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Abstract15

Evaluating the influence of anthropogenic emissions changes on air quality requires ac-16

counting for the influence of meteorological variability. Statistical methods such as mul-17

tiple linear regression (MLR) models with basic meteorological variables are often used18

to remove meteorological variability and estimate trends in measured pollutant concen-19

trations attributable to emissions changes. However, the ability of these widely-used sta-20

tistical approaches to correct for meteorological variability remains unknown, limiting21

their usefulness in the real-world policy evaluations. Here, we quantify the performance22

of MLR and other quantitative methods using two scenarios simulated by a chemical trans-23

port model, GEOS-Chem, as a synthetic dataset. Focusing on the impacts of anthropogenic24

emissions changes in the US (2011 to 2017) and China (2013 to 2017) on PM2.5 and O3,25

we show that widely-used regression methods do not perform well in correcting for me-26

teorological variability and identifying long-term trends in ambient pollution related to27

changes in emissions. The estimation errors, characterized as the differences between meteorology-28

corrected trends and emission-driven trends under constant meteorology scenarios, can29

be reduced by 30%-42% using a random forest model that incorporates both local and30

regional scale meteorological features. We further design a correction method based on31

GEOS-Chem simulations with constant emission input and quantify the degree to which32

emissions and meteorological influences are inseparable, due to their process-based in-33

teractions. We conclude by providing recommendations for evaluating the effectiveness34

of emissions reduction policies using statistical approaches.35

1 Introduction36

Researchers and policy makers have long been interested in understanding the an-37

thropogenic drivers of trends in observed air pollutant concentrations in order to inform38

air quality policies. Declining trends in pollutant concentrations such as particulate mat-39

ter with diameter less than 2.5 microns (PM2.5) have been observed in many countries40

that adopted policies to limit anthropogenic emissions such as SO2 and NOx, including41

the US (McClure & Jaffe, 2018) and China (Q. Zhang et al., 2019). As information on42

anthropogenic emissions are often unavailable or very uncertain, researchers and policy43

makers often rely on the trends in measured air pollutants to assess the effects of polices.44

Evaluating the effectiveness of air quality policies requires understanding the degree to45

which changing trends in observed concentrations can be attributed to anthropogenic46

emissions changes. However, rigorous attribution requires correcting for the influence of47

changing meteorology, which has become increasingly important but challenging in a chang-48

ing climate (Saari et al., 2019). Numerous papers attempt to use statistical methods to49

separate impacts of meteorology from emissions changes in evaluating trends in air qual-50

ity, but the performances of these commonly-used statistical approaches remain unassessed.51

Further, the impacts of meteorological variability may not even be distinguishable from52

emissions-driven air quality trends, due to their interactions; the magnitude of this in-53

teraction also remains unquantified. In this paper, we devise a model-based experiment54

for evaluating the performance of different statistical methods used for meteorological55

corrections. We focus on a case of identifying emissions-driven linear trends in measured56

concentrations of PM2.5 and ozone (O3), when information on the anthropogenic emis-57

sion is not available.58

Measured pollutant concentrations are often used as the primary basis for evalu-59

ating air quality actions. For example in 2013, China’s central government established60

targets that aimed to reduce annual average PM2.5 concentrations of three urban clus-61

ters by 15% to 25% between 2012 and 2017 (State Council of the People’s Republic of62

China, 2013). This later translated into a stringent and binding target of a maximum63

annual mean PM2.5 concentration of 60 µg/m3 in 2017 for Beijing, which was ultimately64

reached (the 2017 concentration was 58.5 µg m−3) (Beijing Municipal Ecology and En-65

vironment Bureau, 2013). However, several studies estimated that the concentration would66
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have exceeded this target in Beijing were it not for meteorological conditions in winter67

2017 that favored pollution reductions (Vu et al., 2019; Z. Chen et al., 2019; Cheng et68

al., 2019). The European Union and US Environmental Protection Agency (EPA) use69

a three-year average of the PM2.5 concentration to determine compliance with air qual-70

ity standards (European Union, 2020; U.S. Environmental Protection Agency, 2019). The71

US EPA has also proposed to use statistical approaches that aim to correct for the im-72

pacts of weather variability on O3 concentrations in the designation processes (Wells et73

al., 2021).74

Many studies use multiple linear regression (MLR) models with basic meteorolog-75

ical variables to correct for meteorological variability in order to estimate the impacts76

of emissions changes on measured air quality (Otero et al., 2018; Zhai et al., 2019; K. Li77

et al., 2018, 2020; Han et al., 2020; L. Chen et al., 2020). Zhai et al. (2019) and K. Li78

et al. (2020) use MLR models to estimate the degree to which trends in PM2.5 and O379

from 2013 to 2019 in China were driven by anthropogenic emissions changes. They first80

use MLR to predict the PM2.5 and O3 concentrations with meteorological variables, and81

then interpret the residuals of the MLR model as signals resulting from emissions changes.82

A related approach is to combine MLR with techniques that can decompose time series83

of observed concentrations into long-term, seasonal, and short-term components (e.g.,84

Kolmogorov-Zurbenko (KZ) filters (Zurbenko, 1994)). Ma et al. (2016) and Z. Chen et85

al. (2019) use KZ filters to calculate the long-term component of observed PM2.5 and86

then apply MLR to separate the impacts of long-term meteorological changes on the con-87

centrations. Henneman et al. (2015) apply MLR to the short-term component (identi-88

fied by KZ filters) of air pollutant concentrations near Atlanta during 2000 to 2012, to89

separate the impact of short-term meteorological variability, and then estimate the long-90

term trend in air quality.91

Other statistical methods including non-linear regression or machine learning mod-92

els have also been used to correct for meteorological variability (Holland et al., 1998; Carslaw93

et al., 2007; Hayn et al., 2009; Vu et al., 2019). One popular method is to use a gener-94

alized additive model (GAM) to estimate non-linear smooth functions of each meteoro-95

logical variable within a given smoothing function family with penalization on non-smoothness.96

The US EPA uses a GAM model of temperature, wind direction and speed, humidity,97

pressure, stability, transport trajectories, and synoptic weather to perform weather cor-98

rections in assessing long term trends in O3 (Camalier et al., 2007). An increasing num-99

ber of studies use machine learning models (Grange et al., 2018; Vu et al., 2019; Y. Zhang100

et al., 2020; Shi et al., 2021; Qu et al., 2020). Vu et al. (2019) uses a random forest model101

to predict pollutant concentrations in Beijing with time index and meteorological vari-102

ables and then calculates the “weather-normalized” concentration for each day with 1000103

sets of meteorological fields drawn from the historical meteorological data. They found104

that the decrease of PM2.5 during 2013 to 2017 was largely driven by emissions reduc-105

tions, although the magnitude of reduction is smaller when correcting for the meteoro-106

logical variability.107

Despite the large amount of papers which apply various meteorology correction meth-108

ods, very little is known about whether these methods can effectively correct for mete-109

orological variability and thus reveal the underlying causal impacts of anthropogenic emis-110

sions changes. Most studies cite the prediction performance of their statistical models111

(such as R2 and/or mean squared errors) to justify their method choice and analysis. How-112

ever, good prediction performance does not guarantee correct inference of causal effects113

