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Abstract13

We present an inversion methodology aimed at updating an atmospheric model to be14

consistent with a set of infrasound-derived observations. Compared to previous approaches,15

we apply a more flexible parameterization. This permits to incorporate physical and nu-16

merical constraints without the need to reformulate the inversion. On the other hand,17

the optimization conveys an explicit search over the solution space, making the solver18

computationally expensive. Nevertheless, through a parallel implementation and the use19

of tight constraints we demonstrate that the methodology is computationally tractable.20

Constraints to the solution space are derived from the spread (variance) of ERA5 en-21

semble reanalysis members, which summarize the best current knowledge of the atmo-22

sphere from assimilated measurements and physical models. Similarly, the initial model23

temperature and winds for the inversion are chosen to be the average of these param-24

eters in the ensemble members. The performance of the inversion is demonstrated with25

the application to infrasound observations from an explosion generated by the destruc-26

tion of ammunition at Hukkakero, Finland. The acoustic signals are recorded at an ar-27

ray station located at 178 km range, which is within the classical shadow zone distance.28

The observed returns are assumed to come from stratospheric reflections. Therefore, in29

this example, the altitude of reflection is also an unknown that is inverted for, together30

with the updated atmospheric model.31

1 Introduction32

This work considers the problem of estimating an updated atmospheric model to33

become consistent with a set of infrasound observations, and the associated problem of34

identifying the member(s) from an atmospheric reanalysis model ensemble that lie closer35

to the infrasound-consistent, updated model.36

Atmospheric reanalysis models are the result of the assimilation of direct and in-37

direct measurements of different properties of the atmosphere (e.g., Uppala et al., 2005;38

Kazutoshi et al., 2007; Parker, 2016). For example, direct measurements of atmospheric39

winds and temperature are provided by radiosondes up to altitudes of around 30 km. Satel-40

lites, on the other hand, provide measurements from which estimations of temperature41

can be obtained up to altitudes of ∼50 km (Lee et al., 2019).42
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A better representation of the upper stratosphere in models, especially for winds,43

can contribute to an enhanced numerical weather prediction on weekly to monthly timescales,44

especially during winter (see, e.g., Domeisen et al., 2020a, 2020b, and the references therein).45

To this end, efforts are made to adapt and expand atmospheric probing infrastructures46

and technologies to provide additional measurements on the dynamics of the stratosphere47

(e.g., Tan et al., 2008; Blanc et al., 2018, 2019; Khaykin et al., 2020).48

Over the last decade, there have been significant improvements in global data as-49

similation capabilities of the lower, middle, and upper atmosphere (Drob, 2019). Gen-50

eral circulation models (GCMs) have been progressively extended to cover the whole strato-51

sphere to better capture stratospheric-tropospheric interactions and improve forecast skill52

scores (Charlton-Perez et al., 2013; Siskind & Drob, 2014). However, the mean state and53

the variability described by Numerical Weather Prediction (NWP) models, such as those54

distributed by the European Centre for Medium-Range Weather Forecasts (ECMWF),55

are subject to inaccuracies in both current operational analyses and reanalyses in the56

altitude range where assimilated observations become sparser (i.e., above 30 km alti-57

tude).58

Within the Copernicus Climate Change Service (C3S), ECMWF is producing the59

ERA5 reanalysis, which embodies a detailed record of the global atmosphere. This new60

reanalysis, based on the Integrated Forecasting System (IFS) Cy41r2, benefits from a61

decade of developments in model physics, core dynamics and data assimilation. A gain62

in forecast skills has been shown (Hersbach et al., 2020), allowing an enhanced descrip-63

tion of the evolution of weather systems in the troposphere. ERA5 also provides anal-64

yses with better global-mean temperatures in the uppermost troposphere and stratosphere,65

although it still suffers from temperature uncertainty and bias (Simmons et al., 2020).66

There is a current interest from the NWP community to validate model specifica-67

tions at stratospheric altitudes using independent observations. This includes satellite68

radiance and additional high-resolution measurements (gravity waves and momentum69

flux) that are currently not resolved in gravity wave model parameterization schemes (e.g.,70

Charlton-Perez et al., 2013). Given the importance of model validation in the middle and71

upper atmosphere regions, recent studies focused on comparisons between ECMWF prod-72

ucts with independent observations such as long-duration balloon flights (e.g. Podglajen73

et al., 2014). Wind radiometer and lidar instruments were also used to evaluate the ac-74
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curacy of NWP models and data-constrained assimilation systems (e.g. Le Pichon et al.,75

