References
Acosta, C. A., & Perry, S. A. (2001). Impact of hydropattern disturbance on crayfish population dynamics in the seasonal wetlands of Everglades National Park, USA. Aquatic Conservation: Marine and Freshwater Ecosystems, 11 (1), 45-57. https://doi.org/10.1002/aqc.426
Anderson, T. L., Heemeyer, J. L., Peterman, W. E., Everson, M. J., Ousterhout, B. H., Drake, D. L., & Semlitsch, R. D. (2015). Automated analysis of temperature variance to determine inundation state of wetlands. Wetlands Ecology and Management, 23 (6), 1039-1047. https://doi.org/10.1007/s11273-015-9439-x
Arismendi, I., Dunham, J. B., Heck, M., Schultz, L., & Hockman-Wert, D. (2017). A statistical method to predict flow permanence in dryland streams from time series of stream temperature. Water, 9 (12), 1-13. https://doi.org/10.3390/w9120946
Bourgeau-Chavez, L. L., Smith, K. B., Brunzell, S. M., Kasischke, E. S., Romanowicz, E. A., & Richardson, C. J. (2005). Remote monitoring of regional inundation patterns and hydroperiod in the Greater Everglades using Syntheic Aperture Radar. Wetlands, 25 (176). https://doi.org/10.1672/0277-5212(2005)025[0176:RMORIP]2.0.CO;2
Brooks, R. T. (2004). Weather-related effects on woodland vernal pool hydrology and hydroperiod. Wetlands, 24 (1), 104-114. https://doi.org/10.1672/0277-5212(2004)024[0104:WEOWVP]2.0.CO;2
Chandler, H. C. (2017). Drying rates of ephemeral wetlands: implications for breeding amphibians. Wetlands, 37 (3), 545-557. https://doi.org/10.1007/s13157-017-0889-1
De Meester, L., Declerck, S., Stoks, R., Louette, G., Van De Meutter, F., De Bie, T., et al. (2005). Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation: Marine and Freshwater Ecosystems, 15 (6), 715-725. https://doi.org/10.1002/aqc.748
DeVries, B., Huang, C., Lang, M. W., Jones, J. W., Huang, W., Creed, I. F., & Carroll, M. L. (2017). Automated quantification of surface water inundation in wetlands using optical satellite imagery. Remote Sensing, 9 (8), 807. https://doi.org/10.3390/rs9080807
Díaz-Delgado, R., Aragonés, D., Afán, I., & Bustamante, J. (2016). Long-term monitoring of the flooding regime and hydroperiod of Doñana marshes with Landsat time series (1974–2014). Remote Sensing, 8 (9), 775. https://doi.org/10.3390/rs8090775
Florencio, M., Fernández-Zamudio, R., Lozano, M., & Díaz-Paniagua, C. (2020). Interannual variation in filling season affects zooplankton diversity in Mediterranean temporary ponds. Hydrobiologia, 847 , 1195-1205. https://doi.org/10.1007/s10750-019-04163-3
Goodrich, D. C., Unkrich, C. L., Keefer, T. O., Nichols, M. H., Stone, J. J., Levick, L. R., & Scott, R. L. (2008). Event to multidecadal persistence in rainfall and runoff in southeast Arizona. Water Resources Research, 44 (5). https://doi.org/10.1029/2007wr006222
Halabisky, M., Babcock, C., & Moskal, L. M. (2018). Harnessing the temporal dimension to improve object-based image analysis classification of wetlands. Remote Sensing, 10 (9), 1467. https://doi.org/10.3390/rs10091467
Hong, S.-H., Wdowinski, S., Kim, S.-W., & Won, J.-S. (2010). Multi-temporal monitoring of wetland water levels in the Florida Everglades using interferometric synthetic aperture radar (InSAR).Remote Sensing of Environment, 114 (11), 2436-2447. https://doi.org/10.1016/j.rse.2010.05.019
Irons, J. R., Dwyer, J. L., & Barsi, J. A. (2012). The next Landsat satellite: the Landsat data continuity mission. Remote Sensing of Environment, 122 , 11-21. https://doi.org/10.1016/j.rse.2011.08.026
Jaeger, K. L., & Olden, J. D. (2012). Electrical resistance sensor arrays as a means to quantify longitudinal connectivity of rivers.River Research and Applications, 28 (10), 1843-1852. https://doi.org/10.1002/rra.1554
Johnson, J. R., Ryan, M. E., Micheletti, S. J., & Shaffer, H. B. (2013). Short pond hydroperiod decreases fitness of nonnative hybrid salamanders in California. Animal Conservation, 16 (5), 556-565. https://doi.org/10.1111/acv.12029
Kneitel, J. M. (2014). Inundation timing, more than duration, affects the community structure of California vernal pool mesocosms.Hydrobiologia, 732 (1), 71-83. https://doi.org/10.1007/s10750-014-1845-1
