References
Acosta, C. A., & Perry, S. A. (2001). Impact of hydropattern
disturbance on crayfish population dynamics in the seasonal wetlands of
Everglades National Park, USA. Aquatic Conservation: Marine and
Freshwater Ecosystems, 11 (1), 45-57.
https://doi.org/10.1002/aqc.426
Anderson, T. L., Heemeyer, J. L., Peterman, W. E., Everson, M. J.,
Ousterhout, B. H., Drake, D. L., & Semlitsch, R. D. (2015). Automated
analysis of temperature variance to determine inundation state of
wetlands. Wetlands Ecology and Management, 23 (6), 1039-1047.
https://doi.org/10.1007/s11273-015-9439-x
Arismendi, I., Dunham, J. B., Heck, M., Schultz, L., & Hockman-Wert, D.
(2017). A statistical method to predict flow permanence in dryland
streams from time series of stream temperature. Water, 9 (12),
1-13. https://doi.org/10.3390/w9120946
Bourgeau-Chavez, L. L., Smith, K. B., Brunzell, S. M., Kasischke, E. S.,
Romanowicz, E. A., & Richardson, C. J. (2005). Remote monitoring of
regional inundation patterns and hydroperiod in the Greater Everglades
using Syntheic Aperture Radar. Wetlands, 25 (176).
https://doi.org/10.1672/0277-5212(2005)025[0176:RMORIP]2.0.CO;2
Brooks, R. T. (2004). Weather-related effects on woodland vernal pool
hydrology and hydroperiod. Wetlands, 24 (1), 104-114.
https://doi.org/10.1672/0277-5212(2004)024[0104:WEOWVP]2.0.CO;2
Chandler, H. C. (2017). Drying rates of ephemeral wetlands: implications
for breeding amphibians. Wetlands, 37 (3), 545-557.
https://doi.org/10.1007/s13157-017-0889-1
De Meester, L., Declerck, S., Stoks, R., Louette, G., Van De Meutter,
F., De Bie, T., et al. (2005). Ponds and pools as model systems in
conservation biology, ecology and evolutionary biology. Aquatic
Conservation: Marine and Freshwater Ecosystems, 15 (6), 715-725.
https://doi.org/10.1002/aqc.748
DeVries, B., Huang, C., Lang, M. W., Jones, J. W., Huang, W., Creed, I.
F., & Carroll, M. L. (2017). Automated quantification of surface water
inundation in wetlands using optical satellite imagery. Remote
Sensing, 9 (8), 807. https://doi.org/10.3390/rs9080807
Díaz-Delgado, R., Aragonés, D., Afán, I., & Bustamante, J. (2016).
Long-term monitoring of the flooding regime and hydroperiod of Doñana
marshes with Landsat time series (1974–2014). Remote Sensing,
8 (9), 775. https://doi.org/10.3390/rs8090775
Florencio, M., Fernández-Zamudio, R., Lozano, M., & Díaz-Paniagua, C.
(2020). Interannual variation in filling season affects zooplankton
diversity in Mediterranean temporary ponds. Hydrobiologia, 847 ,
1195-1205. https://doi.org/10.1007/s10750-019-04163-3
Goodrich, D. C., Unkrich, C. L., Keefer, T. O., Nichols, M. H., Stone,
J. J., Levick, L. R., & Scott, R. L. (2008). Event to multidecadal
persistence in rainfall and runoff in southeast Arizona. Water
Resources Research, 44 (5). https://doi.org/10.1029/2007wr006222
Halabisky, M., Babcock, C., & Moskal, L. M. (2018). Harnessing the
temporal dimension to improve object-based image analysis classification
of wetlands. Remote Sensing, 10 (9), 1467.
https://doi.org/10.3390/rs10091467
Hong, S.-H., Wdowinski, S., Kim, S.-W., & Won, J.-S. (2010).
Multi-temporal monitoring of wetland water levels in the Florida
Everglades using interferometric synthetic aperture radar (InSAR).Remote Sensing of Environment, 114 (11), 2436-2447.
https://doi.org/10.1016/j.rse.2010.05.019
Irons, J. R., Dwyer, J. L., & Barsi, J. A. (2012). The next Landsat
satellite: the Landsat data continuity mission. Remote Sensing of
Environment, 122 , 11-21.
https://doi.org/10.1016/j.rse.2011.08.026
Jaeger, K. L., & Olden, J. D. (2012). Electrical resistance sensor
arrays as a means to quantify longitudinal connectivity of rivers.River Research and Applications, 28 (10), 1843-1852.
https://doi.org/10.1002/rra.1554
Johnson, J. R., Ryan, M. E., Micheletti, S. J., & Shaffer, H. B.