(Runge et al., 2019). The performance of these meteorology-corrected methods is un-114

able to be assessed using observational data alone, as the underlying emission-driven trends115

without influence from meteorological variability cannot be derived from data. Runge116

et al. documents similar challenges with observational data and proposes to use phys-117

ical models to benchmark causal inference methods in the broader domains of earth sci-118

ences (Runge et al., 2019). Further, statistical analyses often assume that the influence119
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of meteorological variability on pollutant concentration can be cleanly separated from120

the influence of anthropogenic emissions changes. This is not completely possible, as the121

impacts of meteorological variability on pollutant concentration will also vary depend-122

ing on the emissions. The degree to which this interaction affects the ability to calcu-123

late emissions-related trends under changing meteorology also remains unknown.124

Here, we conduct a model experiment to evaluate the performance of widely-used125

statistical models in correcting for meteorological variability and estimating emissions-126

driven trends in air quality. We focus on the impacts of anthropogenic emissions changes127

on annual PM2.5 and summer O3 in the US (2011-2017) and China (2013-2017), two pe-128

riods well-studied in previous literature. Using a 3-D atmospheric chemical transport model129

GEOS-Chem, we simulate two sets of scenarios – “observational scenarios” with assim-130

ilated meteorological inputs (with interannual variability) and “counterfactual scenar-131

ios” with constant meteorological inputs. Using simulated daily concentrations in the132

observational scenarios, we estimate meteorology-corrected trends for each grid cell us-133

ing different statistical correction methods. We then compare the derived trends with134

the emissions-driven trends in the counterfactual scenarios (which are free of meteoro-135

logical variability by design), calculating the resulting “error” in trend estimation. We136

further design a correction method based on GEOS-Chem constant emission simulations,137

and use it to quantify the degree to which attribution to meteorology and emissions sep-138

arately is possible. Finally, we apply the different statistical correction methods to ob-139

servational data from surface monitoring networks in the US and China, discussing the140

variability across different methods. We conclude by providing recommendations for tech-141

niques to evaluate air pollution policies under changing meteorological conditions.142

2 Method143

2.1 GEOS-Chem144

GEOS-Chem is a global three-dimensional chemical transport model driven by as-145

similated meteorological data from the Goddard Earth Observation System (GEOS-5)146

of the NASA Global Modeling and Assimilation Office (GMAO) (Bey et al. (2001), http://www.geos-147

chem.org/). The simulation of PM2.5 in GEOS-Chem represents an external mixture of148

secondary inorganic aerosols, carbonaceous aerosols, sea salt, and dust aerosols. GEOS-149

Chem includes detailed O3-NOx-volatile organic carbon (VOC)-aerosol-Halogen tropo-150

spheric chemistry (Travis et al., 2016; Sherwen et al., 2016). The GEOS-Chem model151

has been previously used to study the changes in PM2.5 and O3 during our studied pe-152

riods, and model simulations have been shown to be consistent with the observed con-153

centrations (e.g., see C. Li et al. (2017); Xie et al. (2019) for the US, and K. Li et al. (2018);154

Lu et al. (2019); Zhai et al. (2021) for China). Studies in both regions show that the GEOS-155

Chem model is able to reproduce the spatial, seasonal, and interannual variability and156

the long-term trends in observed pollutant concentrations, despite biases in absolute con-157

centrations in certain species and regions (Heald et al., 2012; Travis et al., 2016; Tian158

et al., 2021).159

We use GEOS-Chem version 12.3.0 with a horizontal resolution of 0.5◦× 0.625◦ in160

North America and Asia (Wang et al., 2004). For each scenario, we first conduct a global161

run at a horizontal resolution of 4◦× 5◦, with a 12 month spin-up. These global runs are162

then used as the boundary conditions for nested simulations in US and Asia with finer163

resolution of 0.5◦×0.625◦.164

2.2 GEOS-Chem scenarios165

Table 1 shows the simulations included in our model experiments. We simulate two166

sets of scenarios – “observational scenarios” with interannual variability in meteorology167

and “counterfactual scenarios” with constant meteorological inputs. Both scenarios use168
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the same emissions inventory as input (see Method 2.3). For each grid cell, we estimate169

the linear trends in pollutant concentrations from simulated daily PM2.5 and O3 con-170

centrations. We focus on the daily 24-hour average PM2.5 of all seasons, and the max-171

imum daily average 8-hour (MDA8) O3 in summer (June, July, August). Our GEOS-172

Chem simulations use meteorological fields from the Modern-Era Retrospective analy-173

sis for Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 2017). We ag-174

gregate the hourly meteorological data for consistency with the pollutant concentrations:175

a 24-hour average for PM2.5 analysis and the corresponding 8-hour average for O3. Me-176

teorological features that are used in the statistical models can be found in 2.4.177

2.2.1 Observational scenarios178

Observational scenarios simulate PM2.5 and O3 under changing emissions and chang-179

ing meteorological fields. Trends estimated under the observational scenarios (βobs) are180

subject to the influences of interannual meteorological variability. Our model experiments181

were not specifically designed to reproduce observed air quality in these two regions, but182

rather to provide a realistic test case for our statistical experiments. Nevertheless, as shown183

in figure S1 and S2, the simulated concentrations in PM2.5 and O3 largely reproduce the184

daily variability in observed pollutant concentrations. The linear trends in simulated PM2.5185

and O3 concentrations in the observational scenario are largely consistent with trends186

of the measured concentrations. For example, the average trend (±one standard devi-187

ation) in the US is -0.27±0.30 µg−3/year (observation) and -0.39±0.24 ppb/year (GEOS-188

Chem) for PM2.5, and -0.91±0.98 ppb/year (observation) and -1.02±0.83 ppb/year (GEOS-189

Chem) for O3. The only exception is that our model cannot reproduce the increasing190

PM2.5 trends in Northwest US because we do not consider the interannual variability191

in the biomass burning emissions.192

2.2.2 Counterfactual scenarios193

Counterfactual scenarios simulate PM2.5 and O3 under changing emissions but con-194

stant meteorology. All simulation years in the counterfactual scenario use the meteoro-195

logical fields of the start year (2011 for US, 2013 for China). Trends estimated under the196

counterfactual scenario (βcount) are not subject to interannual meteorological variabil-197

ity; we use this as a proxy for the trends in pollutant concentrations driven by emissions198

changes alone.199

It is important to note that we do not assume our GEOS-Chem simulations per-200

fectly represent the underlying pollutant concentration in the real world (although the201

model compares relatively well with the observational data). Rather, our main focus is202

to evaluate how much different statistical methods can explain the differences between203

the observational and counterfactual scenarios. The assumption here is that the differ-204

ences between observational and counterfactual scenarios are useful approximations of205

the impacts of meteorological variability on pollutant concentrations. The implications206

of uncertainty in GEOS-Chem for our results can be found in the discussion section.207
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GEOS-Chem

scenarios

Emissions

inventory

Meteorological

fields

Trend

estimates

Meteorological

correction

Counterfactual

scenarios

Changing

2011-2017 (US)

2013-2017 (China)

Constant

2011 (US)

2013 (China)

βcount No correction needed

Observational

scenarios

Changing

2011-2017 (US)

2013-2017 (China)

Changing

2011-2017 (US)

2013-2017 (China)

βuncorrected No correction

βMLR Linear combination of

local features

βGAM GAM using

local features

βRF RF using

local features

βLASSO−regional LASSO using local

and regional features

βRF−regional RF using local

and regional features

βgc

Use simulations from

constant emissions

scenarios

Constant

emissions

scenarios

Constant

2011 (US)

2013 (China)

Changing

2011-2017 (US)

2013-2017 (China)

Table 1: Overview of GEOS-Chem scenarios and meteorological correction methods.