2015; Ehard et al., 2017). The development of innovative high-resolution prototype sound-76

ing systems providing in near-real time wind and temperature observations from the ground77

to the mesosphere and lower-thermosphere (MLT) has stimulated the construction of multi-78

technology observational platforms detailing the dynamics of the middle atmosphere and79

interactions between atmospheric layers with unprecedented resolution (Blanc et al., 2018).80

Infrasound waves provide complementary information to characterize the middle81

atmosphere. This is particularly valuable above 30 km altitude where few other currently82

available technologies provide direct measurements, especially for the dynamics (see e.g.,83

Le Pichon et al., 2019, for a review). As infrasonic waves propagate into the middle at-84

mosphere, small-scale features of the vertical structure of the atmosphere can also be in-85

ferred from the characteristics of measured wave parameters (Chunchuzov & Kulichkov,86

2019; Assink et al., 2019). Infrasound signals are generated by natural phenomena such87

as microbaroms, volcanoes and meteorites, as well as by human-activities such as explo-88

sions in mines or nuclear tests. The infrasound waves travel along waveguides in the at-89

mosphere, which are formed by vertical variations in wind and temperature. Therefore,90

similar to seismic waves traveling through the solid earth, the properties of the medium91

of propagation get encoded along the path of propagation and amplitude of the infra-92

sound waves.93

Through the tool of inverse theory, it is thus feasible to estimate the characteris-94

tics of the medium of propagation that explain a set of observations of infrasound data.95

Such is the effort that has been made by different groups working with infrasound ob-96

servations around the world (see Assink et al., 2019, for a review). For example, Drob97

et al. (2010) proposed the parameterization of the adiabatic sound speed and wind pro-98

files in 1D atmospheric models in terms of basis functions extracted from the singular99

value decomposition (SVD) of a population of historical profiles for the area of interest.100

In this way, the solution space was reduced to the estimation of scalar coefficients that101

multiplied by the basis functions produced the atmospheric profiles that explained the102

infrasound observations. Similar approaches were then followed by Lalande et al. (2012)103

and Assink et al. (2013).104

Model simplification is generally required when working with infrasound observ-105

ables to estimate atmospheric model updates. The reason is that the number of inde-106
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pendent observations is normally much smaller than the number of model parameters107

to update, which makes the inverse problem strongly ill-posed. Alternatively, the size108

of the solution space can be reduced by imposing constraints. In fact, the parameter-109

ization proposed by Drob et al. (2010) bounds the solution space to those models that110

are a linear combination of the chosen basis functions. This type of constraint preserves111

the most significant statistical properties of the atmosphere within the time span of the112

population of profiles used in the SVD, although it can be limiting or of little help in re-113

gions and/or time periods with dynamic atmospheric conditions.114

Previous efforts to solve the inversion have resorted to parameterizations that fol-115

low the classical least-squares formalism, either based on Fréchet derivatives (Lalande116

et al., 2012) or with a Bayesian formulation (Assink et al., 2013). These attempts intro-117

duced additional model simplifications, such as fixing some of the profiles during the in-118

version (e.g., adiabatic sound speed), and/or inverting only for the upper atmospheric119

layers of the models.120

In the current work, we consider a more general representation of the problem, in121

which the inversion is achieved via a solver of the heuristic type. The objective is to min-122

imize a cost function, where the cost can be estimated either via least-squares or any other123

ad hoc metric. This offers flexibility not only to select convenient metrics to assess the124

merit of a solution, but also to easily incorporate different types of constraints without125

the need to reformulate the optimization, for example, by recalculating partial deriva-126

tives. In fact, the cost function does not need to be differentiable as required in classi-127

cal methods using least-squares minimization. To alleviate the ill-posedness of the prob-128

lem, we bound the temperature and wind profile solution space to a region in the vicin-129

ity of the members of ERA5 ensemble reanalysis models (from now on ERA5-ensembles,130

Hersbach & Dee, 2016; Hersbach et al., 2019). Then, we solve the optimization using a131

heuristic-learning algorithm previously developed to solve a similar inversion problem132

in passive seismics (Vera Rodriguez, 2019). In this way, we not only estimate an updated133

model consistent with our infrasound observations, but also identify the members of the134

