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Key Points: 7 

● Numerical model simulating chemical weathering and grain detachment in rocks with 8 

different textural patterns. 9 

● Weathering rate increases with increasing density of discontinuities.  10 

● Mean size of detached fragments decreases with increasing tortuosity of the textural 11 

patterns. 12 

 13 

Abstract 14 

Rock texture has a critical influence over the way rocks weather. The most important textural 15 

factors affecting weathering are grain size and the presence of cracks and stylolites. These 16 

discontinuities operate as planes of mechanical weakness at which chemical weathering is 17 

enhanced.  However, it is unclear how different rock textures impact weathering rates and the 18 

size of weathered grains. Here, we use a cellular automaton numerical model to simulate the 19 

weathering of rocks possessing grain boundaries, cracks, and stylolites. We ran simulations of 20 

both synthetic patterns as well as natural patterns of cracks, and stylolites. We found that for all 21 

patterns, weathering rates increase with the density of discontinuities. When the abundance of 22 

discontinuities was lower than ~25%, the synthetic patterns weathering rate followed the order: 23 

grid> honeycomb> Voronoi> brick-wall. However, for higher values of discontinuity density, all 24 

patterns exhibit similar weathering rates. We also tested the impact of the tortuosity of the 25 

pattern on weathering rates, and found rates to decrease with increasing tortuosity. In addition, 26 

we show that the rock textural pattern strongly impacts the detached grain size distributions. 27 

Rocks with an initial monomodal grain size distribution produce weathered fragments that are 28 
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normally distributed. In contrast, rocks with an initial log-normal size distribution produce 29 

weathered grains that are log-normally distributed. For the natural rock patterns we tested, 30 

weathering changed the initial multimodal grain size distributions to lower modality 31 

distributions.  32 

Plain Language Summary 33 

Rocks contain discontinuities such as voids and cracks. The number of these discontinuities and 34 

the patterns they form influence the resistance of rocks to chemical dissolution and mechanical 35 

decomposition. In this study, we built a computerized model that simulates how rocks with 36 

different patterns of discontinuities respond to contact with water. We found that rocks with a 37 

higher proportion of discontinuities eroded more rapidly than rocks with lower concentrations of 38 

discontinuities. In addition, we found that as the patterns became more interconnected, the 39 

weathering rate increased.  40 

 41 

1 Introduction 42 

Both natural and anthropogenic processes are affected by the rate at which rocks weather. 43 

Weathering rates impact the development of landscapes, the formation of soils, the fluid flow in 44 

aquifers and petroleum reservoirs, and the durability of buildings and monuments (Brantley, 45 

2008; Dixon et al., 2012; Wilson, 2004). In addition, weathering rate plays a significant role in 46 

the global carbon cycle (Li & Elderfield, 2013; Torres et al., 2016), regulating atmospheric CO2 47 

on geological time scales (Them et al., 2017). Artificially accelerated weathering has even been 48 

suggested as a way of mitigating present-day anthropogenic carbon emissions (Beerling et al., 49 

2020; Strefler et al., 2018; Torres et al., 2016; Xu & Liu, 2010). 50 

Weathering rates are affected by both chemical and physical mechanisms. Rocks 51 

comprising minerals that are susceptible to chemical processes, such as dissolution, oxidation, 52 

and hydrolysis are expected to weather more rapidly than rocks comprising inert minerals (Buss 53 

et al., 2008; Critelli et al., 2014; Goldich, 1938; Maher et al., 2009; Nesbitt & Young, 1989; 54 

White & Buss, 2014). In addition, physical processes such as frost shattering, thermal expansion, 55 

and unloading (Eppes & Keanini, 2017; Hall, 1999; Matsuoka & Murton, 2008; Molnar, 2004; 56 

Park et al., 2015) can induce fracturing that causes mechanical weathering. Complicating matters 57 
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further, chemical and physical processes are often coupled (Anderson et al., 2004; Buss et al., 58 

2008; Fletcher et al., 2006; Larsen et al., 2014; Røyne et al., 2008). As the density of cracks 59 

increases, more mineral surfaces are exposed to chemical reactions. At the same time, chemical 60 

dissolution along these cracks increases the overall porosity and weakens the rock mechanically 61 