2.3 Emissions inventory208

For the US, we use the National Emissions Inventory 2011 (NEI 2011) as a base-209

line emissions inventory and scale the emissions in 2012 to 2017 to match the annual to-210

tal emissions each year (U.S. Environmental Protection Agency, 2021b). For China, we211

use the monthly Multi-resolution Emission Inventory for China (MEIC) during 2013 to212

2017 (M. Li et al., 2017; Zheng et al., 2018). During the studied time periods, US and213

China experienced dramatic decreases in anthropogenic emissions, particularly in SO2214

and NOx. In the US, the total anthropogenic emissions of SO2 decreased by 57% and215

NOx emissions decreased by 26% during 2011 to 2017 (see figure S3). In China, anthro-216

pogenic SO2 emissions decreased by 59% and NOx emissions decreased by 21% during217

the 2013-2017 period (see figure S4).218

Natural emissions of multiple chemical species are calculated online in the simu-219

lations (rather than prescribed) in the GEOS-Chem model and thus can be influenced220

by meteorological variability (see Keller et al. (2014) for more details). Impacts of me-221

teorology on PM2.5 and O3 concentrations through changes in the natural emissions are222
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considered here as part of the meteorology - concentration relationship. These emissions223

include NOx emissions from lightning and soil processes, sea salt emissions, dust emis-224

sions, and biogenic volatile organic carbon (VOC) emissions. However, biomass burn-225

ing emissions are prescribed in the GEOS-Chem model and we hold them constant at226

the level of the start year. We make this simplification because the GEOS-Chem model227

uses prescribed biomass burning emissions from external inventories such as Global Fire228

Emissions Database (Werf et al., 2017), and it is impossible to distinguish natural fire229

emissions (part of the meteorological variability) from anthropogenic fire emissions (e.g.,230

from farm residual burning).231

2.4 Statistical and machine learning models232

2.4.1 Model with local meteorological variables233

We assess the performance of statistical and machine learning models to correct
for the meteorological variability in the observational scenarios. We evaluate these meth-
ods with a commonly-used framework (e.g., used in K. Li et al. (2018) and Zhai et al.
(2019)) which models the air pollutant concentrations of each individual grid cell using
an additive form of a trend component, a meteorology component, and time fixed effects
(to capture daily and monthly variability not related to meteorology). More specifically,
we estimate the following regression equation for each grid cell i:

yit = βobs
i × t+ f i(Xit) + ηit + εit (1)

where yit denotes the PM2.5 or O3 concentration at grid cell i on day t. t is the time in-234

dex (e.g., in the US, t=1 for January 1st, 2011 and t=2 for January 2nd, 2011). Xit de-235

notes the local meteorology features (i.e. meteorological variables in grid cell i on day236

t). ηit is the month-of-year×day-of-month fixed effect to capture daily and monthly vari-237

ability of pollutant concentrations that are not related to the meteorological variability238

(e.g., seasonal cycle in O3 and PM2.5). εit is the normally-distributed error term. βobs
i239

represents the meteorology-corrected trend in PM2.5 or O3 concentration for grid cell i240

under a specific method. We use the absolute differences |βobs
i −βcount

i | to evaluate the241

performance of different methods to correct for meteorological variability for any given242

grid cell i.243

Here, f i(Xit) represents the specifications of local meteorological features for grid244

cell i under different methods. In addition to the commonly-used multiple linear regres-245

sion (MLR) model, we also evaluate following models with higher flexibility: polynomial246

regression models (quadratic, cubic), cubic spline models, generalized additive models247

(GAM, implemented with R package “mgcv” (Wood, 2011)), and Random Forest (RF)248

models. We focus on the methods in table 1 in the main manuscript, and the performance249

of the other methods can be found in table S1 and S2. Note that the time fixed effects250

are modelled differently in RF models due to the estimation procedure. More details on251

the implementation of RF can be found in SI.252

We use the following ten variables from MERRA-2 as our selected meteorological253

features for the statistical analysis: surface temperature, precipitation, humidity, plan-254

etary boundary layer height, cloud fraction, surface air pressure, and wind speed (U and255

V direction, at surface and 850 hpa level). These variables are the most commonly used256

features in previous studies. We also perform sensitivity analyses that include nine more257

meteorological features: direct photosynthetically-active radiation, diffuse photosynthetically-258

active radiation, tropopause pressure, friction velocity, top soil moisture, root soil mois-259

ture, snow depth, surface albedo, and surface air density. These features are selected be-260

cause they are used as primary or intermediate inputs for calculating PM2.5 or O3 con-261

centrations in the GEOS-Chem model and may contain information that help explain262

variability in pollutant concentrations.263
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2.4.2 Model with local and regional meteorological variables264

We also evaluate models that use both local and regional meteorological features.265

Regional meteorological features are important for explaining variability in local pollu-266

tant concentrations due to 1) pollution transport from neighboring locations, and 2) in-267

fluences from meteorological systems at synoptic scale (i.e. large scale weather systems268

that span over 1000 kilometers such as circulation patterns) (Tai et al., 2012; Shen et269

al., 2015; H. Zhang et al., 2018; Leung et al., 2018; Han et al., 2020). As the incorpo-270

ration of both local and regional features can quickly expand the dimensionality of the271

feature space, here we use the Least Absolute Shrinkage and Selection Operator (LASSO)272

and the Random Forest (RF) model, two statistical models that show good prediction273

performances with high dimensional data inputs. We estimate the following equations:274

yit = βobs
i × t+ gi(Xit, Zt) + ηit + εit (2)

where gi() denotes the functional form fitted by LASSO or RF. Xit again denotes275

the local meteorology features for grid cell i on day t. Zt denotes the regional scale me-276

teorology features including the meteorological features for every grid cell in the US on277

day t (98 cells in 4×5 degrees; we choose a relatively coarse resolution due to computa-278

tional cost). Meteorological information in each location in the US may help explain the279

pollutant concentrations in grid cell i. In total, we have 10 local features (Xit) and 10×98=980280

regional scale features (Zt). The coefficient βobs
i is obtained with the double machine learn-281

ing approach by Chernozhukov et al. (2018). More details on the implementation of LASSO282

and RF can be found in SI.283

2.5 Correction approach using GEOS-Chem constant emissions scenario284

We further design and evaluate an approach to correct for meteorology variabil-
ity with GEOS-Chem simulations (referred to as “constant-emis” approach). The “constant-
emis” approach uses GEOS-Chem simulations with constant anthropogenic emissions
and changing meteorological fields (“constant emissions scenarios” in table 1). All years
in the constant emissions scenario use the anthropogenic emissions of the start year (2011
for US, 2013 for China). We estimate the following equations:

yit = βgc
i × t+ SIMit + ηit + εit (3)

where SIMit denotes the simulated concentrations on day t in grid cell i in the constant285

emissions scenarios. SIMit serves a similar purpose as the term “f i(Xit)” in equation286

