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We present an inversion methodology where acoustic observations of infrasound waves are
used to update an atmospheric model. We sought a flexible parameterization that per-
mits to incorporate physical and numerical constraints without the need to reformulate the
inversion. On the other hand, the optimization conveys an explicit search over the solu-
tion space, making the solver computationally expensive. Nevertheless, through a parallel
implementation and the use of tight constraints we demonstrate that the methodology is
computationally tractable. Constraints to the solution space are derived from the spread
(variance) of ERA5 ensemble reanalysis members, which summarize the best current knowl-
edge of the atmosphere from assimilated measurements and physical models. Similarly, the
initial model temperature and winds for the inversion are chosen to be the average of these
parameters in the ensemble members. The performance of the inversion is demonstrated with
the application to infrasound observations from an explosion generated by the destruction
of ammunition at Hukkakero, Finland. The acoustic signals are recorded at an array station
located at 178 km range, which is within the classical shadow zone distance. The observed
returns are assumed to come from stratospheric reflections. Thus, the reflection altitude is
also an inverted parameter.
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I. INTRODUCTION

This work considers the problem of estimating an
updated atmospheric model to become consistent with a
set of infrasound observations, and the associated prob-
lem of identifying the member(s) from an atmospheric re-
analysis model ensemble that lie closer to the infrasound-
consistent, updated model.

Atmospheric reanalysis models are the result of the
assimilation of direct and indirect measurements of differ-
ent properties of the atmosphere (e.g., Kazutoshi et al.,
2007; Parker, 2016; Uppala et al., 2005). For exam-
ple, direct measurements of atmospheric winds and tem-
perature are provided by radiosondes up to altitudes of
around 30 km. Satellites, on the other hand, provide
measurements from which estimations of temperature
can be obtained up to altitudes of ∼50 km (Lee et al.,
2019).

A better representation of the upper stratosphere
in models, especially for winds, can contribute to an
enhanced numerical weather prediction on weekly to
monthly timescales, especially during winter (see e.g.,
Domeisen et al., 2020a,b, and the references therein).
To this end, efforts are made to adapt and expand at-
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mospheric probing infrastructures and technologies to
provide additional measurements on the dynamics of
the stratosphere (e.g., Blanc et al., 2018, 2019; Khaykin
et al., 2020; Tan et al., 2008).

Over the last decade, there have been significant
improvements in global data assimilation capabilities of
the lower, middle, and upper atmosphere (Drob, 2019).
General circulation models (GCMs) have been progres-
sively extended to cover the whole stratosphere to better
capture stratospheric-tropospheric interactions and im-
prove forecast skill scores (Charlton-Perez et al., 2013;
Siskind and Drob, 2014). However, the mean state
and the variability described by Numerical Weather Pre-
diction (NWP) models, such as those distributed by
the European Centre for Medium-Range Weather Fore-
casts (ECMWF), are subject to inaccuracies in both cur-
rent operational analyses and reanalyses in the altitude
range where assimilated observations become sparser
(i.e., above 30 km altitude).

Within the Copernicus Climate Change Service
(C3S), ECMWF is producing the ERA5 reanalysis, which
embodies a detailed record of the global atmosphere.
This new reanalysis, based on the Integrated Forecasting
System (IFS) Cy41r2, benefits from a decade of develop-
ments in model physics, core dynamics and data assim-
ilation. A gain in forecast skills has been shown (Hers-
bach et al., 2020), allowing an enhanced description of the
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evolution of weather systems in the troposphere. ERA5
also provides analyses with better global-mean tempera-
tures in the uppermost troposphere and stratosphere, al-
though it still suffers from temperature uncertainty and
bias (Simmons et al., 2020).

There is a current interest from the NWP commu-
nity to validate model specifications at stratospheric al-
titudes using independent observations. This includes
satellite radiance and additional high-resolution measure-
ments (gravity waves and momentum flux) that are cur-
rently not resolved in gravity wave model parameteri-
zation schemes (e.g., Charlton-Perez et al., 2013). Given
the importance of model validation in the middle and up-
per atmosphere regions, recent studies focused on com-
parisons between ECMWF products with independent
observations such as long-duration balloon flights (e.g.,
Podglajen et al., 2014). Wind radiometer and lidar in-
struments were also used to evaluate the accuracy of
NWP models and data-constrained assimilation systems
(e.g., Ehard et al., 2017; Le Pichon et al., 2015). The de-
velopment of innovative high-resolution prototype sound-
ing systems providing in near-real time wind and temper-
ature observations from the ground to the mesosphere
and lower-thermosphere (MLT) has stimulated the con-
struction of multi-technology observational platforms de-
tailing the dynamics of the middle atmosphere and inter-
actions between atmospheric layers with unprecedented
resolution (Blanc et al., 2018).