(Brantley et al., 1990; Singhal & Gupta, 2010), accelerating physical weathering. 62 

At the microscopic scale, weathering rates are affected by discontinuities that include 63 

crystalline defects, crystal edges and corners, and grain boundaries (Holdren & Speyer, 1987; 64 

Trindade Pedrosa et al., 2019). For example, the rate of dissolution along the edges and corners 65 

of a calcite spar was measured to be 1.7-3.6 faster than of the mineral face (Noiriel et al., 2019). 66 

In polycrystalline rocks, grain boundaries were found to be an order of magnitude more reactive 67 

than the bulk mineral (Bray et al., 2015; Emmanuel, 2014; Jonas et al., 2014). In studies focused 68 

on rock weathering at the submicron scale, enhanced dissolution at grain boundaries was shown 69 

to cause the mechanical detachment of particles into the fluid phase (Emmanuel & Levenson, 70 

2014; Fischer & Luttge, 2017; Krklec et al., 2016; Silveira & Aarão Reis, 2013). Such chemo-71 

mechanical rock weathering was observed in micritic limestone, (Levenson & Emmanuel, 2016), 72 

however, particle detachment can occur in various types of rocks with larger grain sizes and 73 

different mineral compositions (Israeli & Emmanuel, 2018; Krklec et al., 2013; Levenson & 74 

Emmanuel, 2016). 75 

At macroscopic scales, rock weathering is accelerated by other types of discontinuities  76 

such as cracks, joints, fractures, and stylolites (Heap et al., 2018; Singhal & Gupta, 2010), which 77 

operate as planes of mechanical weakness and enhanced chemical weathering (Eppes & Keanini, 78 

2017; Lei et al., 2017; Pacheco & Alencoão, 2006). For example, Røyne et al. (2008) showed 79 

that outcrop weathering is controlled by continual fracturing and production of surface area, 80 

which allows fluids to penetrate deeper into the rock and accelerate weathering rates.  81 

While discontinuities are known to enhance weathering rates, the impact of different 82 

patterns and textures remains unclear.  Discontinuities often show spatial ordering and fractal 83 

behavior (Babadagli, 2020; Ghosh & Daemen, 1993; Healy et al., 2017; Jafari & Babadagli, 84 

2012; Liu et al., 2015), appearing in several superimposed networks reflecting the geological 85 

history of the rocks (Josnin et al., 2011; Singhal & Gupta, 2010). Typical patterns include 86 

conjugated sets of fractures, grid and ladder-like patterns, polygonal joints, and columnar joints 87 
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(Chan et al., 2008; Josnin et al., 2011; Singhal & Gupta, 2010). Furthermore, similar patterns can 88 

have different levels of connectivity depending on the spacing, orientation, length, and density of 89 

the discontinuities. The convolution of these factors can be represented by tortuosity, which is a 90 

measure of the geometric complexity of the pathways by which reactive fluids penetrate the 91 

rock. High tortuosity is expected to lead to reduced weathering rates, while low tortuosity could 92 

intensify weathering.  93 

Here, we develop a cellular automaton model that simulates coupled chemo-mechanical 94 

weathering processes of rocks with different kinds of discontinuities and textural patterns. 95 

Specifically, we analyze the impact of the density and tortuosity of the discontinuities on the 96 

weathering rate. In addition, we examine how these parameters impact the size distribution of 97 

weathered rock fragments. We also discuss the implications for both surface and subsurface 98 

processes including soil and regolith production. 99 

2 Methods and data 100 

2.1 Model structure 101 

To simulate the effects of chemo-mechanical weathering on rocks with different textures 102 

and grain size distributions, we used a model based on that described by Israeli and Emmanuel 103 

(2018). A 2-D cross-section of the rock was represented using a domain with 560*420 elements. 104 

Each element represented either a solid mineral, a discontinuity, or a fluid phase and is assigned 105 

a characteristic value. 106 

In the simulations, chemical weathering only occurs in elements neighboring the fluid 107 

phase. In every time step, the probability that an element will dissolve depends both on the 108 

characteristic value of the element and the number of neighboring fluid elements. The dissolved 109 

elements are then reassigned as a fluid phase, and the domain is scanned for interconnected 110 

elements that are fully surrounded by fluid. These surrounded elements are considered to be 111 

detached physically and their elements are also reassigned to the fluid phase (Figure 1).  112 

