
"TotalSlope","BFslope","BF_StartDate","PeakSlope","BF_startDay",
"PeakDay","BF_endDay","Base_endDay","BankfullDuration","RecDuration",

"BaseFlow_Date","LastDay", "CummDaysAfterBF", "CummDaysBeforeBF",
"Base_startDay")

#maxflow = na.omit(maxflow) # Remove missing flow

#if (is.na(maxflow[,2]) == FALSE) {}

#maxflowSpeakdate = as.Date(maxflowSpeakdate)

#maxflowSenddate = as.Date(maxflowSenddate)

maxflowSduration = yday(maxflowSenddate)-yday(maxflowSpeakdate) # Duration Of recession
Limb

Generate ranks (note that R ranks opposite of what is desired)

maxflowSrank = (length(maxflowSyear)+1)-rank(maxflowSflow.er)

maxflowSRI = (length(maxflowSyear)+1)/maxflowSrank

Calculate excedence probablity

maxflowSexceedence = 1/maxflowSRI

#maxflowSNonBFdays = maxflowSLastDay - (maxflowSBF_endDay - maxflowSBF_startDay)
#THis does not account for days before first and last BF day that do not have BF flow
maxflow$SBaseDuration = maxflow$Base_endDay - maxflowSBase_startDay #THis does not
account for days before first and last BF day that do not have BF flow

maxflow1 = maxflow[2:85,]
maxflow = maxflow][,c(1,9,2,5,6,3,4,7,10,8,20,21,22,23,26,11:19,24,25)]

setwd(savepath)
write.csv(maxflowl, file = "Maxflowl_6.29.20_Base_1.91_BestFit.csv")
write.csv(maxflow, file = "Maxflow_6.29.20_Base_1.91_BestFit.csv")

#**

Create plots
maxflowlSenddate = as.Date(maxflowlSenddate, format="%Y-%m-%d")
maxflow1Speakdate = as.Date(maxflow1Speakdate, format="%Y-%m-%d")

plot(flow.er ~ maxflow1SRI, maxflow1, log = 'x',
xlab = "Recurrence Interval (years)",
ylab = "Annual Maximum discharge (cfs)",
main = "Flood Frequency Curve of Estimated Peak Flows")

rm(list=setdiff(ls(), c("maxflow","dat","dat.almont","dat.bc","dat.er",

nmn nn nmn nn

"hydrobounds","statistics","yearstats","years","colfunc",
"loadpath","savepath","mod2","best.span", "Baseflow")))

HitH]

#

Recession Limb Characteristics
#

HitH]

hydrobounds = as.data.frame(matrix(ncol = 2, nrow = 85)) # create data frame for flow regime
characteristics

names(hydrobounds) = c("start","
flow

#hydroboundsSstart = maxflowSBF_StartDay

#hydroboundsSend = maxflowSBFdata

hydroboundsSEndDay = maxflowSBaseDay # assign the ending date
#maxflowSBF_StartDate = as.Date(maxflowSBF_StartDay)

end") # create colums for end and start dates for bankfull

for (k in 1:85){
#print(k)
years2plot = years[k] # create a list of each of the 83 years of record
dat.sub = subset(dat.er, year%in%years2plot) # create a subset of data for the current year
FirstDate = dat.subSDate[1] #Set the first date of the year

#

Calculate cummulative annual volume of water discharged by East River
#dat.subSyearVol[1] = dat.subSflow.er[1]*86400 # set initial flow volume for 1st day
dat.subSAnnualVol[1] = dat.subSflow.er[1]*86400 # set initial flow volume for 1st day

for (n in 2:length(dat.subSDate)){ # create for loop to add consecutive Q resulting in
cumulative annual Q
dat.subSAnnualVol[n] = dat.subSAnnualVol[n-1] + dat.subSflow.er[n]*86400 # sum each
consecutive flow volume for cummulative volume

}

#print(n)

maxflowSAnnualVol[k] = dat.subSAnnualVol[n] # assign the total ANnual volume of discharge
for each year

dat.subSBFVol = NA #create column for bankfull flow volume and fill with NA

#
Calculate cummulative volume of overbank flow discharged by the East River

for (min 1:length(dat.subSDate)) {

if (is.na(maxflowSBF_StartDate[k]) == FALSE) {
Set initial volume for first day above Bankful flow

dat.subSBFVol[which(maxflowSBF_StartDate[k]==dat.subSDate)] =
dat.subSflow.er[which(maxflowSBF_StartDate[k]==dat.subSDate)]*86400 # set initial flow
volume for 1st day

#Create indices for the start and end of bankfull flow

BF_Startindex = which(maxflowSBF_StartDate[k]==dat.subSDate) # Index the row for the first
day of bankful flow begins

BF_EndIndex = which(maxflowSBF_EndDate[k]==dat.subSDate) #index the row for the last
day of bankful flow ends

#Creat a loop to add cumulative volume of bankfull discharge
for (p in BF_Startindex+1:(BF_EndIndex-BF_Startindex)) { # create for loop to add consecutive
Q resulting in cumulative annual Q
#print(p)
Old calculations that estimates max BF volume for all days between 1st and last day of
bankfull flow. THis is an iver estimate
dat.subSBFVol[p] = dat.subSBFVol[p-1] + dat.subSflow.er[p]*86400 # sum each consecutive
flow volume for cummulative volume
#print(dat.subSDate[p])
}
maxflowSBFVol[k] = dat.subSBFVol[p] # Assign yearly volume of flow above bankful to the
annual summary
}
else {
dat.subSBFVol[m] = NA #Assign days without bankful flow as NA values
maxflowSBFVol[k] = NA #Assign years without bankful flow as NA values
p=NA

}
}

hydroboundsScvol.er[k] = dat.subSAnnualVol[length(dat.subSAnnualVol)]
hydroboundsSBFVol[k] = dat.subSBFVol[max(which(is.na(dat.subSBFVol) == FALSE))]