1, but comes from the GEOS-Chem simulation. Some previous studies have also used287

model simulations with constant emissions input as a way to characterize meteorolog-288

ical variability (Zhong et al., 2018; Zhao et al., 2020). βgc
i is the estimated meteorology-289

corrected trend in PM2.5 or O3 concentration using this model-based correction method.290

Compared to previous statistical and machine learning approaches, the “constant-291

emis” approach better captures the meteorological variability as simulated in GEOS-Chem292

(as SIMit are directly taken from GEOS-Chem). Therefore, the difference between the293

trend estimates (βgc) and counterfactual trends (βcount) provides a conceptual lower bound294

for estimation errors using the framework of equation 1 to perform meteorological cor-295

rections. The commonly-used framework of equation 1 assumes that the impacts of me-296

teorology variability can be separated from the impacts of anthropogenic emissions. In297

our experiments, this assumption indicates that the differences between the counterfac-298

tual scenario and the observational scenario can be solely explained by the meteorolog-299

ical variables. However, the difference in pollutant concentrations between these scenar-300

ios is also in part driven by emissions in their interaction with meteorology (despite the301

fact that our different scenarios use the same emissions inventory). We use |βgc
i −βcount

i |302

to quantify the estimation error associated with ignoring such interactions in this frame-303

work.304
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2.6 Air quality observation data305

We use the surface air quality measurements from the Air Quality Systems admin-306

istered by the US EPA (U.S. Environmental Protection Agency, 2021a). We use the daily307

24-hour average of PM2.5 concentrations for all months and the daily maximum 8-hour308

average (MDA8) O3 concentrations for June, July and August. Figure S1 shows the lo-309

cations, trends in measured concentrations, and correlations between GEOS-Chem sim-310

ulations and measured concentrations.311

The surface air quality measurements in China come from the monitoring network312

from China’s Ministry of Ecology and Environment (China’s Ministry of Ecology and313

Environment, 2021). The monitoring network was launched in 2013 and has expanded314

to all prefecture level cities in mainland China. We use the daily 24-hour average of PM2.5315

concentrations and the MDA8 O3 concentrations for summer. Figure S2 shows the lo-316

cations, trends in measured concentrations, and correlations between GEOS-Chem sim-317

ulations and measured concentrations.318

We use the meteorological variables from MERRA-2 when performing meteorol-319

ogy corrections at these monitoring stations, because the meteorology information is not320

available for all these variables at the station level. This is consistent with previous anal-321

ysis estimating the meteorology-corrected trends of the observational air quality data322

(e.g., K. Li et al. (2018)).323

3 Results324

3.1 Performance of different correction methods: US (2011-2017)325

Figure 1A and 1C show the trends in PM2.5 and O3 concentrations in the coun-326

terfactual scenarios in the US. When holding meteorological fields constant across years,327

decreasing trends in the simulated PM2.5 concentrations across the US result from de-328

creasing anthropogenic emissions. In particular, the counterfactual scenario has substan-329

tial declining trends in PM2.5 in the East US where SO2 emissions decreased dramat-330

ically. The scenario also has negative linear trends in O3 concentrations in all but three331

grid cells in the West. Increases in summer O3 in these locations result from the non-332

linear relationship between O3 concentrations and NOx emissions.333

Figure 1B shows the degree to which different meteorological correction methods334

can recover the emissions-driven trends in the counterfactual scenarios. The figure shows335

the magnitude of estimation error in trend estimates in PM2.5 for each grid box (|βobs−336

βcount|). When no correction for meteorology is performed (“uncorrected” in figure 1B),337

we observe large estimation errors in trend estimates over the Northeast and Southern338

US by up to 0.25 µg m−3/year, an error that is 50% of the trend estimates under the339

counterfactual scenarios. We find that the widely-used MLR method does not help re-340

duce these errors in PM2.5 trend attribution. MLR has a modest impact on reducing the341

errors in Northeast US, but it does not decrease the errors over the Southern US and342

leads to higher errors over Midwest. Nationwide, the average magnitude of errors (rel-343

ative to the counterfactual scenario) slightly increases with the MLR correction (0.083344

µg m−3/year) compared to the uncorrected case (0.066 µg m−3/year). Among the five345

methods, we find that the RF model using both local and regional scale features (“RF-346

regional” in figure 1) offers the best performance in recovering the trends in the coun-347

terfactual scenarios and is the only method that yields smaller errors than the uncor-348

rected case (the nationwide average error decreased by 0.019 µg m−3/year, or 28% less).349

The RF-regional model also outperforms the RF-local and LASSO-regional models, sug-350

gesting the importance of considering non-linearity, interactions between different me-351

teorological features, and regional meteorology information in correctly adjusting for the352

impacts of meteorology.353
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Figure 1: Trend estimates of daily annual PM2.5 (Panels A and B) and summer O3 (C
and D) in the US. Panels A and C show trend estimates under the counterfactual scenario
(βcount). Panels B and D show the absolute magnitude of errors of trend estimates under
different correction methods compared with the counterfactual scenarios (|βobs − βcount|).
The average of the absolute errors for each method is shown in the figure. Unit of trend
estimate is µg m−3/year for PM2.5 or ppb/year for O3.
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Meteorological variability has a substantial influence on the summertime O3 trends354

in the US during this period (as shown in figure 1D). Relative to the counterfactual sce-355

nario, the uncorrected O3 trends are biased by over 1-2 ppb/year in large areas of Cal-356

ifornia, Midwest and Southern US (as much as 320% of the counterfactual trends). This357

is largely driven by the fact that the 2011 and 2012 summer was particularly hot in these358

regions and led to higher concentrations of O3 at the beginning of this 7-year period (see359

figure S6 for the Southern and Midwest US). Therefore, failure to correct for meteoro-360

logical variability results in much more negative trend estimates in the O3 concentra-361

tions in these areas compared to the counterfactual scenario (see figure S5). Meteorol-362

ogy corrections with MLR or GAM help reduce these estimation errors substantially (na-363

tionwide average error is reduced by 51% using MLR or 57% using GAM compared to364

uncorrected trends), while large errors still persist in the Midwest and South. Similar365

to the case of PM2.5, the RF-regional model offers the best performance in correcting366

for meteorological variability (the national average error is further reduced by 42%, com-367

pared to MLR), and it is especially helpful in reducing the errors over the Midwest and368

South (regional average error is reduced by 64% and 44%, respectively, compared to MLR).369