Lefebvre, G., Davranche, A., Willm, L., Campagna, J., Redmond, L., Merle, C., et al. (2019). Introducing WIW for detecting the presence of water in wetlands with Landsat and Sentinel satellites. Remote Sensing, 11 (19). https://doi.org/10.3390/rs11192210
Levy, J. S., & Johnson, J. T. E. (2021). Remote soil moisture measurement from drone-borne reflectance spectroscopy: applications to hydroperiod measurement in desert playas. Remote Sensing, 13 (5). https://doi.org/10.3390/rs13051035
Mims, M. C., Moore, C. E., & Shadle, E. J. (2020). Threats to aquatic taxa in an arid landscape: Knowledge gaps and areas of understanding for amphibians of the American Southwest. WIREs Water, 7 (4), e1449. https://doi.org/10.1002/wat2.1449
Moore, C. E., Helmann, J. S., Chen, Y., St. Amour, S. M., Hallmark, M. A., Hughes, L. E., et al. (2020). Anuran Traits of the United States (ATraiU): a database for anuran traits-based conservation, management, and research. Ecology, n/a (n/a), e03261. https://doi.org/10.1002/ecy.3261
Murray-Hudson, M., Wolski, P., Cassidy, L., Brown, M. T., Thito, K., Kashe, K., & Mosimanyana, E. (2015). Remote sensing-derived hydroperiod as a predictor of floodplain vegetation composition. Wetlands Ecology and Management, 23 (4), 603-616. https://doi.org/10.1007/s11273-014-9340-z
Ozesmi, S. L., & Bauer, M. E. (2002). Satellite remote sensing of wetlands. Wetlands Ecology and Management, 10 (5), 381-402. https://doi.org/10.1023/A:1020908432489
Parsley, M. B., Torres, M. L., Banerjee, S. M., Tobias, Z. J. C., Goldberg, C. S., Murphy, M. A., & Mims, M. C. (2020). Multiple lines of genetic inquiry reveal effects of local and landscape factors on an amphibian metapopulation. Landscape Ecology, 35 (2), 319-335. https://doi.org/10.1007/s10980-019-00948-y
Paton, P. W. C., & Crouch III, W. B. (2002). Using the phenology of pond-breeding amphibians to develop conservation strategies.Conservation Biology, 16 (1), 194-204. https://doi.org/10.1046/j.1523-1739.2002.00260.x
Planet Team. (2021). Planet application program interface: in space for life on Earth. San Francisco, CA. Retrieved from https://api.planet.com
R Development Core Team. (2018). R: A language and environment for statistical computing. Austria, Vienna: R Foundation for Statistical Computing. Retrieved from http://R-project.org
Razgour, O., Korine, C., & Saltz, D. (2010). Pond characteristics as determinants of species diversity and community composition in desert bats. Animal Conservation, 13 (5), 505-513. https://doi.org/10.1111/j.1469-1795.2010.00371.x
Rogers, T. N., & Chalcraft, D. R. (2008). Pond hydroperiod alters the effect of density-dependent processes on larval anurans. Canadian Journal of Fisheries and Aquatic Sciences, 65 (12), 2761-2768. https://doi.org/10.1139/F08-177
Ruetz III, C. R., Trexler, J. C., Jordan, F., Loftus, W. F., & Perry, S. A. (2005). Population dynamics of wetland fishes: spatio-temporal patterns synchronized by hydrological disturbance? Journal of Animal Ecology, 74 (2), 322-332. https://doi.org/10.1111/j.1365-2656.2005.00926.x
Ryan, T. J., & Winne, C. T. (2001). Effects of hydroperiod on metamorphosis in Rana sphenocephala. The American Midland Naturalist, 145 (1), 46-53, 48. https://doi.org/10.1674/0003-0031(2001)145[0046:EOHOMI]2.0.CO;2
Schriever, T. A., Bogan, M. T., Boersma, K. S., Cañedo-Argüelles, M., Jaeger, K. L., Olden, J. D., & Lytle, D. A. (2015). Hydrology shapes taxonomic and functional structure of desert stream invertebrate communities. Freshwater Science, 34 (2), 399-409. https://doi.org/10.1086/680518
Schriever, T. A., & Williams, D. D. (2013). Influence of pond hydroperiod, size, and community richness on food-chain length.Freshwater Science, 32 (3), 964-975. https://doi.org/10.1899/13-008.1
Sharitz, R. R. (2003). Carolina bay wetlands: unique habitats of the southeastern United States. Wetlands, 23 (3), 550-562. https://doi.org/10.1672/0277-5212(2003)023[0550:CBWUHO]2.0.CO;2
Sheppard, P., Comrie, A., Packin, G., Angersbach, K., & Hughes, M. (2002). The climate of the US Southwest. Climate Research, 21 , 219-238. https://doi.org/10.3354/cr021219
Skelly, D. K. (1997). Tadpole communities: pond permanence and predation are powerful forces shaping the structure of tadpole communities.American Scientist, 85 (1), 36-45. www.jstor.org/stable/27856689