Model peaks and valleys

baseflowinitial = mean(dat.subSflow.er[dat.subSmonth %in% list("1","2")]) # Set initial
baseflow conditions as the mean of flow in Jan and Feb

baseflowend = mean(dat.subSflow.er[dat.subSmonth %in% list("12")]) # Set ending baseflow
conditions as the mean flow in Dec

#create column index for the peaks defined by a rise in flow followed by a decline in flow
ocurring in three consecutive days

peaks = which(diff(sign(diff(dat.subSflow.er)))==-2)+1

#create column index for the valleys defined by a decrease in flow followed by an increase in
flow ocurring in three consecutive days

valleys = which(diff(sign(diff(dat.subSflow.er)))==2)+1

peakbase = dat.subSflow.er[peaks]-baseflowinitial
#print(peakbase)

valleybase = dat.subSflow.er[valleys] - baseflowinitial
hydrographstart = 1 # Define HYDRGRAPHSTART

for (nin 1:length(peakbase)){
if (length(valleys) < 1){
hydrographstart = peaks[n]
peaks[n]
break
}

if(peakbase[n] > 40){ # Check if threshold was met
if (peaks[n] < valleys[1]) { # Check if first peak is greater than threshold
hydrographstart = peaks[n]
break
}
else {
firstvalley = max(valleys[valleys<peaks[n]])

}

hydrographstart = firstvalley
break
}
}

bankfullflow = dat.subSflow.er[dat.subSflow.er > 8]

maxflowSbankfullvol[k] = sum((bankfullflow)*86400) # sum the volume of water exceeding
bankfull flow

maxflowSbankfulldays[k] = length(bankfullflow)

hydrobounds[k,1] = hydrographstart

BaseDays = dat.subSflow.er[dat.subSflow.er > Baseflow]

maxflowSBaseflowDays[k] = length(BaseDays)

maxflowSNonBFdays[k] = maxflowSLastDay[k] - maxflowSbankfulldays(k]

if (k%%10 == 0){

}
hydroboundsSstartdate[k] = as.character(dat.subSDate[hydroboundsS$start([k]])

}

Write csv file of the temporary dat.sub datasheets for each year
#setwd(savepath)
write.csv(maxflow, "AnnualStats_6.29.20_Base_1.91 BestFit.csv", row.names = TRUE)

rm(list=setdiff(Is(), c("maxflow","dat","dat.almont","dat.bc","dat.er",
"hydrobounds","statistics","yearstats","years","colfunc",

"loadpath","savepath","mod2", "best.span")))

Extract Local Peaks above a specific flow rate above "bankfull"
#library("signal", lib.loc="~/R/win-library/3.2")
library("signal")

Estimated bankkfull at 8 cms

for (k in 1:85){
years2plot = years[k]
dat.sub = subset(dat.er,year == years2plot)
x1 = dat.subSflow.er
x1
y1 = dat.subSday

#myfilter = butter(1, .2, type = 'low', plane='z')

myfilter2 = filter(filt = sgolay(p = 12, n = 23), x = x1) # PEak Fllter started at 11

#myfilter3 = fftfilt(rep(1, 10)/10, x1, n = 365)

myfilter4 = filter(filt = sgolay(p=7,n=15),x=x1)#p=5,n=17 # 10 & 15 Oct 2017 # VALLEY
filter good as it gets

#yfiltered = as.matrix(filter(myfilter, x1)) # apply filter

yfiltered = myfilter2

zfiltered = myfilterd
##print("**")
##print(years2plot)

plot(dat.subSflow.er,type = "n", main = paste(years2plot))
lines(yfiltered,col = "red")

lines(dat.subSflow.er)

points(dat.subSflow.er)

#points(yfiltered[peaks]~dat.subSday[peaks], pch = 19)

PEaks

peaks = which(diff(sign(diff(yfiltered)))==-2)+1 #identify the peaks by setting a threshold
where the next point decresaes by 2

##print(peaks)

points(yfiltered[peaks]~dat.subSyday[peaks], pch = 20, col = "orange")

peaks2keep = (peaks[yfiltered[peaks] > 8])

##print("peaks 2 keep")

##print(length(peaks2keep))

#SortPeaks <- peaks2keep[order(dat.subSflow.er)]

##t#Hprint(SortPeaks)

##print(peaks2keep)

points(yfiltered[peaks2keep]~dat.subSyday[peaks2keep], pch = 19, col = "red")

Valleys

valleys = which(diff(sign(diff(zfiltered)))==2)+1 #identify the trophs by setting a threshold
where the next point incresaes by 2

print("valleys")

print(valleys)

points(zfiltered[valleys]~dat.subSyday[valleys], pch = 20, col = "green")

valleys2keep = (valleys|zfiltered[valleys] < 100])

print("valleys2keep")

print(valleys2keep)

points(zfiltered[valleys2keep]~dat.subSyday[valleys2keep], pch = 19, col = "blue")

#PeakFlows = yfiltered(dat.subSflow.er[peaks2keep])

truepeak = ¢()

truepeak[1] = tail(which(dat.subSflow.er == maxflowSflow.er[k]), n=1) # FInd the date of the
max flow and assign to peak flow

###Hprint(truepeak)

RealPeaks = c()
leftthresh = ¢()
rightthresh = ¢()
PeakCount =1
#NotPeak =0
p=0

Rp=0

IsPeak = c()

for (nin 1:length(peaks2keep)) {

if (length(peaks2keep) == 0){ # If no peaks exceed bankfull...

