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Key Points: 18 

• ORCHIDEE terrestrial biosphere model drastically underestimates dryland mean annual 19 

net CO2 fluxes and their inter-annual variability (IAV) 20 

• Optimizing phenology, carbon allocation, and respiration parameters are crucial for 21 

capturing net CO2 flux mean and IAV 22 

• Models need to be optimized against dryland CO2 flux data to achieve accurate 23 

predictions of dryland’s role in global C cycle variability   24 
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Abstract 25 

Dryland ecosystems occupy ~40% of the land surface and are thought to dominate global carbon 26 

(C) cycle inter-annual variability (IAV). Therefore, it is imperative that global terrestrial 27 

biosphere models (TBMs), which form the land component of IPCC earth system models, are 28 

able to accurately simulate dryland vegetation and biogeochemical processes. However, 29 

compared to more mesic ecosystems, TBMs have not been widely tested or optimized against in 30 

situ dryland ecosystem CO2 fluxes. Here, we address this gap using a Bayesian data assimilation 31 

system and 89 site-years of daily net CO2 flux (net ecosystem exchange - NEE) data from 12 32 

southwest US Ameriflux sites spanning forest, shrub and grass dryland ecosystems, to optimize 33 

the C cycle related parameters of the ORCHIDEE TBM. We find that the default (prior) model 34 

drastically underestimates both the mean annual NEE at the high elevation forested mean C sink 35 

sites and the NEE IAV across all sites. By testing different assimilation scenarios, we showed 36 

that optimizing phenology parameters are particularly useful in improving the model’s ability to 37 

capture both the magnitude and sign of the NEE IAV. At the high elevation forested sites, 38 

optimizing parameters related to C allocation, respiration and biomass and soil C turnover 39 

reduces the model underestimate in simulated mean annual NEE. Our study demonstrates that all 40 

TBMs need to be calibrated specifically for dryland ecosystems before they are used to 41 

determine dryland contributions to global C cycle variability and long-term carbon-climate 42 

feedbacks. 43 

1 Introduction 44 

Terrestrial ecosystems currently take up ~30% of anthropogenic CO2 emissions, thus 45 

acting as a substantial global carbon (C) sink (Fu et al., 2017) and providing a critical reduction 46 

in the rate of global warming. However, while we know the magnitude of the global C sink to a 47 

good degree of certainty, our knowledge of other components of the global C cycle are more 48 

uncertain. One such knowledge gap is which ecosystems, and/or which processes, are driving 49 

inter-annual variability (IAV) in land net C uptake (Fu et al., 2017). Improving our 50 

understanding of the IAV characteristics of the global terrestrial C cycle is key to being able to 51 

forecast the future of the land C sink and long-term biosphere-climate feedback (Cox et al., 52 

2013).   53 
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Recent studies have pointed to drylands (arid and semi-arid ecosystems) as the dominant 54 

driver of global terrestrial C cycle IAV (Ahlström et al., 2015; Poulter et al., 2014). High annual 55 

variability in net CO2 exchange in response to plant-available moisture is observed in site-based 56 

flux studies in these regions (Biederman et al., 2017; Cleverly et al., 2016; Haverd et al., 2017; 57 

Scott et al., 2015). However, the global terrestrial biosphere models (TBMs) used in these recent 58 

C cycle IAV regional attribution studies have often only been extensively evaluated against data 59 

in more mesic ecosystems (e.g. (Peng et al., 2015; Piao et al., 2013; Raczka et al., 2013; Schaefer 60 

et al., 2012)), although studies have evaluated models against eddy covariance flux data from 61 

Australian dryland sites (Haverd et al., 2013a; Whitley et al., 2016). TBM optimization (e.g. 62 

parameter calibration) has also only typically been carried out using temperate and boreal site 63 

data (Haverd et al., 2013a; Kuppel et al., 2014). Therefore, there remains a relative gap in model 64 

benchmarking and optimization using dryland C cycle related data. 65 

Model benchmarking and optimization studies that have been performed in dryland 66 

regions indicate considerable model-data discrepancies in vegetation dynamics, C and water 67 

fluxes (Haverd et al., 2013b; MacBean et al., 2015; Renwick et al., 2019; Trudinger et al., 2016; 68 

Whitley et al., 2016; Traore et al., 2014). MacBean et al. (2015) showed that calibrating the 69 

phenology parameters of the ORCHIDEE TBM (vAR5) using satellite NDVI at global scales 70 

could not account for model errors in semi-arid region seasonal cycle and long-term trends in 71 

vegetation dynamics. A recent study by MacBean et al. (in review) has demonstrated that global 72 

TBMs participating in the TRENDY v7 model intercomparison project drastically underestimate 73 

both the mean annual net ecosystem exchange (NEE) and its IAV at a suite of southwestern 74 

(SW) US dryland sites due to weak sensitivity of gross primary productivity (GPP) to changing 75 

water availability. This analysis is corroborated by (Renwick et al., 2019) who also showed that a 76 

semi-deciduous phenology scheme was necessary to accurately predict the magnitude of GPP in 77 

a dryland shrubland. SW US hydrology modeling studies have also suggested that parameter 78 

calibration is needed to realistically represent semi-arid water fluxes because the default 79 

parameters hamper model performance (Natasha MacBean et al., 2020; Hogue et al., 2005; 80 

Unland et al., 1996). Given the lack of model parameter calibration studies that have included 81 

dryland sites in their optimizations, it remains to be seen whether model-data discrepancies in 82 

dryland ecosystem NEE simulations are due to inaccurate model processes or uncertain 83 

parameters. Parameter uncertainty may be higher for dryland ecosystems given parameter values 84 
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were initially measured in the field and/or optimized for more mesic temperate and boreal 85 

ecosystems.  86 

To address the gap in dryland site model parameter optimization, and to determine if 87 

parameter optimization can account for dryland model-data discrepancies in NEE, we used a 88 