Infrasound waves provide complementary informa-
tion to characterize the middle atmosphere. This is par-
ticularly valuable above 30 km altitude where few other
currently available technologies provide direct measure-
ments, especially for the dynamics (see e.g., Le Pichon
et al., 2019, for a review). As infrasonic waves propagate
into the middle atmosphere, small-scale features of the
vertical structure of the atmosphere can also be inferred
from the characteristics of measured wave parameters
(Assink et al., 2019; Chunchuzov and Kulichkov, 2019).
Infrasound signals are generated by natural phenomena
such as microbaroms, volcanoes and meteorites, as well
as by human-activities such as explosions in mines or
nuclear tests. The infrasound waves travel along waveg-
uides in the atmosphere, which are formed by vertical
variations in wind and temperature. Therefore, similar to
seismic waves traveling through the solid earth, the prop-
erties of the medium of propagation get encoded along
the path of propagation and amplitude of the infrasound
waves. Infrasonic signals propagating in stratospheric
waveguides are typically refracted or reflected from al-
titudes near the stratopause where direct measurements
are difficult and overly sparse, especially for winds. The
sensitivity of the propagation effects to the atmospheric
structure near the turning height makes infrasound anal-
ysis promising for characterizing this region of the atmo-
sphere.

Through the tool of inverse theory, it is thus feasible
to estimate the characteristics of the medium of propaga-
tion that explain a set of observations of infrasound data.
Such is the effort that has been made by different groups

working with infrasound observations around the world
(see Assink et al., 2019, for a review). For example, (Drob
et al., 2010) proposed the parameterization of the adia-
batic sound speed and wind profiles in 1D atmospheric
models in terms of basis functions extracted from the sin-
gular value decomposition (SVD) of a population of his-
torical profiles for the area of interest. In this way, the
solution space was reduced to the estimation of scalar co-
efficients that multiplied by the basis functions produced
the atmospheric profiles that explained the infrasound
observations. Similar approaches were then followed by
Lalande et al. (2012) and by Assink et al. (2013). Ar-
rowsmith et al. (2013) and Blom and Marcillo (2017)
also investigated the problem from the perspective of an
unknown source location, which is a common challenge
when working with infrasonic observables.

Model simplification is generally required when
working with infrasound observables to estimate atmo-
spheric model updates. The reason is that the number of
independent observations is normally much smaller than
the number of model parameters to update, which makes
the inverse problem strongly ill-posed. Alternatively, the
size of the solution space can be reduced by imposing
constraints (e.g., Vera Rodriguez et al., 2012; Vera Ro-
driguez and Kazemi, 2016). In fact, the parameterization
proposed by Drob et al. (2010) bounds the solution space
to those models that are a linear combination of the cho-
sen basis functions. This type of constraint preserves the
most significant statistical properties of the atmosphere
within the time span of the population of profiles used in
the SVD, although it can be limiting or of little help in
regions and/or time periods with dynamic atmospheric
conditions.

Previous efforts to solve the inversion have re-
sorted to parameterizations that follow the classical least-
squares formalism, either based on Fréchet derivatives
(Lalande et al., 2012) or with a Bayesian formulation
(Assink et al., 2013). These attempts introduced ad-
ditional model simplifications, such as fixing some of
the profiles during the inversion (e.g., adiabatic sound
speed), and/or inverting only for the upper atmospheric
layers of the models.

In the current work, we consider a more general rep-
resentation of the problem, in which the inversion is
achieved via a solver of the heuristic type. The objec-
tive is to minimize a cost function, where the cost can
be estimated either via least-squares or any other ad hoc
metric. This offers flexibility not only to select conve-
nient metrics to assess the merit of a solution, but also
to easily incorporate different types of constraints with-
out the need to reformulate the optimization, for exam-
ple, by recalculating partial derivatives. In fact, the cost
function does not need to be differentiable as required in
classical methods using least-squares minimization. To
alleviate the ill-posedness of the problem, we bound the
temperature and wind profile solution space to a region in
the vicinity of the members of ERA5 ensemble reanalysis
models (from now on ERA5-ensembles, Hersbach et al.,
2019; Hersbach and Dee, 2016). Then, we solve the opti-
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mization using a heuristic-learning algorithm previously
developed to solve a similar inversion problem in pas-
sive seismics (Vera Rodriguez, 2019). In this way, we
not only estimate an updated model consistent with our
infrasound observations that is useful on its own, but
also identify the members of the ERA5-ensemble that lie
closer to it. These members should then be preferred in
further uses of the ensembles or to calibrate the prepa-
ration of the ensembles themselves. The performance of
the method is demonstrated using observations of infra-
sound waves produced by regular explosions at a site in
Finland (Gibbons et al., 2015, 2019).

Recently, Vanderbecken et al. (2020) also looked at
the problem of identifying members from ensemble mod-
els that were more likely representative of the atmo-
spheric state based on their consistency with infrasound
observations. The approach was applied to infrasound
signals generated by the Mount Etna volcano. In this
case, backazimuth and trace velocity observations were
input to a Bayesian algorithm, which assigned a likeli-
hood to each of the ensemble members. Different from
the work presented here, updating the input atmospheric
models was not within the scope of that study.