3.2 Performance of different correction methods: China (2013-2017)370

Figure 2A and 2C show the trends in PM2.5 and O3 concentrations in the coun-371

terfactual scenarios in China. We find a substantial decline in simulated PM2.5 concen-372

tration during 2013 to 2017, particularly in eastern and central China. In contrast, there373

is little change in the simulated PM2.5 concentrations in western China in the counter-374

factual scenario, where PM2.5 is dominated by dust species largely driven by natural pro-375

cesses (see figure S8). For summer O3, there are decreasing trends in the counterfactual376

scenario in most parts of China, except for North China and some urban areas. This is377

largely consistent with previous studies that attempt to attribute emissions-related changes378

in O3 concentrations during this period based on modeling or observational data (K. Li379

et al., 2018, 2020; Lu et al., 2020).380

Figure 2B shows the magnitude of estimation errors in the trend estimates of an-381

nual PM2.5 in China under different correction methods. We find the underlying mete-382

orological variability has a substantial impact on PM2.5 trends in China during this pe-383

riod. We observe large differences between the uncorrected and counterfactual trends in384

simulated PM2.5 concentrations, particularly in Northwest and Northeast China. Sim-385

ilar to the model experiments in the US, we find that MLR and GAM methods fail to386

correct for this underlying meteorological variability and lead to further increases in es-387

timation errors in many locations. Relative to the counterfactual scenario, the nation-388

wide average error increases to 0.90 µg m−3/year with MLR and 1.06 µg m−3/year with389

GAM (compared to 0.89 µg m−3/year with no correction). We find that the RF-regional390

model recovers the counterfactual trends better than other methods (nationwide aver-391

age error: 0.64 µg m−3/year; an improvement by 30% relative to MLR), but it is still392

not able to correct for the persistent estimation errors over Northwest China. We fur-393

ther analyze the performance of correction methods for the different component species394

of PM2.5. As shown in figure S9 and S10, the MLR model is particularly unable to cor-395

rect for the impacts of meteorological variability on nitrate and dust species. Compared396

with MLR, the RF-regional model better corrects for the impacts of meteorology on sec-397

ondary organic aerosol species in South and Central China and ammonium in Northeast,398

but only yields modest improvement in correcting for the errors in dust concentrations399

over Northwest China (see figure S11). In a sensitivity analysis, we use an approach that400

first fits RF-regional models of each individual PM2.5 species, and then combine predic-401

tions to each species to derive trend estimates. The results are largely similar to the main402

approach that fits models to the total PM2.5 concentration (see figure S12).403

Figure 2D shows the magnitude of errors in the trend estimates for summer O3 un-404

der different correction methods in China. We find that the MLR model only modestly405
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Figure 2: Trend estimates of daily annual PM2.5 (Panels A and B) and summer O3 (C
and D) in China. Panels A and C show trend estimates under the counterfactual scenario
(βcount). Panels B and D show the absolute magnitude of errors of trend estimates under
different correction methods compared with the counterfactual scenarios (|βobs − βcount|).
The average of the absolute errors for each method is shown in the figure. The unit of the
trend estimate is µg m−3/year for PM2.5 or ppb/year for O3.
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reduces the estimation errors compared to the uncorrected cases, and the RF-regional406

model offers the best overall performance. The nationwide average error is reduced to407

0.28 ppb/year using the RF-regional model (relative to 0.43 ppb/year uncorrected and408

0.41 ppb/year with MLR). Similar to the evaluation of summer time O3 in the US, we409

find the non-linear models (GAM, RF-local) perform better than MLR, but are not as410

good as the RF-regional model. Surprisingly, the LASSO-regional model performs the411

worst in recovering the counterfactual trends. This suggests the importance of consid-412

ering non-linearity and regional meteorological features in understanding the O3 – me-413

teorology relationships. Compared to the US case, we find the impacts of meteorolog-414

ical variability on O3 and the method performances are much more spatially heteroge-415

neous (see figure S5, S7), which may be partially due to the more heterogeneous O3 regimes416

in China during this period.417

3.3 Limitations in separating meteorological and emissions influence:418

quantified with constant emission scenarios419

In our model experiments in both US and China, we find large differences remain420

between the trends evaluated with statistical models (even the best-performed RF-regional421

model) and counterfactual trends. The remaining differences could result from two dif-422

ferent factors: 1) the statistical model cannot capture the complex relationship between423

meteorology and pollutant concentrations, and/or 2) the differences between the obser-424

vational scenarios and counterfactual scenarios depend not only on the meteorological425

variability but also the anthropogenic emissions in their interaction with meteorology426

(i.e. impacts of meteorology on air quality also depends on the level of emissions).427

We quantify the potential magnitude of this second factor using our constant-emis428

approach. As the constant-emis approach captures the exact relationship between me-429

teorology and pollutant concentrations in GEOS-Chem, the error of the constant-emis430

approach is only associated with the second factor above and thus provides a concep-431

tual lower bound of the estimation errors that can be achievable by any statistical ap-432

proaches. Figure 3 shows the estimation errors of trend estimates using the constant emis-433

sions scenarios simulated by GEOS-Chem. We focus on the trends in summer O3 in the434

US and annual PM2.5 in China, for which we see the largest impacts of meteorological435

variability on the pollutant trends and the largest improvements in reducing estimation436

errors from the correction methods. Compared to the statistical models (e.g., MLR and437

RF-regional in figure 3A and 3C), trends evaluated using the constant-emis approach438

are very similar to the trends in the counterfactual scenarios. The national average er-439

ror of trend estimates is only 0.04 ppb/year for the O3 trends in the US (relative to 0.33440

ppb/year under MLR or 0.19 ppb/year under RF-regional), and only 0.08 µg m−3/year441

for the PM2.5 trends in China (relative to 0.91 µg m−3/year under MLR or 0.64 µg m−3/year442

under RF-regional).443

However, the estimation errors calculated above are non-negligible and can be large444

in certain regions. As shown in Figure 3B and 3D, the constant-emis approach gener-445

ally yields trend estimates biased by 10% relative to the counterfactual trends, but the446

errors can be up to 40% in certain areas. This error term is the result of ignoring how447

emissions could potentially influence the impacts of meteorology on the pollutant con-448

centrations – that is, the impacts of the same meteorological variability on concentra-449

tions may be different in the start year (with high emissions) compared to the end year450

(with low emissions).451

3.4 Application to observational data452

Figure 4 shows the regional trends in O3 in the US and trends in PM2.5 in China453

estimated from the GEOS-Chem simulations and the measured concentrations from sur-454

face monitoring networks (only grid cells that overlap with monitor locations are shown455
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Figure 3: Panels A and C show the histogram of estimation errors in trend estimates
assessed using MLR, RF-regional and constant-emis. Panels B and D show the percentage
of the errors assessed with the constant-emis method relative to the trends in the counter-
factual scenario (|βgc−βcount|/|βcount|). Panels B and D only show grid cells with a trend
in the counterfactual scenarios >0.2 ppb/year or >0.2 µg m−3/year; remaining grid cells
are shown in gray. Panels A and B illustrate the summer O3 trends in the US. Panels C
and D illustrate the annual PM2.5 trends in China.

here). As shown in figure 4A, how to correct for meteorological variability is important456

for attributing summer O3 trends to emissions reductions in the US. Based on measured457

concentrations, the regional average uncorrected O3 trend is -1.49 ppb/year and -1.15458

ppb/year in Midwest and Southern US, respectively, which overestimates the reductions459

in concentrations attributable to anthropogenic emissions changes. Correcting for the460

meteorological variability with MLR model yields regional average trend at -0.54 ppb/year461

in Midwest (a decrease by 53% in magnitude relative to uncorrected trends) and -0.71462

ppb/year in the Southern US (a decrease by 52%). RF-regional model further reduces463

the absolute magnitude of the declines in O3 attributable to emissions reductions to -464