The discontinuities in the model are intended to represent grain boundaries, joints, cracks, 113 

or stylolites which are partially filled with cement. Thus, the discontinuities have an intrinsic 114 

strength that binds the rock together but they also dissolve more rapidly than the bulk rock, and 115 

this effect is included in the model.  116 
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The data from every simulation was saved as an object comprised of all the information 117 

from the simulation, including the rock’s initial properties and the dynamic properties of the rock 118 

in every step. These properties include an image of the rock in every step, a list of pixels that 119 

were dissolved, location, and dimensions of detached fragments in every step. Using this object-120 

oriented approach in Matlab™, each simulation takes several minutes on a standard PC and the 121 

data is uploaded into a MySQL database facilitating analysis of the datasets. 122 

2.2 Patterns of discontinuities 123 

In our model, we used two kinds of discontinuity patterns: synthetic and natural (Figure 124 

2). Four different synthetic patterns were tested: (i) regular grid jointing; (ii) brick wall jointing; 125 

(iii) hexagonal jointing, simulating columnar patterns common in basalts; (iv) Voronoi 126 

tessellation, representing a coarse-grained crystalline rock. Weathering was also simulated for 4 127 

natural rock patterns, obtained by binarization of outcrop images: (i) diagonal cracks; (ii) 128 

orthogonal cracks; (iii) stylolites oriented perpendicular to the weathering front; (iv) stylolites 129 

oriented sub-parallel to the weathering front. The crack patterns are taken from two locations: 130 

drone images from McDonald limestone in Scotland (Healy et al., 2017) and a limestone outcrop 131 

at the south margin of the Bristol Channel Basin, UK (Belayneh & Cosgrove, 2004). The 132 

stylolite patterns are derived from images of carbonate rocks from Israel, reported by Laronne 133 

Ben-Itzhak et al. (2014). 134 

2.3 Model calculations 135 

In the initial state of our simulations, we define a grain or block as a region bounded by 136 

discontinuities. We also define the discontinuity density as the proportion of discontinuity pixels 137 

in the domain. For natural rock patterns in our simulations, this varies in the range 2% to 30%, 138 

while for synthetic patterns this varies from 7% to 40%. For natural patterns, different values of 139 

discontinuity density were obtained by cropping the images. In simulations using synthetic 140 

patterns, discontinuity density is controlled by the number of grains in the domain: increasing the 141 

number of grains increases the discontinuity density. 142 

Six different realizations were carried out for each pattern type, and a total of ~6000 143 

simulations were completed. At each step, we calculated the number of elements removed by 144 

chemical weathering and by mechanical weathering. The dimensions and locations of each 145 

detached grain were recorded. The available reactive surface in every time step was also 146 
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calculated, based on the location of the pixels that neighbor the reactive fluid. The data were then 147 

analyzed to assess the weathering rate and the grain size distribution of the detached fragments. 148 

When calculating the grain size distributions, we only considered detached clusters larger than 149 

10 pixels, and the amplitude of each size bin represents the cumulative number of pixels of the 150 

individual grains within the bin.  This approach is similar, but not identical, to grain size 151 

distributions determined by mass in unconsolidated sediments and soils (Blott & Pye, 2001; 152 

Konert & Vandenberghe, 1997). 153 

For our model domains, we also calculated the tortuosity of the discontinuity patterns. 154 

There are several different definitions of tortuosity (Hunt & Sahimi, 2017), and here, we adapted 155 

the definition of  Cooper et al. (2016) based on the convolution of diffusive transport flow paths: 156 

(1)  τ =  ϵ
𝐷

𝐷eff , 157 

where 𝜖 is the discontinuity density, 𝐷 is the intrinsic diffusivity of the discontinuity network, 158 

while 𝐷eff is the effective diffusivity through the bulk rock. We used the Tau Factor Matlab™ 159 

application (Cooper et al., 2016) to calculate the tortuosity based on our 2D images.   160 

 161 

3 Results and discussion 162 

3.1 Impact of discontinuity density on rock weathering rates 163 

For all the rock patterns we tested, we found weathering rates to increase as the 164 

discontinuity density increased (Figure 3). This result is not surprising since the dissolution rate 165 

along the discontinuities is more rapid than the dissolution rate of the bulk rock. Moreover, this 166 

is consistent with field and experimental observations of weathering rates in fractured rocks 167 