Also recently, Amezcua et al. (2020) performed an
off-line data assimilation experiment where an Ensemble
Kalman filter was applied to update the representation of
cross-wind estimations into ERA5-ensembles. The cross-
winds were estimated based on the measured travel-time
and backazimuth deviation of infrasound arrivals from
598 explosions and an analytical formula (Blixt et al.,
2019, see Section II in this article for further descriptions
and references regarding this explosion dataset.). In this
case, a single value of cross-wind was assimilated to up-
date a particular model. This limits the constraint that
is attainable with the infrasound information. Therefore,
in this work we opt to use the three primary observables
derived from the infrasound data (i.e., backazimuth, trace
velocity and travel time).

In short, the contributions of this work can be sum-
marized as: inverting for atmospheric wind and tempera-
ture profiles without restricting the solution space to at-
mospheric states that are linear combinations of previous
states. Instead, we constrain the inversion by bounding
the solution space with uncertainties that summarize the
current atmospheric knowledge from direct and indirect
measurements, and physical models. As a result of the
inversion setting, our results can be directly related to
the ensemble models used to bound the solution space,
so that, the members of the ensemble that are more con-
sistent with the infrasound observations can be identified.

We start the description in the following section
by introducing the infrasound dataset and atmospheric
models used to test the inversion. Thereafter, the pa-
rameterization of the problem is described together with
the strategies followed to bound the solution space and
achieve the optimization. Finally, we present detailed re-
sults of the inversion applied to an explosion from the real
dataset, followed by our conclusions and future directions

of work. Additional example results are also provided as
complementary information.

II. THE HUKKAKERO EXPLOSION DATASET AND THE

ATMOSPHERIC MODEL ENSEMBLES

The Hukkakero dataset consists of a series of explo-
sions that happen regularly during August and Septem-
ber at the site of Hukkakero in Finland (67.94◦ N, 25.84◦

E) (Gibbons et al., 2007; Liszka and Kvaerna, 2008).
Both seismic and infrasound waves generated by the
blasts are regularly detected at the array station ARCES
(69.53◦ N, 25.51◦ E) located in northern Norway. Gib-
bons et al. (2015, 2019) described details of the dataset,
including the processing conducted to extract the pa-
rameters arrival back azimuth (θobs) and trace velocity
(vapp). Apart from θobs and vapp, total propagation time
(T ) is also an observation. Therefore, any one explosion
provides with three points to fit during an inversion pro-
cess (i.e., under the knowledge of the source position).

Blixt et al. (2019) estimated the uncertainty of the
backazimuths extracted from this dataset to be in the
range of 1.0◦ to 1.5◦. Following a similar analysis for
the apparent velocity yields uncertainties on the order
of 10 m/s. Taking into account that these uncertainties
are approximations obtained with an empirical analysis
(see Blixt et al., 2019, Section 2C for details), we con-
sider more conservative values of 0.5◦ and 5 m/s for the
inversion process. Our array processing output and co-
herence time series are calculated over sliding 10 s win-
dows, stepped with 1 s increments (an example from this
dataset is presented in Figure 4 of Blixt et al., 2019).
We use the estimated trace velocity and backazimuth at
the coherence peak, and a tolerance of 1 s is also set in
the code when fitting the observations – hence reflecting
a first order assumption of the temporal uncertainty of
the selected point in the array output parameter series.
However, we notice that this premise is rather simplis-
tic because the coherence curve can build up and fall off
slowly around its peak depending on, e.g., the signal-to-
noise ratio, how impulsive and energetic the most coher-
ent segment of the wavetrain is, the length of the sliding
time window, as well as on the dominating wave period
within the analyzed frequency pass-band. Although the
algorithm performed well in our tests requesting these
levels of fit with the observations, other datasets may
require less stringent fitting criteria.

As noted in Blixt et al. (2019), ARCES is lo-
cated within the classical shadow-zone distance from
Hukkakero, suggesting that the arrivals detected at the
station correspond to stratospheric reflections rather
than refracted waves (e.g., Chunchuzov et al., 2015a,b).
Using ray tracing for a fan of shooting elevation an-
gles through ERA-interim atmospheric reanalysis mod-
els, Blixt et al. (2019) conducted a grid search to estimate
the reflection-altitudes that minimized the difference be-
tween modeled and observed propagation times for 598
Hukkakero explosions. This exercise assumed that the
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atmospheric models represented the infrasound propaga-
tion reasonably well.

Since the objective of the inversion developed in the
current work is to update the atmospheric models, the
reflection altitude that explains an observed propagation
time must also be updated in a self-consistent manner.
This is achieved by including this altitude as part of the
inverted model parameters.