(2013). Short pond hydroperiod decreases fitness of nonnative hybrid
salamanders in California. Animal Conservation, 16 (5), 556-565.
https://doi.org/10.1111/acv.12029
Kneitel, J. M. (2014). Inundation timing, more than duration, affects
the community structure of California vernal pool mesocosms.Hydrobiologia, 732 (1), 71-83.
https://doi.org/10.1007/s10750-014-1845-1
Lefebvre, G., Davranche, A., Willm, L., Campagna, J., Redmond, L.,
Merle, C., et al. (2019). Introducing WIW for detecting the presence of
water in wetlands with Landsat and Sentinel satellites. Remote
Sensing, 11 (19). https://doi.org/10.3390/rs11192210
Levy, J. S., & Johnson, J. T. E. (2021). Remote soil moisture
measurement from drone-borne reflectance spectroscopy: applications to
hydroperiod measurement in desert playas. Remote Sensing, 13 (5).
https://doi.org/10.3390/rs13051035
Mims, M. C., Moore, C. E., & Shadle, E. J. (2020). Threats to aquatic
taxa in an arid landscape: Knowledge gaps and areas of understanding for
amphibians of the American Southwest. WIREs Water, 7 (4), e1449.
https://doi.org/10.1002/wat2.1449
Moore, C. E., Helmann, J. S., Chen, Y., St. Amour, S. M., Hallmark, M.
A., Hughes, L. E., et al. (2020). Anuran Traits of the United States
(ATraiU): a database for anuran traits-based conservation, management,
and research. Ecology, n/a (n/a), e03261.
https://doi.org/10.1002/ecy.3261
Murray-Hudson, M., Wolski, P., Cassidy, L., Brown, M. T., Thito, K.,
Kashe, K., & Mosimanyana, E. (2015). Remote sensing-derived hydroperiod
as a predictor of floodplain vegetation composition. Wetlands
Ecology and Management, 23 (4), 603-616.
https://doi.org/10.1007/s11273-014-9340-z
Ozesmi, S. L., & Bauer, M. E. (2002). Satellite remote sensing of
wetlands. Wetlands Ecology and Management, 10 (5), 381-402.
https://doi.org/10.1023/A:1020908432489
Parsley, M. B., Torres, M. L., Banerjee, S. M., Tobias, Z. J. C.,
Goldberg, C. S., Murphy, M. A., & Mims, M. C. (2020). Multiple lines of
genetic inquiry reveal effects of local and landscape factors on an
amphibian metapopulation. Landscape Ecology, 35 (2), 319-335.
https://doi.org/10.1007/s10980-019-00948-y
Paton, P. W. C., & Crouch III, W. B. (2002). Using the phenology of
pond-breeding amphibians to develop conservation strategies.Conservation Biology, 16 (1), 194-204.
https://doi.org/10.1046/j.1523-1739.2002.00260.x
Planet Team. (2021). Planet application program interface: in space for
life on Earth. San Francisco, CA. Retrieved from
https://api.planet.com
R Development Core Team. (2018). R: A language and environment for
statistical computing. Austria, Vienna: R Foundation for Statistical
Computing. Retrieved from http://R-project.org
Razgour, O., Korine, C., & Saltz, D. (2010). Pond characteristics as
determinants of species diversity and community composition in desert
bats. Animal Conservation, 13 (5), 505-513.
https://doi.org/10.1111/j.1469-1795.2010.00371.x
Rogers, T. N., & Chalcraft, D. R. (2008). Pond hydroperiod alters the
effect of density-dependent processes on larval anurans. Canadian
Journal of Fisheries and Aquatic Sciences, 65 (12), 2761-2768.
https://doi.org/10.1139/F08-177
Ruetz III, C. R., Trexler, J. C., Jordan, F., Loftus, W. F., & Perry,
S. A. (2005). Population dynamics of wetland fishes: spatio-temporal
patterns synchronized by hydrological disturbance? Journal of
Animal Ecology, 74 (2), 322-332.
https://doi.org/10.1111/j.1365-2656.2005.00926.x
Ryan, T. J., & Winne, C. T. (2001). Effects of hydroperiod on
metamorphosis in Rana sphenocephala. The American Midland
Naturalist, 145 (1), 46-53, 48.
https://doi.org/10.1674/0003-0031(2001)145[0046:EOHOMI]2.0.CO;2
Schriever, T. A., Bogan, M. T., Boersma, K. S., Cañedo-Argüelles, M.,
Jaeger, K. L., Olden, J. D., & Lytle, D. A. (2015). Hydrology shapes
taxonomic and functional structure of desert stream invertebrate
communities. Freshwater Science, 34 (2), 399-409.
https://doi.org/10.1086/680518
Schriever, T. A., & Williams, D. D. (2013). Influence of pond
hydroperiod, size, and community richness on food-chain length.Freshwater Science, 32 (3), 964-975.
https://doi.org/10.1899/13-008.1
Sharitz, R. R. (2003). Carolina bay wetlands: unique habitats of the
southeastern United States. Wetlands, 23 (3), 550-562.
https://doi.org/10.1672/0277-5212(2003)023[0550:CBWUHO]2.0.CO;2
Sheppard, P., Comrie, A., Packin, G., Angersbach, K., & Hughes, M.