0.02 ppb/year for Midwest and -0.40 ppb/year for the Southern US. Importantly, these465

patterns are consistent with the results from our model experiments in these regions. For466

example in the GEOS-Chem simulation, the RF-regional model also estimates a much467

less negative emissions-driven trend in the Southern US compared to the uncorrected468

case and MLR estimates. For the GEOS-Chem simulations, RF-regional estimates are469

39% smaller than MLR estimates, and this is comparable to the magnitude changes for470

the observational data (RF-regional estimates are 44% smaller than MLR). As the RF-471

regional model performs the best in recovering counterfactual trends in the GEOS-Chem472

simulations, this suggests RF-regional may also perform the best in recovering the un-473

derlying emission-driven trends when applying to the observational data.474
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Figure 4B shows the trends in PM2.5 concentrations estimated from the GEOS-475

Chem simulation and the observational data from China’s surface monitoring network476

using different correction methods. Based on the observational data, our analysis reveals477

that the choice of methods for meteorological correction can yield very different results478

for certain regions. Much smaller reduction of PM2.5 concentrations is attributed to an-479

thropogenic emissions changes in the North, Northeast and East of China using the RF-480

regional model, relative to the MLR estimates. For example, the average emissions-driven481

trend estimated from the observational data is -4.9 µg m−3/year in Beijing under the482

RF-regional model, compared with -9.6 µg m−3/year under the MLR model. These pat-483

terns are consistent with the patterns of the trend estimates estimated from our GEOS-484

Chem simulations with different statistical methods.485
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Figure 4: Trends in O3 in the US (panel A) and PM2.5 in China (panel B) estimated
from the observational data (red) and GEOS-Chem simulations (blue) under different
correction methods. Trends in pollutant concentrations are estimated at the monitor
level (for the observational data) or at the grid cell level (for GEOS-Chem simulations).
The point indicates the average value of the assessed trends of all monitors (or grid cells)
within a region. The error bars show the 10th and 90th percentile of the assessed trends
of all monitors/grid cells within a region. Panel A illustrates the summer O3 trends in
the US (unit: ppb/year). Panel B illustrates the annual PM2.5 trends in China (unit:
µg/m3/year). We classify the US states into four regions according to the US Census
Bureau and classify China’s provinces into six regions based on the structure of China’s
subnational electric grid.

4 Discussion486

We designed a model experiment that enables us to directly quantify the perfor-487

mance of different statistical models to evaluate the causal trends in pollutant concen-488

trations driven by anthropogenic emissions changes. Based on our evaluations of either489

PM2.5 or O3 trends across US and China during periods of recent emission declines, our490

analysis shows that widely-used MLR and GAM methods do not perform well in cor-491

recting for the meteorological variability and recovering simulated emissions-driven trends.492

We propose a random forest model that uses both local and regional meteorological fea-493

tures, which offers the best overall performance in recovering the emissions-driven trends494

across both species and countries. Applying this model to observational data suggests495

that estimates based on MLR or similar methods may overestimate the impacts of an-496
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thropogenic emissions changes on the decline of pollutant concentrations in certain re-497

gions in the US and China. However, the RF-regional method does not outperform all498

the other approaches in every location despite its better overall performance (see figures499

S13 and S14). This suggests that using multiple statistical approaches may be necessary500

to derive robust conclusions for attributing pollutant trends to emission changes.501

With our model experiments, we also quantify the estimation errors in assuming502

the emission impacts can be perfectly separated from the meteorological variability. These503

errors likely bound the estimation errors that can be achieved by any statistical correc-504

tions of meteorological variability with this assumption. In the future, more complex sta-505

tistical and machine learning methods could be applied to distinguish emissions- and meteorologically-506

driven changes, but attribution solely based on observed concentrations and meteorol-507

ogy will be limited by physical interactions between emissions and meteorology. We find508

that the estimation errors resulting from these interactions are overall much smaller com-509

pared to the estimation errors of the existing statistical methods, but can still be impor-510

tant for certain regions at certain times. Furthermore, the intertwined relationships be-511

tween emissions and meteorology are also much more complex in reality compared to our512

model experiments. For example, meteorology can also directly influence anthropogenic513

emissions (e.g., increased electricity consumption during extreme weather conditions (U.S.514

Energy Information Agency, 2019; He et al., 2020)). Therefore, the estimation errors that515

can be achieved by more flexible statistical models can potentially be even bigger than516

the errors quantified with our constant-emis approach.517

While the GEOS-Chem model provides us with a framework for causal experiments518

to test statistical methods, its use in our model experiments introduces some uncertainty519

and limitations. Specifically, our experiments assess the performance of statistical meth-520

ods in correcting for the meteorology-pollution relationships encoded in GEOS-Chem,521

which may differ from the complex relationships observed in the observational data. Sev-522

eral studies have shown that GEOS-Chem and similar models do not capture certain meteorology-523

pollution relationships in the observational data (e.g., temperature - O3 relationship (Porter524

& Heald, 2019) and influence of regional meteorological patterns (Fiore et al., 2009)).525

The relationships encoded in GEOS-Chem may be different from the underlying meteorology-526

pollution relationships in the following three ways: (1) parameters in GEOS-Chem that527

describe these relationships are uncertain; (2) the relationships in GEOS-Chem are in-528

correct or incomplete; and (3) the relationships in GEOS-Chem are deterministic com-529

pared to the potential stochastic underlying processes. While the parameterization schemes530

of the model may have little impact on our assessment of the statistical methods if the531

functional forms are correct, different functional forms may affect the relative performance532

of various statistical methods. The performance of any individual statistical method is533

likely to be worse in the real world compared to its ability to reproduce a determinis-534

tic meteorology-pollution relationship encoded in GEOS-Chem. Further model-based ex-535

periments could apply our methods to different atmospheric models in order to test if536

these conclusions differ by different models.537

Our research reveals multiple directions for future research to enhance our under-538

standing of the usage of statistical models to evaluate trends in pollutant concentrations539

under changing meteorological conditions. One key but challenging question is to bet-540

ter understand the estimation errors of these existing approaches, e.g. why the MLR model541

is able to correct for the meteorological variability in some locations but not others. In542

this paper, we only test a selection of methods based on their popularity in the exist-543

ing literature and propose a simple-to-use model (RF-regional). More complex models544

(such as convolutional neural networks) may offer better performance, but the estima-545

tion error will likely be bounded by the errors of the constant-emis approach. Our work546

only evaluates the statistical and machine learning models in expressions 1 and 2, which547

only represent one (popular) set of evaluations that performs location-specific trend es-548

timation with adjustments for meteorology and secular trends. However, other statis-549
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tical model specifications specifically targeted to questions of meteorological interaction550

or that permit borrowing information across locations may generate different results. A551

deeper investigation of the estimation error due to assuming perfect separation between552

meteorology and emission is also essential for understanding how we should interpret stud-553

ies that use these statistical methods. For example, further work could explore how these554

errors will vary by the magnitude of emissions reductions and the chemistry regimes. Our555

analysis suggests the relative performance of different methods is largely similar in mon-556

itoring data and the GEOS-Chem experiments (at least for certain regions). It is inter-557

esting to further explore how the patterns of performance might differ across different558

types of monitor locations and conditions.559

5 Recommendations for attributing trends to emissions changes560

Using statistical methods to causally infer relationships between simulated air pol-561

lutant concentrations and anthropogenic emissions is challenging, not to mention under-562

standing the drivers of observed air pollutants in the real world. Understanding the un-563

certainty of statistical models in characterizing the meteorology-pollution relationship564

is essential to evaluating the effectiveness of policy interventions with observational data.565