The atmospheric models to update with the inver-
sion are extracted from the ERA5 ensemble product. The
ERA5-ensembles are the latest type of reanalysis models
generated by the ECMWF. This product has global cov-
erage and assimilates observations from satellites, land
stations, buoys, radiosondes, aircrafts and ships. The
ensemble models are available at 3-hour intervals with
a 63 km horizontal resolution in 137 vertical levels from
surface up to an altitude of 0.01 hPa, i.e., around 80 km
(Hersbach and Dee, 2016). The ERA5 product also in-
cludes single high-resolution realizations at temporal and
horizontal resolutions of 1 hour and 31 km, respectively.
In this work, however, we only use the ensembles so
that we can derive uncertainties from the members. The
ECMWF has made publicly available ERA5-ensembles
from 1979 up to now with a delay of within 5 days from
real time (Copernicus Climate Change Service (C3S),
2017).

In the context of infrasound studies using ensem-
ble reanalysis models, Smets et al. (2015) studied prob-
abilistic infrasound propagation by performing wave-
propagation simulations using the ensemble members of
the ECMWF Ensemble Data Assimilation (EDA) system
analysis product. Averbuch et al. (2020) also applied the
EDA ensemble model product in atmospheric infrasound
propagation modelling when analyzing how to estimate
depth and strength of submerged explosion sources from
infrasound data.

III. PARAMETERIZATION OF THE PROBLEM

The cost function C to optimize is represented as

C = O(m,d) , (1)

where m and d are vectors that contain all the model
parameters and observations, respectively, and O is an
operator. The representation in 1 is general on purpose,
as this gives flexibility to incorporate different types of
variable manipulations and operations within O. The
operator O consists of:

1. Using the model parameters to produce a forecast
of the observations.

2. Evaluating the cost of the model parameters by
comparing the forecast with the observations using
a metric of choice.

The elements of vector m in our problem are the altitude
of reflection of the infrasound arrival, and the profiles of
temperature, zonal (W-E) and meridional (S-N) winds of
an atmospheric model (vertical wind is neglected). The

vector d, on the other hand, contains the observations of
θobs, v

app and T of a corresponding Hukkakero explosion.
As the source and receiver positions are fixed, this infor-
mation is hard-coded inside O. Consequently, the first
step in our operator O consists of using ray tracing with
m to produce a forecast of the elements of d.

We compute eigenray trajectories, in this case re-
flection from a specified altitude joining Hukkakero with
ARCES, using GeoAc (Blom and Waxler, 2012, 2017).
More specifically, we use the ray tracer GeoAc3D, which
considers wave propagation in a cartesian frame where
the medium is moving and without resorting to the effec-
tive sound speed approximation. Then, we use the geom-
etry from the eigenrays together with the model param-
eters m to estimate the forecast of the observations (i.e.,

θ
(f)
obs, v

app(f) and T (f), where the superscript (f) refers
to a forecast of the variable). Eigenrays are computed
setting an error tolerance of 0.5◦ in azimuthal direction.
This tolerance is within the uncertainty in the infrasound
observations and results in rays landing within 0.6 km
from the center of the ARCES array, which has an ap-
proximate radius of 1.5 km (Gibbons et al., 2015). No-
tice that the actual ray tracing operates over adiabatic
sound speed rather than temperature. In this work, all
the model perturbations are performed over the tempera-
ture profiles and then fed into GeoAc3D, which internally
converts them into adiabatic sound speed.

For the second step, we use the following cost metric:

λ = K
W1E(θ) +W2

|vapp − vapp(f)|
vapp

+W3
|T − T (f)|

T
W1 +W2 +W3

,

(2)
where

E(θ) =

√(
sin θobs − sin θ

(f)
obs

)2
+
(

cos θobs − cos θ
(f)
obs

)2
2

.

(3)
Equation 2 is a weighted average, which facilitates a

ranking-by-priority for the fitting of the observations dur-
ing the inversion. For example, observations with larger
uncertainties can have smaller weights. Similarly, obser-
vations that reflect lower sensitivity to changes in the
model parameters can also have lower weights. In this
work, we use the weights W1 = 1, W2 = W3 = 3. The
smaller weight on the backazimuth is used because we
observed lower sensitivity in this variable with respect
to changes in the model parameters. The same behav-
ior was reported by Vanderbecken et al. (2020) in their
Bayesian inversion. Traveltime and trace velocity, on the
other hand, display a comparable level of sensitivity. We
observed that if their weights are not equal, the algorithm
often converges to solutions that fit only the variable with
larger weight within its uncertainty.

The purpose of the normalizations in the fractions in
the numerator of equation 2 are to remove scale differ-
ences, homogenize units, and to help ensure bounds in
the cost function in the approximate range of [0, ∼1),
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where the upper bound can be approached with either
a greater or a smaller number. Function E(θ) is defined
taking the same requirements into consideration and also
to avoid ambiguities when comparing angles. In particu-
lar, setting [0, ∼1) bounds in the cost function is critical
for the performance of the heuristic solver used for the
optimization (Vera Rodriguez, 2019).