#truepeak = yday(maxflowSpeakdate[k]) #Determine julian day of max peakflow if below
bankfull

##t#print(peaks2keep)

PeakCount=0

##tprint(PeakCount)

break

}

IsPeak[n] ="N"

leftthresh[n] = max(valleys2keep|valleys2keep < peaks2keep[n]]) # identify the valley
immediately before each peak above bankfull

rightthresh[n] = min(valleys2keep|valleys2keep > peaks2keep[n]]) # identify the valley
immediately after each peack aboe bankfull

p=p+1

##print(valleys2keep)
##tprint(leftthresh[n])
##tprint(peaks2keep[n])
##tprint(rightthresh[n])
##tprint(years(k])
##tprint(leftthresh([n])
#print(dat.subSflow.er[leftthresh[n]])
##tprint(peaks2keep[n])
#tprint(dat.subSflow.er[peaks2keep[n]])
##tprint(rightthresh[n])
#print(dat.subSflow.er[rightthresh[n]])
#if (abs(yfiltered[peaks2keep[n]]-yfiltered[leftthresh[n]]) <5 | # was <50 eliminates
abs(yfiltered[peaks2keep[n]]-yfiltered[rightthresh[n]]) < 4){ # was <50
#q=0
if (
((dat.subSflow.er[peaks2keep[n]] - dat.subSflow.er[leftthresh[n]]) > 2)
& # peaks that are >2 cms from valey to left
(dat.subSflow.er[peaks2keep[n]] - dat.subSflow.er[rightthresh[n]]) > 2 & # peaks that are
>2 cms from valey to right
((dat.subSflow.er[rightthresh[n]]) < 10 | (dat.subSflow.er[leftthresh[n]]) < 10) &
#(n < length(peaks2keep) & peaks2keep[n+1] < rightthresh[n]) |
if (n>1){
TRUE
if (peaks2keep[n-1] < leftthresh[n]) {
TRUE
}
else {
FALSE

#lsPeak[n] = "N"
}
} else {TRUE} #JUst changed this from FALSE to TRUE
)

{
truepeak[n] = leftthresh[n]-1+tail(which(dat.subSflow.er[leftthresh[n]:rightthresh[n]] ==

max(dat.subSflow.er[leftthresh[n]:rightthresh[n]])),n=1)
Rp=Rp+1
RealPeaks[Rp] = peaks2keep|[n]
IsPeak[n] ="Y"
#print("1st check ")
#print(peaks2keep[n])
#print(IsPeak[n])
##tprint(p)
##print("1st Peaks to keep")
##tprint(peaks2keep[n])
#tprint(dat.subSflow.er[peaks2keep[n]])
##tprint(rightthresh[n])
#print(dat.subSflow.er[rightthresh[n]])
##print("Real peaks")
##tprint(length(RealPeaks))
##tprint(RealPeaks)
##tprint(RealPeaks|[p])
##tprint(peaks2keep[n-1])
##tprint(RealPeaks[p-1])

}

else {
##print("Length of peaks 2 keep")
##print(length(peaks2keep))
##print("RealPeaks")
##tprint(length(RealPeaks))
IsPeak[n] = "N"

if (length(peaks2keep) == 2 & n == 1) { #length(RealPeaks == 0)) {
#HRp=Rp+1
RealPeaks[1] = peaks2keep[n]
IsPeak[n] ="Y"
Rp=Rp+1
RealPeaks[Rp] = peaks2keep|[n]
##tprint(length(RealPeaks))
##print("conditional met")
##tprint(length(RealPeaks))
#print("3rd check ")

#print(peaks2keep[n])
#print(IsPeak([n])
}else {

#Check all but the last and first point for issues

if (n> 1) & (n < length(peaks2keep))) { # NEED TO CORRECT THIS LINE
##print("checking small cluster peaks")
#print("4th check ")
#print(peaks2keep[n])
#print(IsPeak([n])
IsPeak[n] = "N"
H#TRUE

if(

(((dat.subSflow.er[peaks2keep(n]] - dat.subSflow.er[rightthresh[n]]) > 2) &
(((dat.subSflow.er[peaks2keep[n]] - dat.subSflow.er[leftthresh[n]]) < 2))# |
#(dat.subSflow.er[leftthresh[n]] > 10))

&
((IsPeak[n-1] =="N") &
(dat.subSflow.er[leftthresh[n]] < 10 | dat.subSflow.er[leftthresh[n-1]] < 10))) |

(((dat.subSflow.er[peaks2keep([n]] - dat.subSflow.er[rightthresh[n]]) < 2) &

(((dat.subSflow.er[peaks2keep[n]] - dat.subSflow.er[leftthresh[n]]) > 2)) &

(dat.subSflow.er[leftthresh[n]] < 10) &

(leftthresh[n] > peaks2keep[n-1] | IsPeak[n-1] == "N") &

rightthresh[n] < peaks2keep[n+1])

#& (IsPeak[n-1] =="N")

THis creates an error because there is no value when there is no peak detected

)

{

H#TRUE

truepeak[n] = leftthresh[n]-1+tail(which(dat.subSflow.er[leftthresh[n]:rightthresh[n]] ==
max(dat.subSflow.er[leftthresh[n]:rightthresh[n]])), n=1)

Rp=Rp+1

RealPeaks[Rp] = peaks2keep|[n]

IsPeak[n] = "Y"

#print("5th check ")

#print(peaks2keep[n])

#print(IsPeak([n])

##print(Rp)

##print("2nd Peaks to keep")

##print(peaks2keep)

##tprint(peaks2keep([n])

##tprint(peaks2keep[n-1])

#print(dat.subSflow.er[peaks2keep[n]])
##print(rightthresh[n])
##print(dat.subSflow.er[leftthresh[n]])
#print(dat.subSflow.er[peaks2keep[n]])

##print("Real peaks")

##tprint(length(RealPeaks))

##tprint(RealPeaks) # Results in NA with no detected peak
##tprint(RealPeaks[Rp])

##tprint(RealPeaks[Rp-1])