ERA5-ensemble that lie closer to it. The performance of the method is demonstrated135

using observations of infrasound waves produced by regular explosions at a site in Fin-136

land (Gibbons et al., 2015, 2019).137
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Recently, Vanderbecken et al. (2020) also looked at the problem of identifying mem-138

bers from ensemble models that were more likely representative of the atmospheric state139

based on their consistency with infrasound observations. The approach was applied to140

infrasound signals generated by the Mount Etna volcano. In this case, backazimuth and141

trace velocity observations were input to a Bayesian algorithm, which assigned a like-142

lihood to each of the ensemble members. Different to the work presented here, the up-143

dates necessary to make any particular ensemble member consistent with the infrasound144

observations were not part of the estimations.145

Also recently, Amezcua et al. (2020) performed an off-line data assimilation exper-146

iment where an Ensemble Kalman filter was applied to update the representation of cross-147

wind estimations into ERA5-ensembles. The cross-winds were estimated based on the148

measured travel-time and backazimuth deviation of infrasound arrivals from 598 explo-149

sions and an analytical formula (Blixt et al., 2019, see Section 2 in this article for fur-150

ther descriptions and references regarding this explosion dataset.). In this case, a sin-151

gle value of cross-wind was assimilated to update a particular model. This limits the con-152

straint that is attainable with the infrasound information. Therefore, in this work we opt153

to use the three primary observables derived from the infrasound data (i.e., backazimuth,154

trace velocity and travel time).155

In short, the contributions of this work can be summarized as: inverting for atmo-156

spheric wind and temperature profiles without restricting the solution space to atmo-157

spheric states that are linear combinations of previous states. Instead, we constrain the158

inversion by bounding the solution space with uncertainties that summarize the current159

atmospheric knowledge from direct and indirect measurements, and physical models. As160

a result of the inversion setting, our results can be directly related to the ensemble mod-161

els used to bound the solution space, so that, the members of the ensemble that are more162

consistent with the infrasound observations can be identified.163

We start the description in the following section by introducing the infrasound dataset164

and atmospheric models used to test the inversion. Thereafter, the parameterization of165

the problem is described together with the strategies followed to bound the solution space166

and achieve the optimization. Finally, we present results of the inversion applied to an167

explosion from the real dataset, followed by our conclusions and future directions of work.168
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2 The Hukkakero explosion dataset and the atmospheric model en-169

sembles170

The Hukkakero dataset consists of a series of explosions that happen regularly dur-171

ing August and September at the site of Hukkakero in Finland (67.94◦ N, 25.84◦ E) (Gibbons172

et al., 2007; Liszka & Kvaerna, 2008). Both seismic and infrasound waves generated by173

the blasts are regularly detected at the array station ARCES (69.53◦ N, 25.51◦ E) lo-174

cated in northern Norway. Gibbons et al. (2015, 2019) described details of the dataset,175

including the processing conducted to extract the parameters arrival back azimuth (θobs)176

and trace velocity (vapp). Apart from θobs and vapp, total propagation time (T ) is also177

an observation. Therefore, any one explosion provides with three points to fit during an178

inversion process (i.e., under the knowledge of the source position).179

Blixt et al. (2019) estimated the uncertainty of the backazimuths extracted from180

this dataset to be in the range of 1.0◦ to 1.5◦. Following a similar analysis for the ap-181

parent velocity yields uncertainties in the order of 10 m/s. Taking into account that these182

uncertainties are approximations obtained with an empirical analysis (see Blixt et al.,183

2019, Section 2C for details), we consider more conservative values of 0.5◦ and 5 m/s for184

the inversion process. For uncertainty in arrival time, we note that our array process-185

ing output is calculated over 10 s windows stepped with 1 s increments. Therefore, we186

consider reasonable to assume the uncertainty in arrival time estimation to be 1 s.187

As noted in Blixt et al. (2019), ARCES is located within the classical shadow-zone188

distance from Hukkakero, suggesting that the arrivals detected at the station correspond189

to stratospheric reflections rather than refracted waves (e.g., Chunchuzov, Kulichkov, Popov,190

et al., 2015; Chunchuzov, Kulichkov, Perepelkin, et al., 2015). Using ray tracing for a191

fan of shooting elevation angles through ERA-interim atmospheric reanalysis models,192

Blixt et al. (2019) conducted a grid search to estimate the reflection-altitudes that min-193

imized the difference between modeled and observed propagation times for 598 Hukkakero194

explosions. This exercise assumed that the atmospheric models represented reasonably195

well the infrasound propagation.196

Since the objective of the inversion developed in the current work is to update the197

atmospheric models, the reflection altitude that explains an observed propagation time198

must also be updated in a self-consistent manner. This is achieved by including this al-199

titude as part of the inverted model parameters.200
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The atmospheric models to update with the inversion are extracted from the ERA5201

ensemble product. The ERA5-ensembles are the latest type of reanalysis models gen-202

erated by the ECMWF. This product has global coverage and assimilates observations203

from satellites, land stations, buoys, radiosondes, aircrafts and ships. The ensemble mod-204

els are available at 3-hour intervals with a 63 km horizontal resolution in 137 vertical lev-205

els from surface up to an altitude of 0.01 hPa, i.e., around 80 km (Hersbach & Dee, 2016).206