As we discuss in the following section, the algo-
rithm is initialized with average profiles obtained from
the members of ERA5-ensemble models. The cost of
these initial atmospheric models is already small. There-
fore, we prefer absolute values over the more commonly
used squared differences to increase the cost of the initial
models. For the same objective, we introduce the hyper-
parameter K. Using a value of K = 60 we ensure an
initial cost closer to 1 in every inversion run.

A. Constraining the solution space

The inversion problem that we attempt to solve is
strongly ill-posed. This is because the number of model
parameters is much larger than the number of indepen-
dent observations. Without access to additional obser-
vations, this limitation can be alleviated by either in-
corporating constraints (e.g., regularization) and/or by
reducing the number of model parameters. For the first
alternative, we use average profiles calculated with the
members of ERA5-ensemble models as starting point. In
addition, we bound the solution space to the region de-
limited by profiles that are a multiple of standard devi-
ations obtained from the same ensembles. The standard
deviations obtained in this way display variability with
altitude, reflecting the better availability of information
to constrain these models at lower altitudes. Similarly,
the standard deviations for temperature are small com-
pared to those of winds. This reflects both the better
accessibility of measurements of this property in the at-
mosphere and its more stable nature (i.e., less variability)
compared to wind.

Reducing the number of standard deviations to set
the limits of the solution space has the risk of exclud-
ing solutions that best explain the infrasound data. On
the other hand, extending the dimensions of the solu-
tion space increases the number and diversity of atmo-
spheric models that can explain the observations. We
find a reasonable trade-off by testing different multiples
of the standard deviations to set the size of the solution
space. We consider that the size of the solution space
is reasonable when after running the algorithm multiple
times the final solutions resemble each other and all ex-
plain the observations within their uncertainties.

Even after delimiting the boundaries of the solution
space, the number of model parameters is still much
larger compared to the number of observations. Thus, in
order to further improve the constraint in the inversion,
we simplify the ERA5-ensemble models to 1D layered
versions and assume time-invariance during the propaga-
tion of the infrasound waves. Previous work suggests
that these assumptions are reasonable within the dis-

tance range between Hukkakero and ARCES (e.g., Assink
et al., 2013; Lalande et al., 2012).

For the altitude of reflection we try two different ini-
tial values. First, we run three inversions using 39 km as
initialization point. This is about the average reflection
altitude estimated by Blixt et al. (2019) for the extended
dataset of explosions. After that, we run another three
inversions moving the initialization point to 38 km. The
purpose of trying different initial altitudes is to verify
that the final solution converges toward similar values
independently of the initialization point. In both cases,
the solution space is bound at ±1 km from the initial
reflection altitude. This bound is determined by the dis-
tance to the position of the next closest interface in the
model, so that the perturbed interface (i.e., reflecting
altitude) never overlaps or moves beyond this following
interface. Furthermore, the initialization interface is se-
lected such that the final reflection altitude does not fall
at the boundary of the solution space, otherwise, the in-
version is reinitialized using the following interface.

There are two additional ways to improve inversion
constraint, not yet implemented, but that are of interest
to improve the performance of the method in the future.
The first of them consists of incorporating observations
from multiple phases of the wavetrain. As these phases
are reflected and refracted from different locations, the
lower altitude layers become better characterized. For
the current tests we include only the phase with the max-
imum coherence in the wavetrain. The other constraint
consists of acknowledging the relationship between wind
and temperature. This is a physical constraint with a
double benefit: on one hand, it would remove the current
potential in the method to choose nonphysical solutions,
and on the other, it would further simplify the solution
space.

IV. INVERSION ALGORITHM

The optimization of equation 1 requires a non-linear
solver. The algorithm selected here is a simplified ver-
sion of the heuristic solver described in Vera Rodriguez
(2019). This algorithm was designed to solve a similar
problem in passive seismics, although in that case, the
source locations were also an unknown and the obser-
vations to fit were waveforms (see also Vera Rodriguez,
2018; Vera Rodriguez and Le Calvez, 2018). With the
simplifications, the solver approaches more the logic be-
hind particle swarm optimization (PSO) (Shi and Eber-
hart, 1998), albeit with modified updating rules and con-
tingencies to breakout from local minima.