}

}else {

IsPeak[n] ="N"

#print("6th check ")
#print(peaks2keep[n])

#print(IsPeak[n])

}

#Check last point and first point for discrepencies
if (n == length(peaks2keep)) {
#print("8th check ")
#print(peaks2keep[n])
IsPeak[n] ="N"
#print(IsPeak[n])
TRUE

if(((dat.subSflow.er[peaks2keep[n]] - dat.subSflow.er[leftthresh[n]]) > 2 &
(dat.subSflow.er[peaks2keep[n]] - dat.subSflow.er[rightthresh[n]]) > 1 & # peaks that
are >2 cms from valey to right
(dat.subSflow.er[leftthresh[n]]) < 10 &
leftthresh[n] > peaks2keep[n-1]) |

(((dat.subSflow.er[peaks2keep([n]] - dat.subSflow.er[rightthresh[n]]) > 2) &
(((dat.subSflow.er[peaks2keep([n]] - dat.subSflow.er[leftthresh[n]]) < 2)) &
#(IsPeak[n-1] == "N"|

(leftthresh[n] !=rightthresh[n-1])) #]|

#(((dat.subSflow.er[peaks2keep[n]] - dat.subSflow.er[rightthresh[n]]) < 2) &
(((dat.subSflow.er[peaks2keep[n]] - dat.subSflow.er[leftthresh[n]]) > 2)) &
(dat.subSflow.er[leftthresh[n]] < 10))# &

leftthresh[n] > peaks2keep[n-1] &

#rightthresh[n] < peaks2keep[n+1])

)
{
TRUE
truepeak[n] = leftthresh[n]-1+tail(which(dat.subSflow.er[leftthresh[n]:rightthresh[n]] ==
max(dat.subSflow.er[leftthresh[n]:rightthresh[n]])), n=1)
Rp=Rp+1
RealPeaks[Rp] = peaks2keep|[n]
IsPeak[n] ="Y"
#print("9th check ")
#print(peaks2keep[n])
#print(IsPeak[n])
}

}else {

FALSE

if (n==1){
#print("10th check ")
#print(peaks2keep[n])
#print(IsPeak[n])
#tprint(dat.subSflow.er[peaks2keep[n]])
#print(dat.subSflow.er[rightthresh[n]])
TRUE

if ((dat.subSflow.er[peaks2keep(n]] - dat.subSflow.er[rightthresh[n]]) > 2 &

(dat.subSflow.er[peaks2keep[n]] - dat.subSflow.er[leftthresh[n]]) > 2 &
dat.subSflow.er[leftthresh[n]] < 10 &
dat.subSflow.er[rightthresh[n]] < 10 &
rightthresh[n] < peaks2keep[n+1]) {

TRUE

IsPeak[n] ="Y"

Rp=Rp+1

RealPeaks[Rp] = peaks2keep|[n]

#print("11th check ")

#print(peaks2keep[n])

#print(IsPeak[n])

}

}
if (length(RealPeaks) == 0 & length(peaks2keep) !=0) {

#TRUE

RealPeaks[1] =1
}
PeakCount = length(RealPeaks) #PeakCount + p
##tprint("PeakCount")
##tprint(PeakCount)

}

truepeak = na.omit(truepeak)

##print(truepeak)

##print(peaks2keep)
#points(dat.subSflow.er[truepeak]~dat.subSday[truepeak], pch = 19)
#points(yfiltered[valleys]~dat.subSday[valleys], pch = 19, col = "blue")

#hydroboundsS$Speak[k] = length(truepeak)

hydroboundsSpeak[k] = PeakCount

bankfullflow = dat.subSflow.er[dat.subSflow.er > 8] # define bankfull flow threshold

hydroboundsSbankfullvol[k] = sum((bankfullflow)*86400) # sum the volume of water
exceeding bankfull flow

hydroboundsSbankfulldays[k] = length(bankfullflow)

yearstats = cbind(maxflow[,-c(4,5)],hydrobounds|,-c(1,2)],statistics[,-1])
You will have to rename the headers in excel unless | get some time to go back and clean
things up a bit

#setwd(savepath)
write.csv(yearstats,"YearlyStatistics_6.29.20_Base_1.91 BestFit.csv")

rm(list=setdiff(ls(), c("maxflow","dat","dat.almont","dat.bc","dat.er",
"hydrobounds","statistics","yearstats","years","colfunc",

"loadpath","savepath","mod2", "best.span")))

This code will average variables for periods between imagery along the East River

Author: Nicholas A. Sutfin
Date: April 2020

library("plyr")
#library("smwrBase", lib.loc="~/R/win-library/3.2")
library("lattice") #, lib.loc="C:/Program Files/R/R-3.3.0/library")

library("lubridate")
library("hydroGOF")

User space same as save path from steps 1-4

savepath = '/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode/Baseflow_1.91 BestFit/' #
Calculating slope as line between 1st and last points (2p)

setwd(savepath)

Load ALmont data for 2015-2017 as csv file, convert to Sl units, code the date as a date, and
define the year

#AIm_Q <-read.csv("ER_AImQ_2015-2017.csv", header=TRUE)

AnnualStats <- read.csv("YearlyStatistics_6.29.20_Base_1.91_BestFit.csv", header=TRUE)
AnnualStatsSperiod = NA

for (i in 2:length(AnnualStatsSyear)) {

#AnnualStatsSTimeSinceBF[i] = AnnualStatsSBF_startDay[i] + AnnualStatsSDaysSinceBF[i-1]

if (AnnualStatsSyearl[i] < 1955){
AnnualStatsSperiod[i] = "before1955"

}

if (AnnualStatsSyear[i] > 1954 & AnnualStatsSyear[i] < 1974){
AnnualStatsSperiod[i] = "1955t01973"