The ERA5 product also includes single high-resolution realizations at temporal and hor-207

izontal resolutions of 1 hour and 31 km, respectively. In this work, however, we only use208

the ensembles so that we can derive uncertainties from the members. The ECMWF has209

made publicly available ERA5-ensembles from 1979 up to now with a delay of within 5210

days from real time (Copernicus Climate Change Service (C3S), 2017).211

In the context of infrasound studies using ensemble reanalysis models, Smets et al.212

(2015) studied probabilistic infrasound propagation by performing wave-propagation sim-213

ulations using the ensemble members of the ECMWF Ensemble Data Assimilation (EDA)214

system analysis product. Averbuch et al. (2020) also applied the EDA ensemble model215

product in atmospheric infrasound propagation modelling when analyzing how to esti-216

mate depth and strength of submerged explosion sources from infrasound data.217

3 Parameterization of the problem218

The cost function C to optimize is represented as219

C = O(m,d) , (1)220

where m and d are vectors that contain all the model parameters and observations, re-221

spectively, and O is an operator. The representation in 1 is general on purpose, as this222

gives flexibility to incorporate different types of variable manipulations and operations223

within O. The operator O consists of:224

1. Using the model parameters to produce a forecast of the observations.225

2. Evaluating the cost of the model parameters by comparing the forecast with the226

observations using a metric of choice.227

The elements of vector m in our problem are the altitude of reflection of the infrasound228

arrival, and the profiles of temperature, zonal (W-E) and meridional (S-N) winds of an229

atmospheric model (vertical wind is neglected). The vector d, on the other hand, con-230
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tains the observations of θobs, v
app and T of a corresponding Hukkakero explosion. As231

the source and receiver positions are fixed, this information is hard-coded inside O. Con-232

sequently, the first step in our operator O consists of using ray tracing with m to pro-233

duce a forecast of the elements of d.234

We compute eigenray trajectories, in this case reflection from a specified altitude235

joining Hukkakero with ARCES, using GeoAc (Keys, 1981; Blom & Waxler, 2012). More236

specifically, we use the ray tracer GeoAc3D, which considers wave propagation in a carte-237

sian frame where the medium is moving and without resorting to the effective sound speed238

approximation. Then, we use the geometry from the eigenrays together with the model239

parameters m to estimate the forecast of the observations (i.e., θ
(f)
obs, v

app(f) and T (f),240

where the superscript (f) refers to a forecast of the variable). Eigenrays are computed241

setting an error tolerance of 0.5◦ in azimuthal direction. This tolerance is within the un-242

certainty in the infrasound observations and results in rays landing within 0.6 km from243

the center of the ARCES array, which has an approximate radius of 1.5 km (Gibbons244

et al., 2015). Notice that the actual ray tracing operates over adiabatic sound speed rather245

than temperature. In this work, all the model perturbations are performed over the tem-246

perature profiles and then fed into GeoAc3D, which internally converts them into adi-247

abatic sound speed.248

For the second step, we use the following cost metric:249

λ = K
W1E(θ) +W2

|vapp−vapp(f)|
vapp +W3

|T−T (f)|
T

W1 +W2 +W3
, (2)250

where251

E(θ) =

√(
sin θobs − sin θ

(f)
obs

)2
+
(

cos θobs − cos θ
(f)
obs

)2
2

. (3)

Equation 2 is a weighted average, which facilitates a ranking-by-priority for the fit-252

ting of the observations during the inversion. For example, observations with larger un-253

certainties can have smaller weights. Similarly, observations that reflect lower sensitiv-254

ity to changes in the model parameters can also have lower weights. In this work, we use255

the weights W1 = 1, W2 = W3 = 3. The smaller weight on the backazimuth is used256

because we observed lower sensitivity in this variable with respect to changes in the model257

parameters. The same behavior was reported by Vanderbecken et al. (2020) in their Bayesian258

inversion. Traveltime and trace velocity, on the other hand, display a comparable level259

of sensitivity. We observed that if their weights are not equal, the algorithm often con-260
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verges to solutions that fit the variable with larger weight within its uncertainty but not261

the other one.262

The purpose of the normalizations in the fractions in the numerator of equation263

2 are to remove scale differences, homogenise units, and to help ensure bounds in the cost264

function in the approximate range of [0, ∼1). Function E(θ) is defined taking the same265

requirements into consideration and also to avoid ambiguities when comparing angles.266