Bayesian data assimilation (DA) framework to optimize the photosynthesis, phenology, C 89 

allocation and turnover, and respiration parameters of the ORCHIDEE TBM using 89 site-years 90 

of daily NEE observations of 12 Ameriflux sites spanning SW US semi-arid grass, shrub and 91 

forest ecosystems. Following Biederman et al. (2017) and MacBean et al. (in review), we 92 

categorized sites based on their mean annual NEE: US-Vcm, US-Vcp, US-Mpj, US-Fuf, US-Wjs 93 

and US-Ses are mostly tree-dominated C sink sites; shrub and grass-dominated sites US-Wkg, 94 

US-SRG, US-Seg, US-SRM, and US-Whs “pivot” between a mean annual C sink and source; 95 

and the US-Aud grassland is a mean source of C. We used the well-established DA system 96 

designed for ORCHIDEE (ORCHIDAS: https://orchidas.lsce.ipsl.fr) (Kuppel et al., 2014; 97 

MacBean et al., 2018; Peylin et al., 2016), in which a cost function that represents the misfit 98 

between the model and the data – taking into account uncertainty in both – is iteratively 99 

minimized using the genetic algorithm (GA; see Methods and Data).  100 

Beyond investigating if the DA system could account for model-data discrepancies in 101 

dyland NEE simulations, our second objective was to identify which parameters (therefore, 102 

which processes) may be responsible for model errors. To address this objective, we performed 103 

multiple optimization tests with combinations of parameters related to different model processes 104 

in order to identify which processes were most influential in improving the model mean annual 105 

NEE and IAV. We focused in particular on which processes are responsible for model failure to 106 

capture NEE IAV. Our focus on improving NEE IAV was partly because of the dominant role 107 

dryland ecosystems are thought to play in controlling global C cycle IAV, and partly because we 108 

expected that, with the exception of sites that are a strong C sink, eddy covariance estimates of 109 

mean annual NEE may be impacted by uncertainties in CO2 flux partitioning. We identified three 110 

main groups of parameters: parameters related to 1) phenology; 2) parameters related to 111 

photosynthesis; and 3) parameters related to all process calculations that occur after gross C 112 

uptake (i.e. C allocation, autotrophic and heterotrophic respiration, biomass and soil C turnover 113 

and a scalar on the active soil C pool; hereafter grouped as “post C uptake” parameters). We split 114 

the parameters into these three groups because GPP has been shown to be the dominant control 115 
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on dryland NEE IAV (MacBean et al., in review); therefore, we expected that optimizing 116 

parameters related to one or both of the main two processes controlling GPP (i.e., phenology and 117 

photosynthesis) will result in the strongest improvements in NEE IAV. However, optimizing all 118 

parameters related to processes that occur after gross C uptake can also influence NEE; 119 

therefore, we included these parameters as a third category. The parameters included in each 120 

assimilation scenario are: P1 - all parameters, including all three phenology, photosynthesis and 121 

post C uptake parameter groups; P2 - phenology and photosynthesis parameters; P3 - phenology 122 

and post C uptake; P4 - photosynthesis and post C uptake; P5 - phenology parameters only; P6 - 123 

photosynthesis only; and P7 - post C uptake only. See Table 2 for a description of all parameters 124 

and to which category they belong.  125 

For all assimilation scenarios we compared the prior simulation (before parameter 126 

optimization) to the posterior simulations (after parameter optimization, with different parameter 127 

groupings for the different assimilation scenarios) by evaluating the simulations against the site 128 

data using standard goodness of fit metrics (root mean square error, RMSE and correlation 129 

coefficient, r) at daily, monthly and inter-annual timescales. We further attributed what might be 130 

causing model-data misfits by decomposing the daily mean squared deviation (MSD) into its 131 

component phase, variance and bias contributions. The bias, variance and phase indicate the 132 

mean difference in flux magnitude, the mismatch in terms of the magnitude of fluctuations, and 133 

the seasonality in flux time series, respectively (Kobayashi & Salam, 2000). All methods and 134 

data are described in Section 2 and the results are presented and discussed in Section 3. 135 

2 Methods and Data 136 

2.1 Study sites 137 

Twelve semi-arid eddy covariance flux sites in the southwestern US (SW US) have been 138 

utilized in this study, with a measurement period ranging between 2003 and 2014. These sites 139 

have a range of different vegetation types, climates, elevation and have been described in detail 140 

by Biederman et al. (2017), so we only provide a brief description here. We summarize the sites’ 141 

description, dominant vegetation species, mean climate and corresponding vegetation plant 142 

functional types (PFTs), together with the observation period and disturbance history (Table 1). 143 

The sites are listed consecutively based on their mean annual C balance in Table 1. The major 144 
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regional IGBP vegetation classes represented include evergreen needleleaf forest, woody 145 

savanna, open and closed shrubland, and grassland. These sites typically experience monsoon 146 

rainfall during July to October, preceded by a hot, dry period in May and June. The SW US is 147 

characterized by water limitation at the annual scale, i.e. potential ET is greater than 148 

precipitation. The sites have large spatial gradients in mean annual precipitation (MAP 250–724 149 

mm) and temperature (MAT 2.9 to 17.7°C) due to interactions among topography, latitude, wind 150 

patterns, and distance from oceans. For further site details, see references in Table 1 and 151 

individual site pages on www.ameriflux.lbl.gov. 152 

Table 1. Site descriptions, mean climate, observation years and corresponding vegetation plant 153 
functional types (PFTs) used in ORCHIDEE optimization. Simulation period corresponds to the 154 
period of available site data. PFT acronyms: BS = Bare soil (PFT=1); TeNE = Temperate 155 
Needleleaved Evergreen forest (PFT=4); TeBE = Temperate Broadleaved Evergreen forest 156 
(PFT=5); TeBD = Temperate Broadleaved Deciduous forest (PFT=6); C4G = C4 grass 157 
(PFT=11). Sites are given in order from largest mean annual C sink (US-Vcm) to mean annual C 158 
source (US-Aud). 159 