The search for the optimization point consists in
guiding a group of particles (swarm) as they explore the
solution space. The coordinates of each swarm particle
at any iteration are given by tentative solutions that they
explore. The next exploratory move of a swarm particle
is influenced by two poles of attraction: one is the best
solution ever explored by that particular swarm particle
and the second is the best solution ever explored by any
of the particles in the swarm. This intends to simulate
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the behavior of birds in their search for food sources,
which is the original purpose of the PSO algorithm (Shi
and Eberhart, 1998). The evaluation of what is a better
solution is quantified by the cost function. This means
in our application that ray tracing must be conducted
at every iteration for every particle of the swarm, which
makes the solver computationally expensive. The updat-
ing rules used in Vera Rodriguez (2019) improve the rate
of convergence by simulating more closely the process of
iterative design (Nielsen, 1993) rather than bird swarms.
Additionally, we implement the solver in parallel using a
workstation with 24 cores and a swarm of 96 particles.
This means that, in every iteration, every core only needs
to do ray tracing four times. Given the tight constraints
imposed over the solution space, this was considered suf-
ficient to identify significant and consistent minima. Un-
constrained inversions in contrast require larger swarms
with their particles well-spread over the solution space.

An important advantage of the heuristic solver is its
flexibility, as it can optimize objective functions that are
not differentiable, and permits to easily incorporate var-
ious types of constraints. The main disadvantage, on
the other hand, is its computational cost, since the algo-
rithm consists of an explicit exploration of the solution
space, where success depends on a careful management
of trade-offs.

Apart from simplifying the solver to handle a smaller
type-set of model parameters, two other modifications
were introduced. The first of them is a smoothness con-
straint. This constraint is applied over the temperature
and wind profiles. The smoothing filter is a 79-point mov-
ing average (extending an approximate distance length of
800 m), which is applied to the signals in two directions
taking care of boundary effects by padding at the ends
with the end members of the profiles. Before smooth-
ing, the profiles are resampled to a homogeneous rate
computed as half of the smallest distance between lay-
ers (∼ 10 m). After smoothing, the profiles are inter-
polated back to the original altitude points (Figure 1).
This constraint is applied to every new solution to be
explored by the swarm. It helps in stabilizing the ray
tracing and also reduces the solution space, thus, adding
robustness to the inversion process. The length of the
smoothing filter is selected by trial-and-error, but it is in-
fluenced by the constraint provided by the observations.
For instance, a larger number of observations to guide
the inversion allows the constraint of finer structures in
the model profiles, which then requires shorter smoothing
filters to stabilize the inversion.

The second modification refers to the rule to ac-
cept or reject a new update for the solutions to be ex-
plored by the swarm. In PSO and the solver proposed
by Vera Rodriguez (2019), an update (∆m) is rejected
and modified if it is larger than pre-specified, to some
extent empirical, values vmax. In our modified version,
vmax is given by the standard deviations extracted from
the ERA5-ensemble and the altitude bound. The up-
date is then rejected and modified if the updated solu-
tion (mk−1+∆mk, where k is the iteration number) after

FIG. 1. Example illustrating the effect of the smoothing con-

straint implemented within the inversion. The oscillatory be-

haviour of a proposed solution (dashed line) is introduced by

the pseudo-random logic of the algorithm. The smoothing

filter is meant to remove these oscillations to the extent that

the available observations constrain the finer structures in the

profiles (solid line). The red shaded regions denote the im-

posed boundaries of the solution space.

smoothing is outside the limits given by the initial model
and vmax (i.e., m0 ± vmax). This is how we establish
hard boundaries to the solution space (see red shaded
regions in Figure 1 for an example).

For all the other hyperparameters required to run
the solver, we use the values reported in Vera Rodriguez
(2019). The solutions obtained with this inversion setup
are temperature and wind profiles that honour the vari-
ability with altitude of the uncertainties in the ERA5-
ensemble. The solutions, including reflection altitude,
are also consistent with the infrasound observations and
their uncertainties.
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V. APPLICATION TO A HUKKAKERO EXPLOSION

We demonstrate the performance of the inversion us-
ing data from a blast on 24 August 2007 at around 11
am in Hukkakero. This example was selected at ran-
dom within the catalogue of 598 explosions. Neverthe-
less, we observe that the inversion results are consistent
with those from other explosions that we have also al-
ready analyzed (see complementary material). Figure 2
presents an example of initialization of the inversion for
the selected example. The ERA5-ensemble for the time
of the explosion is obtained via linear interpolation of the
closest ensembles in time. The limits of the solution space
for temperature and winds in this example are set as 5σ,
where σ is a vector that contains the standard deviations
extracted from the ERA5-ensemble. In the figure, it is
visible how the uncertainty bounds increase with altitude
and are also wider for winds than for temperature.

Figure 3 shows two examples of inversion results set-
ting the limits of the solution space to 5σ. Each of the
lines in the convergence plots (see Figure 3a and 3b) re-
flects the trajectory of a swarm particle as it finds bet-
ter solutions during its exploration of the solution space.
When the algorithm detects that the swarm is stuck in
a local minimum (i.e., when all the convergence curves
come together and do not decrease after a number of iter-
ations) a perturbation is introduced to spread the swarm
again (see Vera Rodriguez, 2019, for details). This is ex-
pressed in the convergence curves as spikes. If the break-
out from the local minimum is successful the swarm con-
tinues moving. After two failures, the algorithm gives
up. Therefore, the end of the convergence curves is of-
ten preceded by at least two spikes. An exception is if
the algorithm finds a solution with a lower cost than a
pre-specified value without getting stuck, for example,
as would be the case in a convex solution space. Given
the tight constraints, the variations in ray trajectories
between permissible models are allowed to be only sig-
nificant enough as to explain the infrasound observations
(Figure 4).