Sowder, C., & Steel, E. A. (2012). A note on the collection and cleaning of water temperature data. Water, 4 (3), 597-606. https://doi.org/10.3390/w4030597
Srikanthan, R., & McMahon, T. A. (2001). Stochastic generation of annual, monthly and daily climate data: A review. Hydrology and Earth System Sciences, 5 (4), 653-670. https://doi.org/10.5194/hess-5-653-2001
Stendera, S., Adrian, R., Bonada, N., Cañedo-Argüelles, M., Hugueny, B., Januschke, K., et al. (2012). Drivers and stressors of freshwater biodiversity patterns across different ecosystems and scales: a review.Hydrobiologia, 696 (1), 1-28. https://doi.org/10.1007/s10750-012-1183-0
Tournier, E., Besnard, A., Tournier, V., & Cayuela, H. (2017). Manipulating waterbody hydroperiod affects movement behaviour and occupancy dynamics in an amphibian. Freshwater Biology, 62 (10), 1768-1782. https://doi.org/10.1111/fwb.12988
Visser, I., & Speekenbrink, M. (2010). depmixS4: An R Package for Hidden Markov Models. Journal of Statistical Software, 36 (7), 21. https://doi.org/10.18637/jss.v036.i07
Waterkeyn, A., Grillas, P., Vanschoenwinkel, B., & Brendonck, L. (2008). Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biology, 53 (9), 1808-1822. https://doi.org/10.1111/j.1365-2427.2008.02005.x
Werner, E. E., Skelly, D. K., Relyea, R. A., & Yurewicz, K. L. (2007). Amphibian species richness across environmental gradients. Oikos, 116 (10), 1697-1712. https://doi.org/10.1111/j.0030-1299.2007.15935.x
Figure Legends
Figure 1. Study ponds (N=14) in the Huachuca Mountains-Canelo Hills region of southeastern Arizona (reference map inset). Colors indicate pond initial fill dates, ranging from 17 July 2018 (T8, 9, 12, and 13) to 25 August 2018 (T2). Initial fill dates were calculated from paired pond-control Hidden Markov models, where inundation was defined as a period of 5 or more consecutive days with the daily temperature standard deviation measured by the pond logger was at least 2°C less than that of the control logger. UTM coordinates (NAD 83) indicate position of each corner of the map.
Figure 2. Three-state hidden Markov model predictions for pond T9 using (a) pond-only dataset, and (b) paired pond-control dataset. (c) Photos from site visits (dates correspond with stars in (a)), in which observed pond inundation state was dry at the time of sensor deployment (1 July 2018), wet during a return visit the following spring (3 April 2019), and dry at the time of sensor retrieval (24 June 2019). Though we observed no standing water on 24 June 2019, the pond supported vegetation, and we found salamanders in the sensor housing unit (inset photo; possibly contributing to different predicted states on 24 June 2019). Colors indicate temporal state predictions for each pond (pink=dry, blue=wet) and lines represent daily temperature standard deviation (tSD) measurements from pond logger (black lines) and control logger (grey lines).
Figure 3. Inundation state predictions by 3-state hidden Markov models (HMMs). Shown are marginal distributions and predicted inundation timing for select ponds that (a) became inundated for long durations during the study period, (b) filled for relatively shorter durations, and (c) had no predicted wet state. Left panels represent marginal distributions and right panels represent HMM estimates from paired pond-control models (top) and pond-only models (bottom). Shading on HMM graphs indicate temporal state predictions for each pond (pink=dry, blue=wet) and lines represent temperature standard deviation (tSD) measurements from control loggers (grey lines) and pond loggers (black lines). Dashed lines indicate wet state thresholds (3.0°C for the pond only dataset and -2.0°C difference for the paired dataset).
Figure 4. Hidden Markov model (HMM) pond inundation predictions. Lines show daily tSDs measured by pond loggers (black) and control loggers (grey). Rectangles represent wet days predicted by HMMs from single pond loggers (light green), by paired pond-control loggers (light blue), and by both models (dark blue). Grey shading indicates a predicted dry/damp state and lack of shading indicates no data due to logger failure.