}

if (AnnualStatsSyear[i] > 1973 & AnnualStatsSyear[i] < 1984){
AnnualStatsSperiod[i] = "1974t01983"

}

if (AnnualStatsSyear[i] > 1983 & AnnualStatsSyear[i] < 1991){
AnnualStatsSperiod[i] = "1984t01990"

}

if (AnnualStatsSyear[i] > 1990 & AnnualStatsSyear[i] < 2002){
AnnualStatsSperiod[i] = "1991t02001"

}

if (AnnualStatsSyear[i] > 2001 & AnnualStatsSyear[i] < 2012){
AnnualStatsSperiod[i] = "2002t02011"

}

if (AnnualStatsSyear[i] > 2011 & AnnualStatsSyear[i] < 2016){
AnnualStatsSperiod[i] = "2012t02015"

}

if (AnnualStatsSyear[i] > 2015){
AnnualStatsSperiod[i] = "after2015"

}

}

#na.rm(AnnualStats)

DecadalStats = ddply(AnnualStats, ~period, summarise,

MeanPeakDay = mean(PeakDay),

MeanPeakQ = mean(flow.er), MaxPeakQ = max(flow.er),

MeanBFDuration = mean(BankfullDuration, na.rm=TRUE), MaxBFDuration =
max(BankfullDuration, na.rm=TRUE),

MeanBFDays = mean(bankfulldays, na.rm=TRUE), MaxBFDays = max(bankfulldays,
na.rm=TRUE),

MeanBaseDuration = mean(BaseDuration, na.rm=TRUE), MaxBaseDuration =
max(BaseDuration, na.rm=TRUE),

MeanBaseDays = mean(BaseflowDays, na.rm=TRUE), MaxBaseDays =
max(BaseflowDays, na.rm=TRUE),

MeanDaysAfterBF = mean(CummDaysAfterBF, na.rm=TRUE), MaxDaysAfterBF =
max(CummDaysAfterBF),

MeanDaysB4_BF = mean(CummDaysBeforeBF, na.rm=TRUE), MaxDaysB4_BF =
max(CummDaysBeforeBF, na.rm=TRUE),

MeanNonBFdays = mean(NonBFdays, na.rm=TRUE), MaxNonBFdays =
max(NonBFdays, na.rm=TRUE),

MeanBaseDay = mean(Base_endDay, na.rm=TRUE), MeanBF_EndDay =
mean(BF_endDay, na.rm=TRUE),

MeanPeaks = mean(peak, na.rm=TRUE), MaxPeaks = max(peak, na.rm=TRUE),

MeanTotSlope = mean(TotalSlope, na.rm=TRUE), MaxTotSlope = max(TotalSlope,
na.rm=TRUE),

MeanBFSlope = mean(BFslope, na.rm=TRUE), MaxBFSlope = max(BFslope,
na.rm=TRUE),

MeanPeakSlope = mean(PeakSlope, na.rm=TRUE), MaxPeakSlope = max(PeakSlope,
na.rm=TRUE),

MeanAnnualVol = mean(AnnualVol), MaxAnnualVol = max(AnnualVol),
TotAnnualVol = sum(AnnualVol),

Altered 6.26.2020 to include volume for days above BF rather than all days
between first and last BF days

MeanBFVol = mean(bankfullvol,na.rm=TRUE), MaxBFVol =
max(bankfullvol,na.rm=TRUE),

TotBFDuration = sum(BankfullDuration, na.rm=TRUE), TotBaseDuration =
sum(BaseDuration, na.rm=TRUE),

TotNonBFdays = sum(NonBFdays, na.rm=TRUE), TotBF_EndDay = sum(BF_endDay,
na.rm=TRUE),

TotDaysB4_BF = sum(CummDaysBeforeBF, na.rm=TRUE), TotDaysAfterBF =
sum(CummbDaysAfterBF),

TotBFVol = sum(BFVol, na.rm=TRUE))

#setwd(savepath)
write.csv(DecadalStats, "TimePeriodStats_6.29.20_1.91_ BestFit.csv", row.names = TRUE)

This code will examine 15 min hydrograph datasets from the ALmont gage and East Rlver
study site

to quantify fluctuations above and below bankfull along the recession limb

Author: Nicholas A. Sutfin
Date: Oct. 18th 2017

This code will examine to hydrograph dataset, select matching days

and times and conduct a regression that can be used to fill in missing data
Author: Nicholas A. Sutfin

Date: Oct. 18th 2017

library(plyr)

library(chron)

library(tidyr)

#library(smwrBase, lib.loc=~/R/win-library/3.2)
library(lattice) #, lib.loc=C:/Program Files/R/R-3.3.0/library)
library(lubridate)

library(hydroGOF)

library(OHLCMerge)

library(corrplot)

library(Imtest)

library(car)

library(MASS)

library(Hmisc)

Set user space on LANL PC

loadpath ='/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode'
savepath = '/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode'
setwd(loadpath)
#setwd("/Users/306722/Documents/EastRiver/ER_Rcode")

Load ALmont data for 2015-2017 as csv file, convert to Sl units, code the date as a date, and
define the year

Alm_15Q <- read.csv("Almont_30minQ_1987_2020.csv", header=TRUE) #load USGS discharge
data

Alm_15QSDischarge_cfs =
as.numeric(levels(Alm_15QSDischarge_cfs))[Alm_15QSDischarge_cfs] # convert Q factors to
numeric values

which(is.na(Alm_15QSDischarge_cfs) == TRUE) #Check for NA values

Alm_15Q$AImQ_cms = Alm_15QS$Discharge_cfs*0.0283168 # Calulate Q conversion from cfs to
cms

which(is.na(Alm_15QS$Discharge_cfs) == TRUE) # check for NA values after numeric conversion

Alm_15QSdate = as.Date(Alm_15QSdate, format="%m/%d/%y") # convert Q factors to numeric
values