(2002). The climate of the US Southwest. Climate Research, 21 ,
219-238. https://doi.org/10.3354/cr021219
Skelly, D. K. (1997). Tadpole communities: pond permanence and predation
are powerful forces shaping the structure of tadpole communities.American Scientist, 85 (1), 36-45.
www.jstor.org/stable/27856689
Sowder, C., & Steel, E. A. (2012). A note on the collection and
cleaning of water temperature data. Water, 4 (3), 597-606.
https://doi.org/10.3390/w4030597
Srikanthan, R., & McMahon, T. A. (2001). Stochastic generation of
annual, monthly and daily climate data: A review. Hydrology and
Earth System Sciences, 5 (4), 653-670.
https://doi.org/10.5194/hess-5-653-2001
Stendera, S., Adrian, R., Bonada, N., Cañedo-Argüelles, M., Hugueny, B.,
Januschke, K., et al. (2012). Drivers and stressors of freshwater
biodiversity patterns across different ecosystems and scales: a review.Hydrobiologia, 696 (1), 1-28.
https://doi.org/10.1007/s10750-012-1183-0
Tournier, E., Besnard, A., Tournier, V., & Cayuela, H. (2017).
Manipulating waterbody hydroperiod affects movement behaviour and
occupancy dynamics in an amphibian. Freshwater Biology, 62 (10),
1768-1782. https://doi.org/10.1111/fwb.12988
Visser, I., & Speekenbrink, M. (2010). depmixS4: An R Package for
Hidden Markov Models. Journal of Statistical Software, 36 (7), 21.
https://doi.org/10.18637/jss.v036.i07
Waterkeyn, A., Grillas, P., Vanschoenwinkel, B., & Brendonck, L.
(2008). Invertebrate community patterns in Mediterranean temporary
wetlands along hydroperiod and salinity gradients. Freshwater
Biology, 53 (9), 1808-1822.
https://doi.org/10.1111/j.1365-2427.2008.02005.x
Werner, E. E., Skelly, D. K., Relyea, R. A., & Yurewicz, K. L. (2007).
Amphibian species richness across environmental gradients. Oikos,
116 (10), 1697-1712.
https://doi.org/10.1111/j.0030-1299.2007.15935.x
Figure Legends
Figure 1. Study ponds (N=14) in the Huachuca Mountains-Canelo
Hills region of southeastern Arizona (reference map inset). Colors
indicate pond initial fill dates, ranging from 17 July 2018 (T8, 9, 12,
and 13) to 25 August 2018 (T2). Initial fill dates were calculated from
paired pond-control Hidden Markov models, where inundation was defined
as a period of 5 or more consecutive days with the daily temperature
standard deviation measured by the pond logger was at least 2°C less
than that of the control logger. UTM coordinates (NAD 83) indicate
position of each corner of the map.
Figure 2. Three-state hidden Markov model predictions for pond
T9 using (a) pond-only dataset, and (b) paired pond-control dataset. (c)
Photos from site visits (dates correspond with stars in (a)), in which
observed pond inundation state was dry at the time of sensor deployment
(1 July 2018), wet during a return visit the following spring (3 April
2019), and dry at the time of sensor retrieval (24 June 2019). Though we
observed no standing water on 24 June 2019, the pond supported
vegetation, and we found salamanders in the sensor housing unit (inset
photo; possibly contributing to different predicted states on 24 June
2019). Colors indicate temporal state predictions for each pond
(pink=dry, blue=wet) and lines represent daily temperature standard
deviation (tSD) measurements from pond logger (black lines) and control
logger (grey lines).
Figure 3. Inundation state predictions by 3-state hidden Markov
models (HMMs). Shown are marginal distributions and predicted inundation
timing for select ponds that (a) became inundated for long durations
during the study period, (b) filled for relatively shorter durations,
and (c) had no predicted wet state. Left panels represent marginal
distributions and right panels represent HMM estimates from paired
pond-control models (top) and pond-only models (bottom). Shading on HMM
graphs indicate temporal state predictions for each pond (pink=dry,
blue=wet) and lines represent temperature standard deviation (tSD)
measurements from control loggers (grey lines) and pond loggers (black
lines). Dashed lines indicate wet state thresholds (3.0°C for the pond
only dataset and -2.0°C difference for the paired dataset).
Figure 4. Hidden Markov model (HMM) pond inundation
predictions. Lines show daily tSDs measured by pond loggers (black) and
control loggers (grey). Rectangles represent wet days predicted by HMMs
from single pond loggers (light green), by paired pond-control loggers
(light blue), and by both models (dark blue). Grey shading indicates a
predicted dry/damp state and lack of shading indicates no data due to
logger failure.