Here, we make several recommendations to researchers and policy makers based on our566

analysis.567

For those who aim to infer causal effects of emissions changes on air quality based568

on observational data on concentrations and meteorology, we recommend using multi-569

ple statistical methods to correct for the meteorological variability when evaluating the570

impacts of policies or interventions on air quality. From our two case studies, we find a571

relatively large variability between the trend parameters estimated by different statis-572

tical methods (especially at the grid cell or monitor level). Some methods perform bet-573

ter in certain locations but not in others (though RF-regional is the best-performing method574

overall). Using multiple approaches (linear/non-linear and at local/regional scale) may575

help to quantify uncertainty related to meteorology corrections. These findings also sug-576

gest that empirical analyses may benefit from considering the impacts of meteorologi-577

cal variability on air quality separately for each region or even for each monitor location578

(if data permits), instead of attempting to determine a general relationship between me-579

teorological variability and air pollution over a large spatial domain. Finally, analysts580

should be particularly cautious when using statistical methods to estimate impacts of581

anthropogenic emissions on air quality in regions where pollution variability is dominated582

by meteorologically-influenced environmental processes such as dust emissions, as we con-583

sistently show that typical statistical methods (in combination with the standard set of584

meteorological variables) do not work well in those regions.585

Due to the non-negligible estimation errors in recovering the counterfactual trends586

even with the best-performed statistical approach we test, we believe these statistical587

analyses are most useful in understanding the patterns of anthropogenic emissions on588

air quality when aggregated across larger spatial areas, rather than providing specific trends589

for individual monitor locations. There is a higher degree of consistency among the trend590

estimates across different methods when aggregated at regional level, but assessment at591

local level is more sensitive to method choices. The absolute magnitude of monitor-level592

trends need to be interpreted with caution, considering both the uncertainty from the593

statistical methods and also the limit of meteorological correction due to ignoring the594

interactions between meteorology and emissions.595

Because measured pollutant concentrations are subject to the influence of under-596

lying meteorological variability, many efforts have attempted to correct for the impacts597

of meteorological variability and use “meteorology-corrected” concentrations and trends598

to assist in evaluating the effectiveness of air quality policies. Our study evaluates ex-599

isting methods that aim to correct for the meteorological variability and finds many of600
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these methods do not perform well. This raises potential concerns about the use of “meteorology-601

corrected” concentrations as targets for policy evaluation. Meteorology-corrected con-602

centrations and trends remain useful metrics to quantify the influence of emissions. How-603

ever, a more comprehensive evaluation of the effectiveness of policy requires interpret-604

ing measurements with all available tools, ideally including both statistical analyses and605

physical models.606
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Supplementary methods844

Implementation of LASSO and RF845

As the incorporation of both local and regional features can quickly expand the di-846

mensionality of the feature space, we use the Least Absolute Shrinkage and Selection Op-847

erator (LASSO) and the Random Forest (RF) model to assess the importance of regional848

meteorological features. Both methods are commonly-used approach with good predic-849

tion performances with high dimensional data inputs, and are thus appropriate for the850

analysis with a large number of regional meteorological features. For these two meth-851

ods, we rewrite equation 1 as the following:852

yit = βobs
i × t+ gi(Xit, Zt,Wt) + εit (4)

where gi() denotes the functional form fitted by LASSO or RF. Xit again denotes853

the local meteorology features for grid cell i on day t. Zt denotes the regional scale me-854

teorology features including the meteorological features for all grid cells in the US on day855

t (98 cells in 4×5 degrees; we choose a relatively coarse resolution due to computational856

cost). Meteorological information in each location in the US may help explain the pol-857

lutant concentrations in grid cell i. In total, we have 10 local features (Xit) and 10×98=980858

regional scale features (Zt). Wt denotes the day and month variable to model the daily859

and monthly variability in pollutant that are unrelated to meteorological variability. For860

LASSO, we use month-of-year×day-of-month fixed effect (same as all the other meth-861

ods except for RF), and these fixed effects are not penalized in the LASSO regression.862

For RF, we use the month-of-year variable (from 1 to 12), and day-of-month variable (from863

1 to 31), due to the inefficient performance of RF working with large number of fixed864

effects. Thus, the difference between RF and the other methods may also come from the865

different choice of modeling monthly and daily variability.866

The coefficient βobs
i is obtained with the following procedure using the double ma-867

chine learning approach by Chernozhukov et al. (2018).868

(1) We first partition the time series of {yit, Xit, Zt, Wt} into 4 folds. We use 75%
of the data as training data and the remaining 25% for predictions. We train the follow-
ing two models on the training data:

yit = f(Xit, Zt,Wt)

t = g(Xit, Zt,Wt)

(2) We then apply models f(.) and g(.) to the prediction set to get predictions of869

yit and t for the rest 25% of the data. The above process is repeated four times to de-870

rive predictions for the entire time series (predictions denoted as ŷit and t̂).871

(3) We calculate the residuals of each model ỹit = yit − ŷit and t̃ = t − t̂. The
coefficient of interest βobs

i is then calculated as:

βobs
i =

∑
t t̃ỹit∑
t t̃t

this is equivalent to setting up a linear regression of ỹit ∼ t̃ and obtain the slope coef-872

ficients (as shown by Chernozhukov et al. (2018)).873

The hyper-parameters of RF and LASSO are tuned with 4-fold cross validation.874

We also perform two sensitivity analyses: 1) with a different spatial resolution of the re-875

gional scale features (2×2.5 degrees instead of 4×5 degrees), and 2) with different num-876

bers of folds to estimate the trend coefficients. Our results are similar across these sen-877

sitivity analyses (see figure S15).878
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The double machine learning framework involves a sample partition procedure (steps879

(1) and (2) above). This procedure, however, does not fit the purpose of including time880

fixed effects in the LASSO model (as randomly partitioned training and test sets could881

have very unbalanced number of observations from a given month-day pair). Therefore,882

step (1) and (2) are only implemented for the RF model, and coefficients of the LASSO883

model is directly derived from step (3) without sample splitting. This is okay for the LASSO884

model as the risk of “overfitting” has already been eliminated by using the tuned penal-885

izing factor (i.e. the hyper-parameters) derived from a 4-fold cross-validation.886
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SI tables and figures887
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Figure S1: Comparison between the annual PM2.5 (Panels A and C) and summer O3

(Panels B and D) concentrations measured by the monitoring network and GEOS-Chem
simulations in the US (2011-2017). Panels A and B show the trends in monitored con-
centrations (dots) and trends in the observational scenarios in GEOS-Chem simulations
(background) without meteorology corrections. Panels C and D show the Pearson correla-
tion coefficient (R) between the daily measured concentrations and simulated concentra-
tions.
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Figure S2: Comparison between the annual PM2.5 (Panels A and C) and summer O3