In particular, setting [0, ∼1) bounds in the cost function is critical for the performance267

of the heuristic solver used for the optimization (Vera Rodriguez, 2019).268

As we discuss in the following section, the algorithm is initialized with average pro-269

files obtained from the members of ERA5-ensemble models. The cost of these initial at-270

mospheric models is already small. Therefore, we prefer absolute values over the more271

commonly used squared differences to increase the cost of the initial models. For the same272

objective, we introduce the hyperparameter K. Using a value of K = 60 we ensure an273

initial cost closer to 1 in every inversion run.274

3.1 Constraining of the solution space275

The inversion problem that we attempt to solve is strongly ill-posed. This is be-276

cause the number of model parameters is much larger than the number of independent277

observations. Without access to additional observations, this limitation can be allevi-278

ated by either incorporating constraints (e.g., regularization) and/or by reducing the num-279

ber of model parameters. For the first alternative, we use average profiles calculated with280

the members of ERA5-ensemble models as starting point. In addition, we bound the so-281

lution space to the region delimited by profiles that are a multiple of standard deviations282

obtained from the same ensembles. The standard deviations obtained in this way dis-283

play variability with altitude, reflecting the better availability of information to constrain284

these models at lower altitudes. Similarly, the standard deviations for temperature are285

small compared to those of winds, reflecting also the more accessible measurements of286

this property in the atmosphere.287

Reducing the number of standard deviations to set the limits of the solution space288

has the risk of excluding solutions that explain best the infrasound data. On the other289

hand, extending the dimensions of the solution space increases the number and diver-290

sity of atmospheric models that can explain the observations. We find a reasonable trade-291
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off by testing different multiples of the standard deviations to set the size of the solu-292

tion space. We consider that the size of the solution space is reasonable when after run-293

ning the algorithm multiple times the final solutions resemble each other and all explain294

the observations within their uncertainties.295

Even after delimiting the boundaries of the solution space, the number of model296

parameters is still much larger compared to the number of observations. Thus, in order297

to further improve the constraint in the inversion, we simplify the ERA5-ensemble mod-298

els to 1D layered versions and assume time-invariance during the propagation of the in-299

frasound waves. Previous work suggests that these assumptions are reasonable within300

the distance range between Hukkakero and ARCES (e.g., Lalande et al., 2012; Assink301

et al., 2013).302

For the altitude of reflection we try two different initial values. First, we run three303

inversions using 39 km as initialization point. This is about the average reflection alti-304

tude estimated by Blixt et al. (2019) for the extended dataset of explosions. After that,305

we run another three inversions moving the initialization point to 38 km. The purpose306

of trying different initial altitudes is to verify that the final solution converges toward307

similar values independently of the initialization point. In both cases, the solution space308

is bound at ±1 km from the initial reflection altitude.309

4 Inversion algorithm310

The optimization of equation 1 requires a non-linear solver. The algorithm selected311

here is a simplified version of the heuristic solver described in Vera Rodriguez (2019).312

This algorithm was designed to solve a similar problem in passive seismics, although in313

that case, the source locations were also an unknown and the observations to fit were314

waveforms. With the simplifications, the solver approaches more the logic behind par-315

ticle swarm optimization (PSO) (Shi & Eberhart, 1998), albeit with modified updating316

rules and contingencies to breakout from local minima.317

The search for the optimization point consists in guiding a group of particles (swarm)318

as they explore the solution space. The coordinates of each swarm particle at any iter-319

ation are given by tentative solutions that they explore. The next exploratory move of320

a swarm particle is influenced by two poles of attraction: one is the best solution ever321

explored by that particular swarm particle and the second is the best solution ever ex-322
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plored by any of the particles in the swarm. This intends to simulate the behavior of birds323

in their search for food sources, which is the original purpose of the PSO algorithm (Shi324

& Eberhart, 1998). The evaluation of what is a better solution is quantified by the cost325

function. This means in our application that ray tracing must be conducted at every it-326

eration for every particle of the swarm, which makes the solver computationally expen-327

sive. The updating rules used in Vera Rodriguez (2019) improve the rate of convergence328

by simulating more closely the process of iterative design (Nielsen, 1993) rather than bird329

swarms. Additionally, we implement the solver in parallel using a workstation with 24330

cores and a swarm of 96 particles. This means that, in every iteration, every core only331

needs to do ray tracing four times. Given the tight constraints imposed over the solu-332

tion space, this was considered sufficient to identify significant and consistent minima.333