Site 

ID 

Descript

ion 

Dominant species IGBP 

class 

PFT 

fractions 

Kopp

en 

climat

e 

Elev

ation 

(m) 

MA

P 

(m

m) 

MA

T 

(°C

) 

Period 

of site 

data 

Disturbance 

History 

Site 

reference 

US-

Vcm 

Valles 

Caldera 

mixed 

conifer 

forest 

Picea 

engelmannii, 

Picea 

pugens, Abies 

lasiocarpa var. 

lasiocarpa, Abies 

concolor 

Evergree

n 

needlele

af 

forest 

100% 

TeNE 

Dfb 3042 724 2.9 2007–

2012 

Harvest 1960s (Anderso

n-

Teixeira 

et al., 

2011) 

US-

Vcp 

Valles 

Caldera 

pondero

sa forest 

Pinus ponderosa, 

Quercus 

gambeli 

Evergree

n 

needlele

af 

forest 

100% 

TeNE 

Dfb 2501 547 5.7 2007–

2014 

- (Anderso

n-

Teixeira 

et al., 

2011) 

US-

Mpj 

Heritag

e Land 

Conserv

ancy 

pinyon-

juniper 

Pinus edulis, 

Juniperus 

monosperma 

Savanna 20% BS; 

60% 

TeNE; 

20% C4G 

Bsk 2200 423 9.6 2008–

2014 

- (Anderso

n-

Teixeira 

et al., 

2011) 
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US-

Fuf 

Flagstaf

f 

unmana

ged 

pondero

sa 

Pinus ponderosa Evergree

n 

needlele

af 

forest 

100% 

TeNE 

Csb 2215 607 7.1 2006–

2010 

Harvest 1910 (Dore et 

al., 2012) 

US-

Wjs 

Tablela

nds 

juniper 

savanna 

Juniperus 

monosperma, 

Bouteloua 

gracilis 

Savanna 15% 

TeNE; 

85% C4G 

Bsk 1931 349 10.

9 

2008–

2014 

- (Anderso

n-

Teixeira 

et al., 

2011) 

US-

Ses 

Sevillet

a 

creosote 

shrubla

nd 

Larrea tridentata, 

G. sarothrae 

Open 

shrublan

d 

20% BS; 

55% 

TeBE; 

25% C4G 

Bsk 1610 252 12.

6 

2007–

2014 

- (Petrie et 

al., 2015) 

US-

Wkg 

Walnut 

Gulch 

Kendall 

grasslan

d 

Eragrostis 

lehmanniana, 

Bouteloua spp. 

Calliandra 

eriophylla 

Grasslan

d 

60% BS; 

3% 

TeBE; 

37% C4G 

Bsk 1529 386 15.

8 

2004–

2013 

Drought 2003-

2005, non-native 

grass replacement 

2007 onward, light 

grazing ongoing 

(Scott, 

2010) 

US-

SRG 

Santa 

Rita 

grasslan

d 

Eragrostis 

lehmanniana 

Savanna 45% BS; 

11% 

TeBD; 

44% C4G 

Bsh 1292 494 16.

7 

2009–

2014 

Mesquite removal 

1957, ongoing 

light grazing 

(Scott et 

al., 2009, 

2015) 

US-

Seg 

Sevillet

a 

grasslan

d: 

burned 

2009 

Bouteloua 

eriopoda, 

Gutierrezia 

sarothrae, 

Ceratoides lanata 

Grasslan

d 

40% BS; 

60% C4G 

Bsk 160 250 12.

6 

2007–

2014 

Burned 2009 (Petrie et 

al., 2015) 

US-

SRM 

Santa 

Rita 

mesquit

e 

savanna 

Prosopis 

velutina, 

Eragrostis 

lehmanniana 

Woody 

savanna 

50% BS; 

35% 

TeBD; 

15% C4G 

Bsk 1122 421 17.

7 

2004–

2014 

Light grazing (Scott et 

al., 2009) 
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US-

Whs 

Walnut 

Gulch 

Lucky 

Hills 

shrubla

nd 

Larrea tridentata, 

Parthenium 

incanum, Acacia 

constricta, 

Rhus microphylla 

Open 

shrublan

d 

57% BS; 

40% 

TeBE; 3% 

C4G 

Bsk 1376 352 16.

8 

2008–

2014 

Drought 2005-

2006 

(Scott, 

2010) 

US-

Aud 

Audubo

n 

grasslan

d 

Boutelou 

agracilis, 

B. curtipendula, 

Eragrostis spp. 

Grasslan

d 

30% BS; 

70% C4G 

Bsk 1496 348 15.