From testing the inversion with different limits of the
solution space, we observed that using 5σ output models
that reproduced the infrasound observations well within
their uncertainty limits (Table I). An illustration of the
negative effects of increasing the bounds of the solution
space is presented in Figure 5. In this Figure, inversion
results setting the bounds to 10σ produced models that
are more dissimilar between them and also with respect
to the reference ensemble. On the other hand, conver-
gence was achieved much more quickly (often within 10
iterations) because of the larger number of solutions that
could explain the observations. In contrast, reducing the
bounds of the solution space increased the number of
iterations because the number of solutions that explain
the observations becomes limited (see Table I). In our
tests, 5σ provided a good trade-off to obtain solutions
that resemble each other and produced forecasts within
the uncertainty limits of the observations.

In these inversion results obtained with bounds at
5σ, the reflection altitude remained stable at around

38.5 km (see Table I). Convergence toward this altitude
was independent of whether the initialization point was
above or below. For example, the results presented in
Figure 3 correspond to initialization points at 39 km and
38 km, and to runs #1 and # 6, respectively, in Table I.
Both cases converged at or near this altitude of 38.5 km.
Backazimuth and travel time were always better repro-
duced by the inverted models compared to trace velocity.
This is likely related to the higher uncertainty in the es-
timations of trace velocity from the infrasound measure-
ments in this dataset. Trace velocity in this example was
underestimated by the ERA5-ensemble (see captions of
Table I). Thus, the updates introduced by the inversion
produced ray trajectories with smaller inclination angles
(see Figure 4). By favouring landing trajectories with
smaller inclination angles rather than simply increasing
temperature and winds at the bottom of the model, the
updates maintained a trade off between increasing trace
velocity without negatively affecting total travel time and
honouring the smoothness constraint.

Looking at the cross differences between all the in-
verted profiles and all the ensemble members (Figure 6),
the average modifications to the ERA5-ensemble nec-
essary to explain the infrasound observations are more
significant for the wind components than for adiabatic
sound speed (i.e., temperature). This is understand-
able, given the larger uncertainty bounds specified for
the winds. Also, as a result of the variation of un-
certainty with altitude, it is visible that the average
differences from the ERA5-ensemble are more signifi-
cant above ∼30 km (see Figure 6d). Below this alti-
tude the average deviations in inverted profiles from the
ERA5-ensemble are within ±0.9 m/s (i.e., ±1.2 K) and
±2.6 m/s, while above they lie within ±1.7 m/s (i.e.,
±2.5 K) and ±5.8 m/s. Another difference in the behav-
ior of the average cross differences with respect to this
altitude is their trend. In the case of adiabatic sound
speed (i.e., temperature) and zonal wind, below ∼30 km
the deviations from the ERA5-ensemble oscillate around
zero. Above this altitude the deviations define trends:
positive deviations for zonal wind and negative devia-
tions for adiabatic sound speed. The inversion results for
meridional winds suggests a positive bias in the ERA5-
ensemble with an average around 1.9 m/s along most of
the profiles (see Figure 6c and d). From ∼30 km, how-
ever, this bias shows continuous growth.

Figure 6 also highlights that the best inversion re-
sult for meridional wind (black thicker line) is not within
the space spanned by the ERA5-ensemble; hence, the
ensemble member that lies closer (red thicker line) plots
consistently on the side of the best inversion result. For
temperature and zonal wind profiles, the best inversion
result oscillates more around the span of the ensemble
and its closest member, although, as mentioned above,
the deviations define trends at altitudes closer to the
stratosphere.

Despite that systematic comparisons between lidar
soundings and ECMWF products have shown differences
that are often larger than those displayed in our inver-
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FIG. 2. Example of inversion initialization. The initial model consists of temperature and wind profiles, and reflection altitude

(black lines). The solution space is bounded with a multiple of the standard deviations of the initial model parameters (5σ in

this example) and a limit manually specified in the case of the reflection altitude (red shaded areas). The search is conducted

with a swarm of 96 particles whose initial position is determined by solutions (smoothed profiles) selected at random within

the limits of the solution space (grey lines).

sion results (Hupe et al., 2019; Le Pichon et al., 2015),
the ERA5-ensemble models produced reasonable initial
representations of infrasound propagation over different
explosion-observations in this region of north Scandi-
navia1. This good representation is partly expected be-
cause most of the region where infrasound propagates in
this data set falls within the part of the models where
measurements are normally available for assimilation.
Thus, more significant corrections derived from the pro-
posed inversion can be expected when analyzing returns
from higher atmospheric altitudes.