Unconstrained inversions in contrast require larger swarms with their particles well-spread334

over the solution space.335

An important advantage of the heuristic solver is its flexibility, as it can optimize336

objective functions that are not differentiable, and permits to easily incorporate various337

types of constraints. The main disadvantage, on the other hand, is its computational cost,338

since the algorithm consists of an explicit exploration of the solution space, where suc-339

cess depends on a careful management of trade-offs.340

Apart from simplifying the solver to handle a smaller type-set of model parame-341

ters, two other modifications were introduced. The first of them is a smoothness con-342

straint. This constraint is applied over the temperature and wind profiles. The smooth-343

ing filter is a 79-point moving average, which is applied to the signals in two directions344

taking care of boundary effects by padding at the ends with the end members of the pro-345

files. Before smoothing, the profiles are resampled to a homogeneous rate computed as346

half of the smallest distance between layers. After smoothing, the profiles are interpo-347

lated back to the original altitude points. This constraint is applied to every new solu-348

tion to be explored by the swarm. It helps in stabilizing the ray tracing and also reduces349

the solution space, thus, adding robustness to the inversion process.350

The second modification refers to the rule to accept or reject a new update for the351

solutions to be explored by the swarm. In PSO and the solver proposed by Vera Rodriguez352

(2019), an update (∆m) is rejected and modified if it is larger than pre-specified, to some353

extent empirical, values vmax. In our modified version, vmax is given by the standard354
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deviations extracted from the ERA5-ensemble and the altitude bound. The update is355

then rejected and modified if the updated solution (mk−1+∆mk, where k is the iter-356

ation number) after smoothing is outside the limits given by the initial model and vmax
357

(i.e., m0 ± vmax). This is how we establish hard boundaries to the solution space.358

For all the other hyperparameters required to run the solver, we use the values re-359

ported in Vera Rodriguez (2019). The solutions obtained with this inversion setup are360

temperature and wind profiles that honour the variability with altitude of the uncertain-361

ties in the ERA5-ensemble. The solutions, including reflection altitude, are also consis-362

tent with the infrasound observations and their uncertainties.363

5 Application to a Hukkakero explosion364

We demonstrate the performance of the inversion using data from a blast on 24 Au-365

gust 2007 at around 11 am in Hukkakero. This example was selected at random within366

the catalogue of 598 explosions. Nevertheless, we observe that the inversion results are367

consistent with those from other explosions that we have also already inverted for (see368

complementary material). Figure 1 presents an example of initialization of the inversion369

for the selected example. The ERA5-ensemble for the time of the explosion is obtained370

via linear interpolation of the closest ensembles in time. The limits of the solution space371

for temperature and winds in this example are set as 5σ, where σ is a vector that con-372

tains the standard deviations extracted from the ERA5-ensemble. In the figure, it is vis-373

ible how the uncertainty bounds increase with altitude and are also wider for winds than374

for temperature.375

Figure 2 shows two examples of inversion results setting the limits of the solution376

space to 5σ. Each of the lines in the convergence plots (left panels in Figure 2) reflects377

the trajectory of a swarm particle as it finds better solutions during its exploration of378

the solution space. When the algorithm detects that the swarm is stuck in a local min-379

imum (i.e., when all the convergence curves come together and do not decrease after a380

number of iterations) a perturbation is introduced to spread the swarm again (see Vera Ro-381

driguez, 2019, for details). This is expressed in the convergence curves as spikes. If the382

breakout from the local minimum is successful the swarm continues moving. After two383

failures, the algorithm gives up. Therefore, the end of the convergence curves is often384

preceded by at least two spikes. An exception is if the algorithm finds a solution with385
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Figure 1. Example of inversion initialization. The initial model consists of temperature and

wind profiles, and reflection altitude (black lines). The solution space is bounded with a multiple

of the standard deviations of the initial model parameters (5σ in this example) and a limit man-

ually specified in the case of the reflection altitude (red shaded areas). The search is conducted

with a swarm of 96 particles whose initial position is determined by solutions (smoothed profiles)

selected at random within the limits of the solution space (grey lines).
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Table 1. Inversion results for six runs of the algorithm using 5σ to set the boundaries of the

solution space. The infrasound observations are θobs = 175.7 ± 0.5 deg, vapp = 337 ± 5 m/s and

T = 631 ± 1 s, and correspond to an explosion at Hukkakero from 24 August 2007 around 11 am.

The forecast of the observations obtained with the average ensemble model (i.e., initial solution)

is: θ
(0)
obs = 176.0 deg, vapp(0) = 329.1 m/s and T (0) = 627.2 s.