7 

2004–

2009 

Burned 2002 (Krishna

n et al., 

2012) 

2.2 ORCHIDEE terrestrial biosphere model 160 

We used the ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) 161 

process-oriented land surface model version 2.2 that has been developed at the IPSL (Institut 162 

Pierre Simon Laplace, France). The model is a state-of-the-art mechanistic terrestrial biosphere 163 

model (Krinner et al., 2005) and is the land surface component of the IPSLCM5 Earth System 164 

Model (Dufresne et al., 2013). The model describes the exchanges of water, carbon, and energy 165 

between biosphere and atmosphere at the smallest time scale (30 min), while the slow 166 

components of the terrestrial carbon cycle (including carbon allocation, autotrophic respiration, 167 

foliar onset and senescence, mortality and soil organic matter decomposition) are computed on a 168 

daily to annual basis. Version 2.2 is virtually identical to version 2.0, which is being used in the 169 

ongoing Coupled Modeling Intercomparison Project 6 (CMIP6) simulations, but includes few 170 

recent bug corrections and code enhancements. It has been updated since the “AR5” version used 171 

in CMIP5 (see Krinner et al., 2005) with the following developments: i) an 11-layer mechanistic 172 

description of soil hydrology and associated modifications as described in MacBean et al. 173 

(2020); ii) addition of a coupled carbon-nitrogen scheme (Vuichard et al., 2019); iii) an 174 

analytical solution for the set of equations for photosynthesis, stomatal conductivity and internal 175 

CO2 concentration in the leaf (described in Vuichard et al., 2019), following (Yin and Struik, 176 

2009); iv) an update of the soil thermal properties and extension of the soil depth for heat 177 

diffusion (Wang et al., 2016); v) a 3-layer snow scheme (Wang et al., 2013); vi) a spatially 178 

explicit observation-derived estimate for background albedo and optimized vegetation and snow 179 

albedo coefficients;; vii) a new reconstruction of global land cover history and wood harvest 180 
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accounting following LUH2v2h maps (Hurtt et al., 2020) and PFT maps based the European 181 

Space Agency Climate Change Initiative Land Cover product (Poulter et al., 2015). 182 

As in most TBMs, the vegetation is grouped into several plant functional types (PFTs), 183 

with 14 different types of vegetation plus bare soil in the case of ORCHIDEE v2.2. The original 184 

13 PFTs are reported in Krinner et al. (2005). Since ORCHIDEE v2.0 there are now two extra 185 

PFTs included: C3 grasses are now split into three groups - tropical, temperate and boreal. The 186 

equations governing individual processes are generic with PFT specific parameters, except for 187 

the phenology models (see Appendix A in MacBean et al., 2015)). In this study, ORCHIDEE 188 

was mainly used in a “grid-point mode” at each site location and forced with the corresponding 189 

local 30-minute gap-filled meteorological forcing data. Before performing the optimizations the 190 

modelled C stocks were brought to equilibrium in the spin-up phase by cycling the available site 191 

meteorological forcing over a long period (1300 years) with the default parameters of the model, 192 

which ensures a net carbon flux close to zero over annual-to-decadal time scales. 193 

2.3 ORCHIDEE data assimilation system 194 

The ORCHIDEE Data Assimilation System (ORCHIDAS) has been described in detail in 195 

previous studies (Bastrikov et al., 2018; Kuppel et al., 2014; MacBean et al., 2018; Peylin et al., 196 

2016), and hence we only briefly define the method here. ORCHIDAS uses a variational data 197 

assimilation method to optimize the model parameters, accounting for uncertainties regarding the 198 

observations, the model, and the prior parameters. It relies on a Bayesian framework with the 199 

assumption of Gaussian errors, and the optimized parameters corresponds to the minimization of 200 

the following cost function J(x) (Tarantola, 2005): 201 

𝑱(𝒙) = 𝟏
𝟐
[(𝑯(𝒙) − 𝒚)𝑻. 𝑹$𝟏. (𝑯(𝒙) − 𝒚) + (𝒙 − 𝒙𝒃)𝑻. 𝑩$𝟏(𝒙 − 𝒙𝒃)]  (1) 202 

where x represents the parameters and H(x) the model contingent on the parameters, and 203 

y the observations. The cost function contains both the misfit between observations,and 204 

corresponding model outputs (first term on the right hand side of Eq. 1), and the misfit between a 205 

priori parameter values xb and optimized parameters x (second term on the right hand side of the 206 

Eq. 1 R is the observation error covariance matrix (including measurement and model errors), 207 

and B is the prior parameter error covariance matrix. Both matrices (B and R) are diagonal since 208 
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observation and model errors are assumed to be uncorrelated in space and time, and parameters 209 

are assumed to be independent. The cost function is iteratively minimized using the genetic 210 

algorithm (GA), which is a meta-heuristic optimization algorithm and follows the principles of 211 

genetics and natural selection (Goldberg et al., 1989; Haupt et al., 2004). The GA algorithm has 212 

been applied previously with ORCHIDAS tool and described in details by Bastrikov et al. 213 

(2018). Briefly, the algorithm works iteratively and considers the vector of parameters as a 214 

chromosome and each parameter as a gene on that chromosome. The method fills a set of n 215 

chromosomes at every iteration, having the starting pool as a randomly perturbed parameter 216 

pool. The chromosomes at each subsequent iteration are chosen from randomly selected 217 

chromosomes of the previous iteration by either “crossover” or “mutation” process. Santaren et 218 

al. (2014) showed that the performance of the algorithm is highly sensitive to its specific 219 

configuration and found the best configuration based on computational efficiency after testing 220 

different options. Here, we used the same configuration (i.e. number of chromosomes in the pool  221 

total number of parameters optimized; the number of iterations is 40; crossover/mutation ratio is 222 

4:1; the number of gene blocks exchanged during crossover is 2 and the number of genes 223 

perturbed during mutation is 1) applied by Santaren et al. (2014) and Bastrikov et al. (2018). The 224 

algorithm does not assume prior knowledge of Gaussian PDFs for the observation and parameter 225 

uncertainties. Given we do not fully know the model uncertainty, we set the prior observation 226 

uncertainty as the RMSE between the model and the observations following Kuppel et al. (2014). 227 