(Eppes & Keanini, 2017; Røyne et al., 2008).  168 

Our simulations also show that the type of discontinuity pattern has a significant impact 169 

on weathering rates (Figure 3), particularly at discontinuity densities <25%. For the synthetic 170 

patterns, at any given value of discontinuity density, the rates followed the order: grid> 171 

honeycomb> Voronoi> brick wall. In natural rock patterns, the order was less clear, although 172 

weathering in orthogonal cracks was faster than in diagonal cracks, and weathering in 173 

perpendicular stylolites was faster than in parallel stylolites. In addition, synthetic patterns 174 

generally weathered faster than natural rock patterns. This is probably due to the irregular nature 175 

of natural patterns and their inherently lower connectivity. 176 
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At discontinuity densities >25%, the weathering rates of all the patterns begin to 177 

converge. This may be because at low discontinuity densities, the tortuosity of the pathways and 178 

their low connectivity acts as a limiting factor. As the discontinuity density increases, 179 

connectivity is expected to increase, facilitating the advance of the weathering front.  Although 180 

the discontinuity density is a critical parameter in determining weathering rates, our results 181 

suggest that additional parameters related to the geometry of the patterns are also likely to impact 182 

the way rocks weather. Specifically, for patterns in which the pathways are highly tortuous and 183 

poorly connected, rates are expected to be slower.  184 

3.2 Impact of tortuosity on weathering rates 185 

In the simulations of synthetic rocks, each pattern type showed a decrease in weathering 186 

rate with increasing tortuosity (Figure 4a). Moreover, the rates grouped into two distinct trends: 187 

(i) grid and brick wall, and (ii) honeycomb and Voronoi.  This is probably due to the similarity in 188 

the geometry of the patterns within each trend. By contrast, for natural rock patterns, there is no 189 

clear dependence of weathering rate on tortuosity for individual pattern types (Figure 4b). This 190 

could be related to the irregularity and anisotropy of discontinuities in natural patterns, which 191 

can cause patterns with identical tortuosities to behave differently. In addition, the widely 192 

varying discontinuity densities in the natural patterns could also mask the apparent impact of 193 

tortuosity.  194 

To isolate the impact of tortuosity, we conducted a numerical experiment with 195 

simulations of synthetic patterns in which tortuosity changed systematically while maintaining 196 

the same level of discontinuity density (Figure 5). Starting with a regular grid, we introduced an 197 

offset in alternating layers to create brick wall patterns, which increased the tortuosity. In this 198 

method, the tortuosity varied from 1.95-2.75. In each offset, we ran six simulations with 3 199 

different initial grain sizes: 2160, 234, and 108 pixels. 200 

Our results show a near-linear decrease in the weathering rate as the tortuosity increases 201 

from 1.95 to 2.75 (Figure 6) for all the three grain sizes tested. Overall, the reduction in rate was 202 

33%, 21%, and 27% for the 2160, 234, and 108 grain size simulations, respectively. This 203 

significant effect means that in addition to mineralogy and grain size, the tortuosity of the 204 

discontinuity pattern is likely to be a critical factor in determining the weathering rate in real 205 

rocks. 206 
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3.3 Impact of discontinuity density and tortuosity on size of detached grains: 207 

We found the mean detached grain size decreases non-linearly with increasing 208 

discontinuity density for both synthetic and natural patterns (Figure 7). For the synthetic patterns, 209 

the detachment grain size drops by approximately 90% as the discontinuity density increases 210 

from 8% to 25% (Figure 7a). For natural patterns, there is a significant level of variability and 211 

the trend is far less clear (Figure 7b). This is most likely a result of the differences between the 212 

initial conditions in the synthetic patterns and those in the natural patterns: in the synthetic 213 

patterns, the initial grain sizes are similar for any given discontinuity density, while in natural 214 

patterns, the initial grain size varies significantly. 215 

The overall reduction of the mean detached fragment size with increasing discontinuity 216 

density is caused by two factors. The first is that increasing discontinuity density leads to a 217 

reduction in the initial grain size, which results in smaller detached grains. The second is that as 218 

the discontinuity density increases, the chemical weathering rate also increases, causing the 219 

grains to undergo more dissolution prior to detachment.  220 

To test if tortuosity plays a role in the size of detached grains, we analyzed the results of 221 

the offset experiment described in Section 3.2 and found that the mean detachment size 222 

decreases with increasing tortuosity (Figure 8). This is because in patterns with higher tortuosity, 223 

chemical dissolution has longer time to act and reduce the size of the grains prior to detachment. 224 