Run Iterations Cost Altitude θ
(f)
obs dθobs vapp(f) dvapp T (f) dT

(#) (#) (%) (km) (deg) (deg) (m
s ) (m

s ) (s) (s)

1 121 17 38.7 175.6 0.1 334.8 2.2 631.0 0.0

2 160 16 38.2 175.7 0.0 335.1 1.9 630.8 0.2

3 104 15 38.2 175.7 0.0 335.0 2.0 631.0 0.0

4 120 18 38.7 175.7 0.0 334.6 2.4 631.0 0.0

5 112 21 38.9 175.7 0.0 334.3 2.7 631.0 0.0

6 235 16 38.5 175.7 0.0 334.9 2.1 631.0 0.0

a lower cost than a pre-specified value without getting stuck, for example, as would be386

the case in a convex solution space. Given the tight constraints, the variations in ray tra-387

jectories between permissible models are allowed to be only significant enough as to ex-388

plain the infrasound observations (Figure 3).389

From testing the inversion with different limits of the solution space, we observed390

that using 5σ output models that reproduced the infrasound observations well within391

their uncertainty limits (Table 1). An illustration of the negative effects of increasing the392

bounds of the solution space is presented in Figure 4. In this Figure, inversion results393

setting the bounds to 10σ produced models that are more dissimilar between them and394

also with respect to the reference ensemble. On the other hand, convergence was achieved395

much quicker (often within 10 iterations) because of the larger number of solutions that396

could explain the observations. In contrast, reducing the bounds of the solution space397

increased the number of iterations because the number of solutions that explain the ob-398

servations becomes limited (see Table 1). In our tests, 5σ provided a good trade-off to399

obtain solutions that resemble each other and produced forecasts within the uncertainty400

limits of the observations.401
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Figure 2. Examples of inversion results. Each line on the left panels tracks the convergence

path of a swarm particle. The red dashed line marks the lowest misfit of any solution explored

by the swarm. A spike along the convergence lines signals an attempt to breakout from a local

minimum. The right panels are the corresponding zonal wind profiles and reflection altitudes

at each of the iterations represented in the left panels. Lighter grey colors correspond to earlier

iterations. The plots also show the initial solution (red solid lines), final solutions in each case

(red dashed lines), and the bounds of the solution space (red shaded areas). These examples

correspond to runs (a)#1 and (b)#6 in Table 1.
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Figure 3. (a) Top and (b) side views of (half)ray trajectories traced during an inversion run.

Red dashed lines are rays traced with the ten ERA-ensemble members. From lighter to darker

colors, the solid lines are rays traced with models at iterations 1, 41, 81 and 121 during run #1

(see Table 1) for one swarm particle.
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Figure 4. Comparison of ten inverted reflection altitudes together with (a) zonal and (b)

meridional wind profiles obtained when setting the limits of the solution space to 5σ (blue)

and 10σ (grey). Also plotted are the ten members of the ERA5-ensemble used to initialize the

inversion in all cases (red).
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In these inversion results obtained with bounds at 5σ, the reflection altitude re-402

mained stable at around 38.5 km (see Table 1). Convergence toward this altitude was403

independent of whether the initialization point was above or below. For example, the404

results presented in Figure 2 correspond to initialization points at 39 km and 38 km, and405

to runs #1 and # 6, respectively, in Table 1. Both cases converged at or near this al-406

titude of 38.5 km. Backazimuth and travel time were always better reproduced by the407

inverted models compared to trace velocity. This is likely related to the higher uncer-408

tainty in the estimations of trace velocity from the infrasound measurements in this dataset.409

Trace velocity in this example was underestimated by the ERA5-ensemble (see captions410

of Table 1). Thus, the updates introduced by the inversion produced ray trajectories with411

smaller inclination angles (see Figure 3). By favouring landing trajectories with smaller412

inclination angles rather than simply increasing temperature and winds at the bottom413

of the model, the updates maintained a trade off between increasing trace velocity with-414

out negatively affecting total travel time and honouring the smoothness constraint.415

Looking at the cross differences between all the inverted profiles and all the ensem-416

ble members (Figure 5), the average modifications to the ERA5-ensemble necessary to417

explain the infrasound observations are more significant for the wind components than418

for temperature. This is understandable, given the larger uncertainty bounds specified419

for the winds. Also, as a result of the variation of uncertainty with altitude, it is visi-420

ble that the average differences from the ERA5-ensemble are more significant above ∼30 km421

(see Figure 5d). Below this altitude the average deviations in inverted profiles from the422

ERA5-ensemble are within ±1.2 K and ±2.6 m/s, while above they lie within ±2.5 K423

and ±5.8 m/s. Another difference in the behavior of the average cross differences with424

respect to this altitude is their trend. In the case of temperature and zonal wind, below425