The prior parameter uncertainty is listed in Table S1. 228 

The posterior error covariance matrix of the parameters (A) can be estimated by: 229 

𝑨 = [𝑯𝑻𝑹$𝟏𝑯+𝑩$𝟏]$𝟏     (2) 230 

This computes error correlations between parameters with the assumption of Gaussian 231 

prior errors and linearity of the model in the vicinity of the solution. 232 

2.4 Flux measurements 233 

At all twelve SW US sites, flux tower instruments collect 30-minutes measurements of 234 

meteorological forcing data and eddy covariance measurements of net surface energy and carbon 235 

exchanges, which are available from the AmeriFlux data portal (http://ameriflux.lbl.gov). 236 
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Meteorological forcing data included air temperature and surface pressure, precipitation, 237 

incoming long and shortwave radiation, wind speed, and specific humidity. To run the 238 

ORCHIDEE model, we partitioned the in-situ precipitation into rain and snowfall using a 239 

temperature threshold of 0°C. The site-level meteorological forcing data were gap filled utilizing 240 

downscaled and corrected ERA-Interim data following the approach of Vuichard & Papale 241 

(2015). Gross primary productivity (GPP) and the ecosystem respiration (Reco) were estimated 242 

from the net ecosystem exchange (NEE) via the flux partitioning method described in Biederman 243 

et al. (2016). We acknowledge that GPP and Reco are not fully independent data with respect to 244 

NEE and are essentially model-derived estimates, but these concerns have been largely discussed 245 

in previous studies e.g., Desai et al. (2008). Note that in this study, negative NEE refers to net 246 

CO2 uptake into the ecosystem. In order to exclude the influence of the short-term variations in 247 

the fluxes on the model optimization, the daily averaged observations smoothed with a 15-day 248 

running mean were used in the assimilation as per Bastrikov et al. (2018). 249 

2.5 Parameters optimized 250 

The optimized parameters are described in Table S1 with their prior values, prior 251 

uncertainty, and upper and lower bounds for different plant functional types based on literature 252 

analysis, parameter databases and expert knowledge of the model equations. Prior values are the 253 

default parameter values used in all non-optimized ORCHIDEE simulations. In the most past 254 

ORCHIDAS studies with previous versions of ORCHIDEE, only subsets of ORCHIDEE C cycle 255 

parameters have been optimized (Bastrikov et al., 2018; Kuppel et al., 2012, 2014; MacBean et 256 

al., 2015; MacBean et al., 2018; Santaren et al., 2007; Verbeeck et al., 2011). In this study, we 257 

considered all possible C cycle related ORCHIDEE parameters to fully explore all sources of 258 

parameter uncertainty that is contributing to uncertainties in modeled net and gross CO2 fluxes. 259 

We further allowed weak constraints in the DA system (i.e., large prior parameter bounds, albeit 260 

within realistic limits) because the main objective of our study was to determine if parameter 261 

calibration can account for model-data errors and to use our assimilation scenario tests to identify 262 

which processes are responsible for model-data errors. We selected all 102 parameters and 263 

divided them into four classes, controlling the main C cycle and plant physiological processes 264 

i.e. photosynthesis, conductance, phenology and post C uptake. This resulted in 31 parameters 265 

related to photosynthesis, 42 to phenology, 16 to post C uptake (C allocation, respiration, 266 
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biomass and soil turnover), and 13 related to conductance. In a preliminary study, we tested at 267 

several SW US sites (US-Vcp, US-Mpj, US-Fuf, US-Wkg, US-Whs, US-Seg) the sensitivity of 268 

the ecosystem fluxes (NEE, GPP and Reco) when optimizing all model parameters and when we 269 

just optimized subsets of the parameters related to each of the main processes. This test showed 270 

no significant optimization improvement by adding the conductance related parameters (results 271 

not shown here), and thus we did not include those parameters for all final optimizations 272 

presented in this study, leaving a total of 89 optimized parameters for each site. Documentation 273 

on the parameters can be accessed via ORCHIDEE webpage 274 

(https://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/OrchideeParameters, last access: 04 275 

January 2021). The prior uncertainty was set to 40% of the bounds for each parameter following 276 

previous ORCHIDAS studies (Kuppel et al., 2012; MacBean et al., 2015). 277 

2.6 Assimilation Scenarios 278 

We conducted several different assimilation scenarios to identify which processes (and 279 

their related parameters) are potentially causing model-data discrepancies (listed in Table 2). We 280 

grouped the optimizations based on various parameters set to optimize; therefore, we tested 7 281 

assimilation scenarios (P1 – P7): P1 included all 89 parameters, whereas each consecutive 282 

scenario (P2 – P7) optimized different subsets of parameters related to each of the main C cycle 283 

processes (Table 2). The parameters that were not optimized were set to their default (prior) 284 

value. Comparing the P1 to P7 assimilation scenarios allows us to determine which sets of 285 

parameters (i.e. specific processes) are contributing most to the improvement in fluxes as a result 286 

of the parameter optimizations and therefore provides insight into which model processes may 287 

need further modification or development. See Table S1 for groupings of model parameters 288 

according to specific processes. 289 

Table 2. Description of the different assimilation scenarios conducted in this study. The included 290 
parameter group(s) and numbers of parameters for each assimilation scenario are given. 291 
Parameters of each subgroup are listed in Table S1. 292 

Optimization Parameters included Number of parameters 

P1 All parameters (Phenology, Photosynthesis and Post C uptake) ~85 

P2 Phenology and Photosynthesis ~70 
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P3 Phenology and Post C uptake ~50 