(Panels B and D) concentrations measured by the surface monitoring network and GEOS-
Chem simulations in China (2014-2017). Panels A and B show the trends in monitored
concentrations (dots) and trends in the observational scenarios in GEOS-Chem simula-
tions (background) without meteorology corrections. Panels C and D show the Pearson
correlation coefficient (R) between the daily measured concentrations and simulated con-
centrations.
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Figure S3: National total anthropogenic emissions in the US (2011- 2017). The emissions
data is derived from the national total emissions of criterion air pollutants reported by the
US EPA Air Emissions Inventory.
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Figure S4: National total anthropogenic emissions in China (2013- 2017). The emissions
data is derived from the Multi-resolution Emission Inventory (MEIC).
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Model Annual PM2.5 in the US Summer O3 in the US

average error
median

relative error

cells with

relative error

>50%

average error
median

relative error

cells with

relative error

>50%

No correction 0.066 28% 27% 0.67 154% 84%

MLR (5 features) 0.092 43% 44% 0.38 84% 71%

MLR (10 features) 0.083 40% 40% 0.33 71% 64%

Quadratic 0.088 40% 42% 0.29 60% 58%

Cubic 0.075 39% 41% 0.28 60% 58%

Spline 0.076 40% 41% 0.28 61% 59%

GAM 0.076 40% 43% 0.29 61% 58%

RF-local 0.067 33% 39% 0.34 78% 70%

LASSO-regional 0.078 31% 33% 0.31 68% 65%

RF-regional 0.047 25% 23% 0.19 46% 47%

Table S1: Estimation errors of trend estimates in the US under different correction meth-
ods. The average estimation errors, median relative error, and fraction of grid cells with
relative error greater than 50% are shown in the table. Relative errors are calculated as
the ratio of estimation error to the trend estimate in the counterfactual scenario. MLR
(5 features) only use temperature, precipitation, humidity, and surface wind speed (U,V
directions) as the meteorological features.

Model Annual PM2.5 in China Summer O3 in China

average error
median

relative error

cells with

relative error

>50%

average error
median

relative error

cells with

relative error

>50%

No correction 0.89 224% 77% 0.43 95% 74%

MLR (5 features) 1.07 193% 80% 0.42 90% 68%

MLR (10 features) 0.90 159% 79% 0.41 85% 68%

Quadratic 1.00 142% 82% 0.36 76% 62%

Cubic 1.07 143% 82% 0.34 68% 59%

Spline 1.08 140% 84% 0.33 69% 59%

GAM 1.06 139% 82% 0.35 72% 59%

RF-local 0.99 172% 82% 0.31 64% 58%

LASSO-regional 0.83 184% 75% 0.46 98% 73%

RF-regional 0.64 152% 67% 0.28 61% 58%

Table S2: Estimation errors of trend estimates in China under different correction meth-
ods. The average estimation errors, median relative error, and fraction of grid cells with
relative error greater than 50% are shown in the table. Relative errors are calculated as
the ratio of estimation error to the trend estimate in the counterfactual scenario. MLR
(5 features) only use temperature, precipitation, humidity, and surface wind speed (U,V
directions) as the meteorological features.
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Figure S5: Trend estimates of daily annual PM2.5 (Panels A and B) and summer O3 (C
and D) in the US. Panels A and C show trend estimates under the counterfactual scenario
(βcount). Panels B and D show the estimation errors of trend estimates under different
correction methods compared with the counterfactual scenarios (βobs − βcount). The aver-
age of the absolute error for each method is shown in the figure. Unit of trend estimate is
µg m−3/year for PM2.5 or ppb/year for O3.
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Figure S6: Deviations of meteorological features from the 7-year average in the US
(South and Midwest). The deviation is quantified in the units of standard deviation (SD)
across the 7-year period. Zero indicates the 7-year average. This plot shows the summer
time average of daily MDA8 meteorological variables for each year aggregated over South
and Midwest US.
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Figure S7: Trend estimates of daily annual PM2.5 (Panels A and B) and summer O3 (C
and D) in China. Panels A and C show trend estimates under the counterfactual scenario
(βcount). Panels B and D show the estimation errors of trend estimates under different
correction methods compared with the counterfactual scenarios (βobs − βcount). The aver-
age of the absolute error for each method is shown in the figure. Unit of trend estimate is
µg m−3/year for PM2.5 or ppb/year for O3.
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Figure S8: Concentrations of component species of PM2.5 in China (average across 2013-
2017). The figure shows concentrations of sulfate (SO4), nitrate (NIT), ammonium (NH4),
black carbon (BC), organic carbon (OC), secondary organic aerosol (SOA) and dust.
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Figure S9: Counterfactual trends of component species of PM2.5 in China. The figure
shows counterfactual trends of total PM2.5, anthropogenic PM2.5 (total PM2.5 excluding
dust and sea salt), sulfate (SO4), nitrate (NIT), ammonium (NH4), black carbon (BC),
organic carbon (OC), secondary organic aerosol (SOA) and dust.
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Figure S10: Differences between counterfactual trends and trends evaluated under MLR
(βMLR − βcount) of component species of PM2.5 in China. The figure shows estimation
errors of total PM2.5, anthropogenic PM2.5 (total PM2.5 excluding dust and sea salt),
sulfate (SO4), nitrate (NIT), ammonium (NH4), black carbon (BC), organic carbon (OC),
secondary organic aerosol (SOA) and dust.
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Figure S11: Differences between counterfactual trends and trends evaluated under RF-
regional (βRF−regional−βcount) of component species of PM2.5 in China. The figure shows
estimation errors of total PM2.5, anthropogenic PM2.5 (total PM2.5 excluding dust and
sea salt), sulfate (SO4), nitrate (NIT), ammonium (NH4), black carbon (BC), organic
carbon (OC), secondary organic aerosol (SOA) and dust.
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Figure S12: Histograms of the estimation errors of trend estimates of annual PM2.5 in
China under two implementations of the RF-regional method. The upper panels (Com-
bined) show results of fitting RF models to the combined concentrations of PM2.5 to
directly estimate trends (the main results). The lower panels (By species) show results of
fitting RF models to individual PM2.5 species and then combine predictions to estimate
trends. The left panels show results for total PM2.5 and right panels show results for the
anthropogenic PM2.5. The average estimation errors for each implementation is shown in
the figure.
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Figure S13: This figure shows which method estimates a trend closest to the trend esti-
mate in the counterfactual scenario for each grid cell.
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Figure S14: This figure shows which method estimates a trend closest to the trend esti-
mate in the counterfactual scenario for each grid cell.
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Figure S15: Histograms of the estimation errors of trend estimates of summer O3 in
the US under different implementations of the RF-regional method. From left to right:
Main (the main results), More features (includes 9 extra meteorological features), 2x2.5
(uses regional features with spatial resolution of 2×2.5◦, instead of 4×5◦), fold=2 (uses 2
folds for data-splitting and cross-fitting), fold=8 (uses 8 folds for data-splitting and cross-
fitting). The average of the absolute error for each implementation is shown in the figure.
This figure only uses a random subset of all the grids in the US due to the computational
cost.
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