VI. CONCLUSIONS

We have presented an inversion scheme where com-
plete 1D atmospheric models (i.e., temperature and wind
components) can be updated with the use of infrasound
observations from known sources. Furthermore, for the
Hukkakero dataset that we used to demonstrate the per-
formance of the inversion, the altitude of reflection of the
infrasound waves was also an unknown that was part of
the inverted model parameters.

The inverse problem is strongly ill-posed for which
we had to simplify the atmospheric models to 1D, time-
invariant versions. Furthermore, tight constraints were
also necessary to reduce the dimensions of the solution
space. We achieved this by bounding the solution space
to the region around average atmospheric models ob-
tained from ERA5-ensembles and by imposing smooth-
ness in the solutions. Hence, the inverted/updated mod-
els explain the infrasound observations within their un-
certainties and also lie in the vicinity of the ERA5-
ensembles.

The inverted models displayed larger variations with
respect to the reference ERA5-ensembles at stratospheric
altitudes. This is consistent with a limited amount of
direct measurements available to constrain the ERA5-
ensembles in this region of the atmosphere. In this re-
gard, the infrasound data becomes a valuable source of
information to, at the least, point out which ensemble
members should be preferred for further modelling tasks.

There are several lines to pursue in future work. For
example, one possibility to modify the inversion is to
weight the solutions explored by the swarm based on their
proximity to a member of the ensemble. In this way, the
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FIG. 3. Examples of inversion results. Each line on panels (a) and (b) tracks the convergence path of a swarm particle. The

red dashed line marks the lowest misfit of any solution explored by the swarm. A spike along the convergence lines signals an

attempt to breakout from a local minimum. Panel (c) shows the corresponding zonal wind profiles and reflection altitudes at

each of the iterations represented in panel (a). Lighter grey colors correspond to earlier iterations. The plot also shows the

initial solution (red solid line), final solution (red dashed line), and the bounds of the solution space (red shaded areas). These

examples correspond to runs #1 (a) and (c), and #6 (b) in Table I.

distance between a solution and the ensemble could also
be minimized. Another possibility is to incorporate addi-
tional physical constraints into the model updates. This
could be attained by explicitly honoring the relationship
between wind and temperature within the algorithm.

In addition, a statistical assessment of the inversion
method in the context of the corresponding model en-
sembles could be performed based on the full multi-year
dataset of hundreds of Hukkakero explosions. Ideally,

we would also prefer to confirm the inversion results us-
ing data from independent measurement technologies. It
would also be interesting to compare these results to in-
versions found using techniques relying on orthogonal ba-
sis functions parameterized from previously determined
profiles.

Moreover, extended data assimilation experiments
might be initiated, building on the approaches devel-
oped by Amezcua et al. (2020): we could exploit that
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TABLE I. Inversion results for six runs of the algorithm using 5σ to set the boundaries of the solution space. The infrasound

observations are θobs = 175.7 ± 0.5 deg, vapp = 337 ± 5 m/s and T = 631 ± 1 s, and correspond to an explosion at Hukkakero

from 24 August 2007 around 11 am. The forecast of the observations obtained with the average ensemble model (i.e., initial

solution) is: θ
(0)
obs = 176.0 deg, vapp(0) = 329.1 m/s and T (0) = 627.2 s.

Run Iterations Cost Altitude θ
(f)
obs dθobs vapp(f) dvapp T (f) dT

(#) (#) (%) (km) (deg) (deg) (m
s

) (m
s

) (s) (s)

1 121 17 38.7 175.6 0.1 334.8 2.2 631.0 0.0

2 160 16 38.2 175.7 0.0 335.1 1.9 630.8 0.2

3 104 15 38.2 175.7 0.0 335.0 2.0 631.0 0.0

4 120 18 38.7 175.7 0.0 334.6 2.4 631.0 0.0

5 112 21 38.9 175.7 0.0 334.3 2.7 631.0 0.0

6 235 16 38.5 175.7 0.0 334.9 2.1 631.0 0.0

the current inversion provides altitude-dependent, both
wind components – and not only cross-winds as were as-
similated in Amezcua et al. (2020).

Such efforts are targeting as a long-term objective to
let infrasound datasets contribute to numerical weather
prediction models and an enhanced medium-range fore-
casting that takes further advantage of the predictive
skills provided by a more reliable representation of strato-
spheric dynamics in models.

Finally, another line of future work consists of ex-
tending the data input to the inversion process by in-
cluding travel-time, backazimuth, and apparent velocity
estimates related to the full stratospheric arrival wave-
train, and not only a single data point associated with
maximum array coherence. For higher-top models, we
could also include mesospheric or lower thermospheric
arrivals, hence both allowing layers at higher altitudes to
be updated and also simultaneously improving the model
constraints for lower altitudes.
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