Alm_15QS$DaTime = paste(Alm_15QS$date, AlIm_15QStime)

Alm_15QSDateTime = as.POSIXct(Alm_15QS$DaTime, format = "%Y-%m-%d %H:%M")
Alm_15QSyear = year(Alm_15QS$Date)

Alm_15Q$month = month(Alm_15QSDate)

Alm_15QS$Calday = day(Alm_15QS$Date)

Alm_15QS$Yday = yday(Alm_15QSDate)

#Alm_15QSYday = yday(Alm_15QS$Date)

Alm_15Q = as.data.frame(Alm_15Q)

#

Load Pump house data for 2015-2017 as csv file, convert to Sl units, code the date as a date,
and define the year

PH_10Q <- read.csv("PHQ_2014_2018.csv", header=TRUE)

#PH_10Q <- read.csv("PH_10Q.csv", header=TRUE) #load East Rlver pump house discharge data
PH_10QS$DateTime = as.POSIXct(PH_10QSdate, format = "%m/%d/%y %H:%M")
PH_10QSyear = year(PH_10QS$DateTime)

PH_10QSmonth = month(PH_10QSDateTime)

PH_10QS$Calday = day(PH_10QS$DateTime)

PH_10QSTime = format(as.POSIXct(strptime(PH_10QSDateTime, "%Y-%m-%d %H:%M",tz=""))
,format = "%H:%M")

PH_10QS$Yday = yday(PH_10QSDateTime)

PH_10Q = as.data.frame(PH_10Q)

#plot(PH_10QSDateTime, PH_10QSPHQ_cms, type ="I", col = "blue")

#

Find matching date-time combinations and create new dataset

#PH_Q_match =

Alm_15Qnew1 = Alm_15Q][,c(4,6,7,8,9,2,10)][!duplicated(Alm_15QS$DateTime),]
Alm_15Qnew = Alm_15Qnew1[which(is.na(Alm_15Qnew1SDateTime) == FALSE),]
PH_10Qnew = PH_10Q[,c(2:8)]

Q_int <- intersect.POSIXct(PH_10QnewS$DateTime, Alm_15QnewSDateTime)

Alm_Q_match <- AlIm_15Qnew[Alm_15QnewSDateTime %in% Q_int,] #Alm_15Q[Q_int, | #
PH_Q_match <- PH_10Qnew[PH_10QnewSDateTime %in% Q_int,] #PH_10Q[Q_int,] #
Q_diff <- setdiff(PH_Q_match$DateTime, Alm_Q_matchSDateTime)
#which(PH_Q_matchSDateTime == NA)

#which(Alm_Q_matchSDateTime == NA)

All_Qmatch <- cbind(Alm_Q_match, PH_Q_match)

Create a smaller zoomed in plot to view Q around Bankfull Q (8 cms)
plot(All_Qmatch$DateTime, All_QmatchSPHQ_cms, type ="1",

ylim = ¢(5,10), xlab = "Day of Year", ylab = "Discharge (cms)", lwd = 1, main = "East River 2015
recession")

Plot discharge data

plot(All_QmatchSDateTime, All_QmatchSAImQ_cms, col = "blue", type = "I")
lines(All_Qmatch$SDateTime, All_QmatchSPHQ_cms, col = "royalblue", type = "I")
#

Linear regression between the Almont and PH gauges 2014-2016

Qreg <- Im(All_QmatchSPHQ_cms ~ All_QmatchSAImQ_cms, data = All_Qmatch)
summary(Qreg)

Qreg # adjusted R squared = 0.95

For all days: PHQ =-0.081804 + 0.211284(Alm)

Excluding frozen days, regression output: PHQ = 0.010948 + 0.211611(Alm)

par(mfrow=c(1,1), mar=c(4,4,2,2), cex=1, lwd = 1)
plot(All_QmatchSAImQ_cms, All_QmatchSPHQ_cms, col = "blue",

xlab = "Discharge at Almont (cms)", ylab = "Discharge at Study Site (cms)")
lines(All_QmatchSAImQ_cms, QregScoefficients[1] +
QregScoefficients[2]*All_QmatchSAImQ_cms,

col = "black")
par(cex = 0.6)
#points(All_QmatchSAImQ_cms, All_Qmatch$SPHQ_cms, pch =19, col = "red")
text(10, 15, expression("r"~{2} ~"=0.94"), cex = 1.5)

Use regression to extend daily Q for PH based on AlImont flow
#

regression output: PHQ = -0.081804 + 0.211284(Alm)

Reduce Almont Data size
Alm_15Q_sel = AlIm_15Qnew[((Alm_15QnewStime == "0:00") | (Alm_15QnewStime == "1:00")
| (Alm_15QnewStime =="2:00") |

(Alm_15QnewStime == "3:00") |(Alm_15QnewStime == "4:00") |
(Alm_15QnewStime == "5:00") |

(Alm_15QnewStime == "6:00") |(Alm_15QnewStime =="7:00") |
(Alm_15QnewStime == "8:00") |

(Alm_15QnewStime == "9:00") |(Alm_15QnewStime == "10:00") |
(Alm_15QnewStime == "11:00") |

(Alm_15QnewStime == "12:00") | (Alm_15QnewStime == "13:00") |
(Alm_15QnewStime == "14:00") |

(Alm_15QnewStime == "15:00") | (Alm_15QnewStime == "16:00") |
(Alm_15QnewStime == "17:00") |

(Alm_15QnewStime == "18:00") | (Alm_15QnewStime == "19:00") |
(Alm_15QnewStime == "20:00") |

(Alm_15QnewStime =="21:00") | (Alm_15QnewStime == "22:00") |
(Alm_15QnewStime == "23:00") |

(Alm_15QnewStime == "24:00")),]