P4 Photosynthesis and Post C uptake ~60 

P5 Phenology only ~30 

P6 Photosynthesis only ~45 

P7 Post C uptake only ~15 

2.7 Post-optimization analysis 293 

We assessed the goodness of fit of the different assimilation scenarios by the mean square 294 

deviation (MSD) (in addition root mean squared error, RMSE or correlation coefficients, R and 295 

the slope of linear least-square regression). Model evaluation metrics are presented in one of 296 

three ways: i) for each site; ii) grouped across all sites; and iii) sites grouped according to their 297 

mean net annual CO2 flux characteristics across the observed time period as in Biederman et al. 298 

(2017). For the latter, the net CO2 “sink” sites are US-Vcm, US-Vcp, US-Mpj, US-Fuf and US-299 

Wjs; the “pivot” sites are US-Ses, US-Wkg, US-SRG, US-SRM, US-Whs, US-Seg; and the 300 

“source” site is US-Aud. We followed the approach of Kobayashi & Salam (2000) to quantify 301 

the differences between the simulations and observation in terms of bias, variance and phase 302 

contribtions to the overall mean squared deviation (MSD). We calculated the MSD between 303 

daily model and observed time series and decompose it following the below equation: 304 

𝑴𝑺𝑫	 =
𝟏
𝒏6(𝒙𝒊 − 𝒚𝒊)𝟐 	= 	 (𝒙 − 𝒚)𝟐 	+ 	(𝝈𝒙 − 𝝈𝒚)𝟐 	+ 	𝟐𝝈𝒙𝝈𝒚(𝟏 − 𝑹)

𝒏

𝒊*𝟏

												(𝟑) 305 

where x is the model and y is the observations, σ is the standard deviation and R is the 306 

correlation coefficient.  307 

The first term specifies the bias between model simulation and observation (squared). 308 

The second “variance” term measures their differences in terms of variability (i.e., the difference 309 

between the magnitude of the modeled and observed fluctuations). The third term in Eq. 3 310 

generally demonstrates the lack of correlation between model and observations weighted by their 311 

standard deviations, which can be deemed a measure of their disagreement in terms in phase 312 

(Bacour et al., 2019; Gauch et al., 2003). We further calculated the contribution of each 313 
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component (bias, variance and phase) to the overall MSD by dividing each component by the 314 

total MSD. 315 

3 Results 316 

3.1 Impact of optimization of all parameters (P1) on model net and gross CO2 fluxes 317 

Across all sites, the prior ORCHIDEE simulations (i.e. before parameter optimization) 318 

fail to capture both the mean annual NEE at mean C sink and source sites and the NEE IAV 319 

across all sites (Figure 1a) - as also seen for all TRENDY TBMs in MacBean et al (in review). 320 

Across all sites, optimizing all C cycle-related parameters (phenology, photosynthesis and post C 321 

uptake - assimilation scenario P1) with NEE data dramatically increases the ability of the model 322 

to capture both the mean C source/sink behavior and the IAV (Figure 1b). C sink and source 323 

sites show significant improvement in terms of both mean annual NEE and IAV. There is not a 324 

strong bias in the model simulations at pivot sites whose mean annual NEE is close to zero; 325 

therefore, the optimization results in an improvement mainly in IAV (as represented by the 326 

correlation and slope values shown in inset figures in Figures 1 a and b). Improvement of the 327 

model-data fit resulting from the assimilation is evident across all sites, with a reduction of daily 328 

NEE RMSE between 0.05 to 0.65 gCm-2d-1 (Figure S1), with a similar reductions in daily GPP 329 

and Reco RMSE (Table S2). Moreover, the temporal dynamics are well captured for all the sites: 330 

when optimizing all parameters, the median pearson correlation coefficients (R) increase by 331 

0.45, 0.45, and 0.25 for daily, monthly and annual modeled NEE, respectively and posterior 332 

median slope values ≥0.5 (Figure S2a and d). GPP temporal dynamics are also much improved 333 

by the P1 assimilation with a higher and tighter range in posterior R and slope values than NEE 334 

(Figure S2b and e). In contrast, there is less improvement in Reco temporal dynamics although 335 

the median R and slope values are higher after the optimization (Figure S2c and f).  336 
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 337 

Figure 1. Comparison between modeled and observed annual NEE when assimilating NEE data 338 
and optimizing all phenology, photosynthesis and post C uptake parameters (P1) in the same 339 
assimilation. (a) Prior annual NEE simulation before parameter optimization, and (b) Posterior 340 
annual NEE after optimization. The trendline and slope value for the linear regression between 341 
the model and observations (bottom right inset figures) is shown for each site, together with their 342 
Pearson correlation coefficient, r (top left inset figures). The middle of the trend line should sit 343 
on the 1:1 line if the accurate mean annual source/sink behavior for a site is well captured by the 344 
model. A slope value close to or equal to 1 demonstrates the model is better at capturing the 345 
IAV. Colored points and trend lines represent all twelve sites, ordered from the largest mean sink 346 
(US-Vcm) to the largest mean source (US-Aud). The sink sites are: US-Vcm, US-Vcp, US-Mpj, 347 
US-Fuf, US-Wjs and US-Ses; the pivot sites are: US-Wkg, US-SRG, US-Seg, US-SRM and US-348 
Whs; and the only source site is: US-Aud.  349 

 350 

Across the majority of the sites, the prior model simulates a depressed seasonal NEE 351 

amplitude and/or is unable to capture the observed bi-modal seasonality (Figure 2). The NEE 352 

amplitude and bi-modal seasonality generally improved when optimizing all parameters (blue 353 

curves in Figure 2), although the posterior simulations struggle to reach the exact magnitude of 354 

the spring and monsoon NEE troughs (net CO2 uptake) for several sites (e.g. US-Mpj, US-Wjs, 355 