This effect can be seen in the simulation snapshots in Figure 5: detaching grains in the grid 225 

simulation are larger than the detaching grains in the offset simulations.  226 

3.4 Impact of textural patterns on the size distribution of weathered grains 227 

In all the rock patterns we tested, the grain size distribution of detached blocks was 228 

influenced by the rock textural patterns. For the synthetic patterns possessing an initial uniform 229 

grain size (grid, honeycomb, brick-wall), the detached grains showed a normal size distribution 230 

(Figure 9 a-c). By contrast, for Voronoi patterns, the detached grain size distribution was log-231 

normal, similar to the initial grain size distribution (Figure 9d). For the natural rock patterns we 232 

tested (stylolites and cracks), the initial block size distributions were multimodal. However, the 233 

size distribution of the detached fragments showed reduced modality (Figure 10). Our results are 234 

consistent with the findings of Palomares et al. (1993) who showed that rocks with similar initial 235 

grain sizes fragment mainly along their uniformly distributed discontinuities, thus providing 236 
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grains of uniform size, in contrast to rocks with anisotropic fabrics that do not disintegrate 237 

uniformly.  238 

Grain size distributions of weathered grains strongly influence soil permeability and soil 239 

erosion (Cohen et al., 2015). Soils with a wide range of grain sizes are less permeable and erode 240 

less readily than soils with uniform grain size distributions (Cohen et al., 2015). Thus, we expect 241 

rocks with initial grid-like, or honeycomb discontinuity patterns to produce relatively uniform 242 

grain size distributions that form soils with higher permeabilities. By contrast, rocks with 243 

stylolites and cracks might be expected to produce soils that form impermeable layers.  244 

Although there is significant variability, the grain size distribution of many soils and 245 

sediments often has a log-normal distribution (Gardner, 1956; Wagner & Ding, 1994). In our 246 

simulations, the only pattern that weathered into fragments with log-normal distributions is the 247 

Voronoi pattern. These patterns are common in the polycrystalline rocks that provide much of 248 

the weathered material to sediments, and it is likely that the log-normal distribution in sediments 249 

is influenced by the initial grain size distribution of the weathered rock. However, transport 250 

processes also strongly affect the size distributions of sediments, (Hunt & Sahimi, 2017), and we 251 

therefore expect the discontinuity patterns to have the strongest impact on the distribution of 252 

sediments that are relatively close to the source rock, such as in fluvial fans. 253 

 254 

4 Conclusions 255 

In this study, we used a numerical model that incorporates both chemical and mechanical 256 

weathering to investigate the impact of rock texture on weathering rate and the size of detached 257 

grains. Our results indicate that the weathering rate increases with increasing densities of 258 

discontinuities in the rock. We also found that increasing the tortuosity of the patterns lead to 259 

decreasing weathering rates. Moreover, we found a strong impact of texture on the detached 260 

grain size distribution, and that higher discontinuity densities leads to smaller detached blocks. 261 

This has practical implications for risk assessment near cliffs or stone edifices: rocks containing 262 

stylolites with spacings of several centimeters could present less of a risk than rocks containing 263 

fractures with spacings of tens of centimeters. 264 

The model we present here is a preliminary attempt to simulate the combined effects of 265 

chemical and mechanical weathering, and we can identify some limitations to our approach. Our 266 
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simulations compare textures of different scales: the individual grains comprising a rock are 267 

often micrometer or millimeter in scale, while joints and stylolites are often present at the 268 

centimeter and meter-scale. Moreover, the time and spatial scales in the model are at present 269 

arbitrary, which severely limits its predictive power. Calibrating the model, however, requires 270 

reliable field data, which are difficult to obtain because of the long time scales associated with 271 

weathering. Future work that focuses on improving the model by comparison with field-based 272 

measurements could provide solutions to some of these challenges. 273 
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Figure 1: 