All_Q_1987_2020 = Alm_15Q_sel[which(is.na(Alm_15Q_selSAImQ_cms) == FALSE),] #[
,c(6,1,7:9,2,10,4)]

All_Q_1987_2020SMod_PHQ_cms = QregScoefficients[1] +
QregScoefficients[2]*All_Q_1987 2020SAImQ_cms

Plot a zoomed in window of the recession limb for 2017
Flow2017 = All_Q_1987_2020[All_Q_1987_2020Syear == 2017,]
Recession2017 = Flow2017[Flow2017Smonth == 6,]
Recession2017 = Recession2017[Recession2017SCalday > 6,]
DailyQ = ddply(Recession2017, ~Yday, summarise,

MeanQ = median(Mod_PHQ_cms),

DateTime = min(DateTime))

Rmax = max(Recession20175DateTime)

Rmin = min(Recession2017SDateTime)

window1 <- data.frame(xmin=Rmin, xmax=Rmax, ymin=8, ymax=11)
window?2 <- data.frame(xmin=Rmin, xmax=Rmax, ymin=5, ymax=12)

ggplot(data=Recession2017, aes(x=DateTime, y=Mod_PHQ_cms)) +

geom_path() +

geom_line(data = DailyQ, aes(x = DateTime , y = MeanQ, colour = 003399)) +

geom_line(data=Recession2017, aes(x=DateTime, y=Mod_PHQ_cms)) +

labs(y = expression(paste("Discharge (m"A"3", "s"A"-1"")")), x ="") +

theme(axis.title.x = element_blank()) +

theme(text = element_text(size=13)) +

scale_y_continuous(minor_breaks = seq(6,16,1), breaks = seq(6,16,2)) +

geom_rect(data=window2, aes(xmin=Rmin, xmax=Rmax, ymin=5, ymax=10), fill="blue",
alpha=0.20, inherit.aes = FALSE) +

geom_rect(data=window1, aes(xmin=Rmin, xmax=Rmax, ymin=7.95, ymax=8.05), fill="red",
alpha=0.5, inherit.aes = FALSE)

#geom_rect(x=x, aes(xmin=Rmin, xmax=Rmax, ymin=8, ymax=11, alpha=.5))
#geom_density(aes(, alpha=.5))
HUHBH R R R R R
HUHEH R R R R R R
Recession Limb Characteristics

HiHHAHHHHH TR

HiHHAHHHHH TR R R R

years = ¢("1988","1989","1990","1991","1992","1993","1994","1995","1996",
"1997","1998","1999","2000","2001","2002","2003","2004","2005",
"2006","2007","2008","2009","2010","2011","2012","2013","2014",
"2015"’"2016"’"2017"’"2018"’"2019")

DielYears = data.frame("Years" = years)

DielYearsSPeakDate = as.POSIXIt(All_Q_1987_20205DateTime[1], format = "%Y-%m-%d
%H:%M:%S")

par(cex =1, mar =c(4,4,2,1))

BFmin=5

BFmax = 10

DielFluctuation = 2

for (p in 1:length(years)) {

DataYear = years|[p]

DielData = subset(All_Q_1987_2020, year%in%DataYear)

DielRec=0

AllDiel =0

DielYearsSPeakFlow([p] = max(DielDataSMod_PHQ_cms[which(is.na(DielDataSMod_PHQ_cms)
== FALSE)]) #max(DielDataSMod_PHQ_cms)

DielYearsSPeakDate[p] = as.POSIXIt(DielDataSDateTime[max(which(DielDataSMod_PHQ_cms
== DielYearsSPeakFlow[p]))], format = "%Y-%m-%d %H:%M:%S")

DielYearsSPeakDay[p] = yday(DielYearsSPeakDate[p])

DielYearsSPostPeakDays[p] = max(DielDataSYday) - DielYearsSPeakDay[p]

Peakindex = which(DielDataSDateTime == DielYearsSPeakDate[p])

DielPeaks = ()

DielTotal =0

maxDiel =0

minDiel =0

#print(" ")

#print(years[p])

#print(DielPeaks)

#print(minDiel)

#print(maxDiel)

#print(AllDiel)

#print(DielRec)

#Find unique days for the year on record
UnigDays = unique(DielDataSYday)
PostPeakUniq = UnigDays[UnigDays > DielYearsSPeakDay|[p]]

if (DielYearsSPeakFlow([p] > 6) {

for (rin 2:length(UnigDays)) {
Assign daily max and min discharge values
DailyFlow = subset(DielData, DielDataSYday == UnigDays|r])
Dmax = max(DailyFlowSMod_PHQ_cms)
#DmaxIndex = which(DailyFlowSMod_PHQ_cms == Dmax)
Dmin = min(DailyFlowSMod_PHQ_cms)

if ((Dmax < BFmax) | (Dmin > BFmin)) & ((Dmax - Dmin) > DielFluctuation)) {
AlIDiel = AllDiel + 1
}
DielYearsSAllIDiel[p] = AllDiel # Record number of times Q crosses BF during the entire year
}
#print(" ")
#print(years[p])
#print("YES")
for (g in 1:length(PostPeakUniq)) {
Assign daily max and min discharge values
DailyFlow = subset(DielData, DielDataSYday == PostPeakUniq[q])
Dmax = max(DailyFlowSMod_PHQ_cms)
#DmaxIndex = which(DailyFlowSMod_PHQ_cms == Dmax)
Dmin = min(DailyFlowSMod_PHQ_cms)

if ((Dmax < BFmax) | (Dmin > BFmin)) & ((Dmax - Dmin) > DielFluctuation)) {

DielRec = DielRec + 1
DielPeaks[DielRec] = DailyFlowSYday # Index the day of year for each Q that crosses BF
after peak flow
#print(length(DielPeaks))
#print(DielPeaks)
maxDiel = max(DielPeaks)
minDiel = min(DielPeaks)
DielRange = Dmax - Dmin
DielTotal = DielTotal + DielRange
DielYearsSminDiel[p] = minDiel
DielYearsSmaxDiel[p] = maxDiel