US-Ses, US-Seg, US-Wkg and US-Whs). Accurately capturing the seasonal peaks and troughs is 356 

important for replicating observed NEE IAV because variability in summer monsoon season 357 

fluxes are the dominant driver of NEE IAV (MacBean et al., in review). While posterior seasonal 358 

NEE peaks and troughs are generally well captured, the assimilation of NEE alone often fails to 359 

capture the correct peaks in gross CO2 fluxes (Figure S3), likely due to compensating errors in 360 
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both GPP and Reco. At the C source site (US-Aud) the model also fails to simulate the accurate 361 

peaks in springtime net carbon release (Figure 2). This is due to the fact that at US-Aud, TBMs 362 

tend to overestimate spring GPP and underestimate the earlier rise in spring Reco (Figure S3). 363 

The optimization only partially corrects these model biases, suggesting that other missing 364 

processes may ultimately be responsible for the model-data misfit (such as disturbance following 365 

a fire that occurred at the site in 2002, which is not implemented in the current version of 366 

ORCHIDEE).  367 

 368 

Figure 2. Mean monthly NEE seasonal cycles for each site comparing prior (red curve) and 369 
posterior (blue curve) ORCHIDEE simulations with observations (black curve). Posterior 370 
simulation after assimilation of NEE data and optimization of all parameters: phenology, 371 
photosynthesis and post C uptake (P1). The sites are listed in order from largest mean annual C 372 
sink (US-Vcm) to mean annual C source (US-Aud).  373 

 374 
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Decomposing the daily NEE MSD between model and observations into bias, variance 375 

and phase components shows that across all sites, all three components contribute to prior NEE 376 

model-data discrepancies (Figure 3a left of vertical dashed line). The prior daily NEE MSD at 377 

the C sink sites are dominated by both phase and bias components (Figure 3a top panel). The 378 

fact that sink site MSD is also dominated by bias is unsurprising given that at those sites the prior 379 

model does not capture the mean annual C sink (Figure 1a). Note that, if we decompose the 380 

annual NEE MSD into the constituent bias, phase and variance components then bias 381 

overwhelmingly dominates the MSD at sink (and source) sites given their large underestimate of 382 

mean annual NEE (Figure S4 top and bottom rows). In contrast, at the C pivot and source sites, 383 

the highest contribution to the prior daily NEE MSD is from the  phase component (Figure 3a 384 

middle and bottom panel), indicating that the default model does a poor job of representing the 385 

timing of dryland C cycle related processes. Across all sites, optimizing all parameters (P1) 386 

dramatically reduces the bias, variance and phase components of the daily NEE MSD, with 387 

phase remaining the strongest contributor to daily NEE MSD (Figure 3a right of dashed line).  388 

 389 
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Figure 3. Daily NEE, GPP and Reco mean square deviation (MSD) decomposition into bias, 390 
variance, and phase between simulations and observations for assimilating NEE observations and 391 
optimizing all phenology, photosynthesis and post C uptake parameters (P1). Blue, orange and 392 
green boxplots for bias, variance and phase components, respectively. Different rows separate 393 
the sites as sink (a-c), pivot (d-f) and source (g-i) based on total annual C flux. The sink sites are: 394 
US-Vcm, US-Vcp, US-Mpj, US-Fuf, US-Wjs and US-Ses; the pivot sites are: US-Wkg, US-395 
SRG, US-Seg, US-SRM and US-Whs; and the source site ia: US-Aud. The x axes display the 396 
optimization scenarios (Prior and P1). The box whiskers show the spread of bias, variance and 397 
phase for all 12 sites considered in this study. The bias, variance and phase indicate the mean 398 
difference in flux magnitude, the mismatch in terms of flux fluctuation magnitude scales with the 399 
mean seasonal amplitude, and the seasonality in flux time series, respectively. Note that the y 400 
axis limits for both gross fluxes (GPP and Reco) are the same.  401 

 402 

As for the NEE, bias and phase are the dominant contributors to prior daily GPP MSD for 403 

the sink sites (left of vertical dashed line in Figure 3b), and phase only for the pivot and source 404 

sites (Figures 3e and h) For Reco, a different MSD component is dominant depending on the 405 

mean C behavior of a site: bias dominates the prior daily Reco MSD at the sink sites, variance at 406 

the pivot sites, and phase at the source sites (Figures 3c, f and i). Overall, assimilating NEE data 407 

in the P1 assimilation scenario reduces all gross CO2 flux MSD components (right of dashed line 408 

in Figure 3 middle and left columns), with phase remaining the strongest contributor to daily 409 

gross CO2 flux MSD. However, unlike for the NEE, at the C sink sites phase and bias remain 410 

strong contributors to posterior GPP MSD (Figure 3b).  411 

 412 

3.2 Impact of different processes (assimilation scenarios) on optimization results 413 

Across all sites, modeled annual and seasonal NEE are improved the most in the P1 414 

assimilation scenario compared to the other assimilation scenarios (P2 to P7), although all 415 

scenarios result in some improvement (Figures S5, S6a and d, and seasonal cycles in Figure 416 

S7). In general, there is less improvement in Reco compared to NEE and GPP (Figure S6). 417 

Comparing the MSD decomposition results for the various assimilation scenarios (P1-P7) can 418 

help to identify which processes may be causing the prior model-discrepancies in mean annual 419 

NEE and NEE IAV. At the source and sink sites, the bias component (blue bars in Figure 4a 420 

and c) is reduced dramatically by all optimization tests that include the post C uptake parameters 421 

related to C allocation, respiration, and aboveground biomass and soil C turnover (P1, P3, P4 and 422 