 

  

Figure 1. Simulation of fluid-rock interaction. The bulk rock components are marked in yellow, rock discontinuities 

in black, and fluid in white. Cross sections of the rock are shown at 3 stages of the simulation: (a) initial state; (b) 

Step 220 and (c) Step 221. Chemical weathering dissolves the rock minerals slower than the discontinuities between 

rock clusters. When a cluster is surrounded by fluid it detaches from the surface and is removed from the 

simulation. Note that the black discontinuities dissolve more rapidly than the bulk rock. 
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Figure 2.  

 

  

 

Figure 2. Examples of synthetic and natural rock patterns used in the simulations. The upper row represents 

synthetic rock textures of a grid (a), brick-wall (b), honeycomb (c) and realistic polycrystalline rock (Voronoi, d). 

The lower row is our model representation for natural rock images of diagonal cracks (e), orthogonal cracks (f), 

perpendicular stylolites (g), and parallel stylolites (h). 
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Figure 3. 

 

 

  

 

Figure 3. Weathering rate as a function of discontinuity density in synthetic (red) and natural (blue) patterns. 

Each of the synthetic patterns shows a linear increase in weathering rate with the density of discontinuities. In the 

natural rock patterns, the trend is less clear. At lower discontinuity density, the weathering rate exhibits a strong 

dependence on the pattern. 
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Figure 4. 

  

Figure 4. Weathering rate as a function of tortuosity in (a) synthetic patterns and (b) and natural patterns. In 

the synthetic patterns there are two distinct groups. In the synthetic patterns, there are two distinct trends, in 

contrast to the natural patterns, which show no clear relationship.  
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Figure 5. 

  

Figure 5. Snapshots of 3 simulations with different offsets and tortuosities. Each image shows the times step 

directly preceding a grain detachment event. The initial grain size is µ0=2160 pixels. Note the decrease in size of 

detached grains and in the difference in patterns of penetration of the reactive fluid into the rock. In addition, for 

the lowest level tortuosity the reaction front advances much more rapidly than at higher levels of tortuosity.   
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Figure 6. 

  

Figure 6. Weathering rate versus tortuosity in simulations with offset from grid (0% offset) to brick-wall 

(50% offset) and back to grid (100% offset), in three decreasing initial grain sizes µ0=2160 pixels (black), 

µ0=234 pixels (blue) and µ0=108 pixels (red). 
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Figure 7. 

  

Figure 7. Impact of discontinuity density on mean detachment size in (a) synthetic and (b) natural patterns. The 

synthetic patterns show a non-linear reduction in detachment grain size with increasing discontinuity density. In the 

natural patterns, the discontinuity abundance is less systematic, but the trend is similar.  
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Figure 8. 

  

Figure 8. Mean detachment size as a function tortuosity in offset simulations for 3 initial grain sizes pixels 

(a) 2160 pixels; (b) 234 pixels; and (c) 108 pixels. 
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Figure 9. 

  

 

Figure 9. Initial grain size distribution and size distribution of detached grains for synthetic rock patterns: (a) grid; 

(b) brick-wall; (c) honeycomb; and (d) Voronoi patterns. The initial distribution is shown by the solid red line, with 

the mean initial grain size indicated by the dashed red line. The standard deviation from the mean is shown by the 

shaded region. The size distribution of the detached grains is indicted by the solid gray line. The mean detached 

grain size is shown by the dashed gray line, and the standard deviation from the mean is indicated by the area shaded 

in gray.  
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Figure 10. 

 

Figure 10. Initial grain size distribution and size distribution of detached grains for natural rock patterns: (a) diagonal 

cracks; (b) orthogonal cracks; (c) perpendicular stylolites; and (d) and parallel stylolites. The initial distribution is shown 

by the solid red line, with the mean initial grain size indicated by the dashed red line. The standard deviation from the 

mean is shown by the pink shaded region. The size distribution of the detached grains is indicted by the solid gray line. 

The mean detached grain size is shown by the dashed gray line, and the standard deviation from the mean is indicated 

by the area shaded in gray. The weathering process decreases the modality of the distribution in all tested natural 

patterns. 