∼30 km the deviations from the ERA5-ensemble oscillate around zero. Above this al-426

titude the deviations define trends: positive deviations for zonal wind and negative de-427

viations for temperature. The inversion results for meridional winds suggests a positive428

bias in the ERA5-ensemble with an average around 1.9 m/s along most of the profiles429

(see Figure 5c and d). From ∼30 km, however, this bias shows continuous growth.430

Despite that systematic comparisons between lidar soundings and ECMWF prod-431

ucts have shown differences that are often larger than those displayed in our inversion432

results (Le Pichon et al., 2015; Hupe et al., 2019), the ERA5-ensemble models produced433

reasonable initial representations of infrasound propagation over different explosion-observations434
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Figure 5. Inverted models for the inversion runs presented in Table 1. Lighter gray colors are

models with larger cost. The model with the lowest cost has a thicker black line. Red dashed-

lines are the members of the ERA5-ensemble used to initialize the inversion in all cases. Simi-

larly, the horizontal, red dashed-lines represent the initial reflection altitudes (39 km and 38 km

for inversion runs #1–#3 and #4–#6, respectively). The thicker, solid red line is the ensemble

member that lies closest to the best inversion result. Panels (a), (b) and (c) display the model

parameters. Panel (d) shows the average of the cross differences between all inversion results and

all ensemble members for temperature (blue), zonal wind (orange) and meridional wind (yellow).
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in this region of north Scandinavia (see complementary material for additional inversion435

examples). This good representation is partly expected because most of the region where436

infrasound propagates in this data set falls within the part of the models where measure-437

ments are normally available for assimilation. Thus, more significant contributions from438

the proposed inversion can be expected when analyzing returns from higher atmospheric439

altitudes.440

6 Conclusions441

We have presented an inversion scheme where complete 1D atmospheric models (i.e.,442

temperature and wind components) can be updated with the use of infrasound obser-443

vations from known sources. Furthermore, for the Hukkakero dataset that we used to444

demonstrate the performance of the inversion, the altitude of reflection of the infrasound445

waves was also an unknown that was part of the inverted model parameters.446

The inverse problem is strongly ill-posed for which we had to simplify the atmo-447

spheric models to 1D, time-invariant versions. Furthermore, tight constraints were also448

necessary to reduce the dimensions of the solution space. We achieved this by bound-449

ing the solution space to the region around average atmospheric models obtained from450

ERA5-ensembles and by imposing smoothness in the solutions. Hence, the inverted/updated451

models explain the infrasound observations within their uncertainties and also lie in the452

vicinity of the ERA5-ensembles.453

The inverted models displayed larger variations with respect to the reference ERA5-454

ensembles at stratospheric altitudes. This is consistent with a limited amount of direct455

measurements available to constrain the ERA5-ensembles in this region of the atmosphere.456

In this regard, the infrasound data becomes a valuable source of information to, at the457

least, point out which ensemble members should be preferred for further modelling tasks.458

There are several lines to pursue in future work. For example, one possibility to459

modify the inversion is to weight the solutions explored by the swarm based on their prox-460

imity to a member of the ensemble. In this way, the distance between a solution and the461

ensemble could also be minimized. Another possibility is to incorporate additional phys-462

ical constraints into the model updates. This could be attained by explicitly honoring463

the relationship between wind and temperature within the algorithm.464
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In addition, a statistical assessment of the inversion method in the context of the465

corresponding model ensembles could be performed based on the full multi-year dataset466

of hundreds of Hukkakero explosions. Ideally, we would also prefer to confirm the inver-467

sion results using data from independent measurement technologies.468

Moreover, extended data assimilation experiments might be initiated, building on469

the approaches developed by Amezcua et al. (2020): we could exploit that the current470

inversion provides altitude-dependent, both wind components – and not only cross-winds471

as were assimilated in Amezcua et al. (2020).472

Such efforts are targeting as a long-term objective to let infrasound datasets con-473

tribute to numerical weather prediction models and an enhanced medium-range forecast-474

ing that takes further advantage of the predictive skills provided by a more reliable rep-475

resentation of stratospheric dynamics in models.476

Finally, another line of future work consists of extending the data input to the in-477

version process by including travel-time, backazimuth, and apparent velocity estimates478

related to the full stratospheric arrival wavetrain, and not only a single data point as-479

sociated with maximum array coherence. For higher-top models, we could also include480

mesospheric or lower thermospheric arrivals, hence both allowing layers at higher alti-481

tudes to be updated and also simultaneously improving the model constraints for lower482

altitudes.483
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. . . et al. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal589

Meteorological Society .590

Hersbach, H., Bell, B., Berrisford, P., Horányi, A., Muñoz Sabater, J., Nicolas, J.,591
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