Plot portion of recession limb within bankfull window

days = c¢(minDiel, maxDiel)

Qlow = ¢(BFmin, BFmin)

Qhigh = c¢(BFmax, BFmax)

#plot(DielDataSday, DielDataSMod_PHQ_cms, type ="I", main = paste(years[p]),

#ylim = ¢(6,10), xlim = c(DielYearsSminDiel[p]-1,DielYearsSmaxDiel[p]+1),
#xlab = "Day of Year", ylab = "Discharge (cms)", lwd = 1)
#lines(c(0,250), c(8,8), col="blue")

plot a transparent band around the bankfull window
#polygon(c(days, rev(days)), c(Qlow, Qhigh), border = NA,
#col = rgb(red = 0.0, green = 0.0, blue = 0.5, alpha = 0.4))

}
AveDielRange = DielTotal/DielRec
DielYearsSTotalDielRange[p] = DielTotal
DielYearsSAveDielRange[p] = AveDielRange
DielYearsSDielRec[p] = DielRec # Record number of times Q crosses BF during recession limb

}
#plot(DielDataSday, DielDataSMod_PHQ_cms, type = "I", main = paste(years[p]),
#xlab = "Day of Year", ylab = "Discharge (cms)", lwd = 1)
}
else {
#print(" ")
#print(years[p])
#print("NO")

DielYearsSTotalDielRange[p] = NA
DielYearsSAveDielRange[p] = NA
DielYearsSDielRec[p] = NA
DielYearsSminDiel[p] = 0
DielYearsSmaxDiel[p] =0
}

}

DielYears

THis data was combined with the average statistics form the hydrologic and
imagery analysis to produce the datasheet used below

HEHHHEHHEHH A
R

Conduct Multiple Regression to examine role of diel fluctuations on erosion

HEHHHEHHHH A
A

Load data on Mac with slope analysis from primary 60 year analysis derived from daily mean
data

Set user space

savepath =
'/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode/Baseflow_0.49_2p_corrected/' #
Calculating slope as line between 1st and last points (2p)

setwd(savepath)

write.csv(DielYears,"DielRecessionDate_6.30.20_2cms_>6_5_10.csv")

Load other hydrologic variables from baoder analysis and 6 year hydro record
YearlyHydroStats <- read.csv("DielRecessionRegData_6.29.20.csv", header=TRUE)

cbind annual hydrologic data with diel data
DielRegData = cbind(DielYears, YearlyHydroStats)

DielRegData = DielRegData[(which(is.na(DielRegDataSDielRec) == FALSE)),]

for (i in 1:length(DielRegDataSYears)) {
if (DielRegDataSDielRec[i] == 0) {
DielRegDataSAveDielRange[i] =0
}
}

#

#Assign variables

#RespVar = DielRegDataSAveDielRange

Preds = subset(DielRegData, select = ¢(6:9,16:18)) #c(3:6,9:52))
Preds|, c(1:7)] <- sapply(Preds[, c(1:7)], as.numeric)

examine subset correlations
par(mfrow=c(1,1), mar=c(3,3,3,2), cex = 1.3)
DataCorr = cor(Preds, method = "pearson")
corrplot(DataCorr)

CorrT = rcorr(as.matrix(Preds), type = "pearson")
CorrRtable = data.frame(CorrTSr)

CorrPtable = data.frame(CorrTSP)

CorrT

write.csv(CorrRtable, file = "DielData_RCorrs_6.30.20_2cms_>6_5_10.csv") # with new data
from new stats calculated June 2020
write.csv(CorrPtable, file = "DielData_PCorrs_6.30.20_2cms_>6_5_10.csv")

HHtHHHHHHEH
Number of Diel Fluctuations
#

cor.test(PredsSTotalSlope, PredsSDielRec)
DielRecReg = Im(PredsSTotalSlope ~ PredsSDielRec, data=Preds)
summary(DielRecReg)

ggplot(Preds, aes(x=TotalSlope, y=DielRec)) +
geom_point(color="#D55E00', size = 3) +
geom_smooth(method=Im, color="#2C3E50', linetype="dashed") +
theme(text = element_text(size=13)) +
labs(title = "2cms fluctuations >6¢cms from 5-10cms window",
y=expression(paste("Number of diel fluctuations > 2 m"A"3", "s"A"-1")),
x = expression(paste("Slope of recession limb (m"A"3", "s"A"-1", "day"A"-1",")")))

R
Total sum magnitude of diel fluctuation
#

cor.test(PredsSTotalSlope, PredsSTotalDielRange)

ggplot(Preds, aes(x=TotalSlope, y=TotalDielRange)) +
geom_point(color="#D55E00', size = 3) +
geom_smooth(method=Im, color="#2C3E50', linetype="dashed") +
theme(text = element_text(size=13)) +
labs(title = "2cms fkuctuations >6cms from 5-10cms window",
y=expression(paste("Summed magnitude of diel fluctuation")),
x = expression(paste("Slope of recession limb (m"A"3", "s"A"-1", "day"A"-1",")")))

R
Average magnitude of diel fluctuation
#

cor.test(PredsSTotalSlope, PredsSAveDielRange)

ggplot(Preds, aes(x=TotalSlope, y=AveDielRange)) +
geom_point(color="#D55E00', size = 3) +
geom_smooth(method=Im, color="#2C3E50', linetype="dashed") +
theme(text = element_text(size=13)) +
labs(title = "2cms fkuctuations >6cms from 5-10cms window",
y=expression(paste("Average magnitude of diel fluctuation (m"A"3","s"A"-1" ")")),
x = expression(paste("Slope of recession limb (m"A"3", "s"A"-1", "day"A"-1",")")))