P7). For the sink sites, assimilation scenarios that also include photosynthesis parameters (P2 and 423 
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P6) also result in a strong reduction in bias. This decrease in mean bias is also shown by the fact 424 

that the midpoints of the linear regression trendline between model and observations at forested 425 

sink sites (US-Vcm, US-Vcp, US-Mpj, and US-Fuf) and low-elevation source site (US-Aud) 426 

with optimization scenarios P1 to P4, P6 and P7 parameters all lie much closer to the 1:1 (grey 427 

dashed) line compared to P5 (Figure S5).  428 

 429 

Figure 4. Daily NEE MSD decomposition into bias, variance, and phase components when 430 
assimilating NEE observations for different assimilation scenarios (P1-P7). Different panels 431 
separate the sites as sink (a), pivot (b) and source (c) based on total annual C flux. The C sink 432 
sites are: US-Vcm, US-Vcp, US-Mpj, US-Fuf, US-Wjs and US-Ses; the C pivot sites are: US-433 
Wkg, US-SRG, US-Seg, US-SRM and US-Whs; and the C source site is: US-Aud. The grey 434 
dashed boxes highlight results repeated from Figure 3(a,d,g) to have better comparison of 435 
different process parameters side-by-side. The parameters included in each optimization are: P1: 436 
all parameters; P2: phenology and photosynthesis; P3: phenology and post C uptake; P4: 437 
photosynthesis and post C uptake; P5: phenology; P6: photosynthesis and P7: post C uptake. The 438 
boxplots show the median and interquartile range of the bias, variance and phase across all 12 439 
sites considered in this study. US-Aud is the only C source site; therefore, the barplots in (c) 440 
show the bias, phase, and variance components of the MSD for that one site. The bias, variance 441 
and phase indicate the mean difference in flux magnitude, the difference in the magnitude of flux 442 
variations, and the difference in the correlations weighted by the standard deviations, 443 
respectively (see Methods).  444 

 445 

Across all sites the difference in phase between the model and observations (green bars in 446 

Figure 4), which, as already noted, is the largest contribution to the prior NEE MSD across all 447 

sites, is mostly reduced by assimilation scenarios that include phenology parameters (i.e. P1, P2, 448 

P3 and P5). The P4 assimilation (photosynthesis and post C uptake parameters) also does well in 449 

reducing phase contributions to NEE MSD at forested C sink sites (Figure 4a). However, the 450 

phase component is not reduced as much as the bias in any of the assimilation scenarios; thus, for 451 
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all sites and all assimilation scenarios the phase remains the largest component of the posterior 452 

daily NEE MSD (Figure 4). Including parameters related to photosynthesis or post C uptake 453 

with the phenology parameters (i.e. assimilation scenarios P2 and P3) helps to slightly reduce the 454 

phase discrepancy at sink sites compared with phenology parameters alone (P5) (as seen above 455 

for the improvement in slope values at the sink sites). Examining the spread in slope and R 456 

values across all sites, we see that the annual variability (median slope and R values) is improved 457 

the most for assimilation scenarios with at least two parameter sets (P1 to P4 - Figure S6a and 458 

d). The persistence of phase as the dominant component of the posterior daily NEE suggests 459 

further model improvement in processes related to dryland vegetation temporal dynamics (e.g. 460 

phenology and all associated processes) is needed before TBMs can correctly reproduce NEE 461 

seasonality and IAV.   462 

The variance component of the daily NEE MSD (orange bars in Figure 4), which also 463 

shows a modest contribution to daily NEE MSD at the sink and source sites, is mostly reduced at 464 

the sink sites with assimilation scenarios that include photosynthesis parameters (i.e. P1, P2, P4 465 

and P6). At US-Aud the variance component was reduced most by assimilation scenarios that 466 

included two or more sets of parameters (i.e. P1 - P4) (Figure 4c).  467 

While the post C uptake parameters are key for reducing bias in forested sink site NEE, 468 

biases in GPP and Reco at these sites are reduced by optimizing photosynthesis parameters (P1, 469 

P2, P4, and P6 - blue boxes Figure S8b and c). The GPP and Reco bias components at the sink 470 

sites are not reduced as strongly as NEE biases for any assimilation scenario; thus, bias remains a 471 

key contributor to posterior gross CO2 flux MSD. Similarly to NEE, parameter subsets that 472 

include phenology parameters (P1, P2, P3 and P5) are key for reducing the daily GPP MSD 473 

phase component at pivot sites (green boxes in Figure S8e; however, in contrast with the NEE 474 

results, at sink sites the GPP phase component tends to be reduced by all assimilation scenarios 475 

except P7 (see also median GPP slope and R values in Figures S6b and e). With the exception 476 

of P1 and P2 for GPP, the GPP and Reco variance components are not reduced much by any of 477 

the assimilation scenarios and remain a considerable component of the MSD for both GPP and 478 

Reco at the pivot sites, and for Reco at the sink sites (Figures S8b,c,e,f). We note that the GPP and 479 

Reco reductions in MSD components tend to be similar, suggesting model-deficiencies in Reco are 480 

mainly influenced by those in GPP. Addressing GPP model-data deficiencies is therefore a high 481 

priority.  482 
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3.3 Constraint on parameters 483 

For all assimilation scenarios, we found significant parameter deviations from prior 484 

values for numerous phenology, photosynthesis and post C uptake related parameters (Figure 5), 485 

which is consistent with the fact that all parameter subsets are needed to improve model mean 486 

annual NEE and IAV. Parameter deviation was calculated using the difference between the 487 

posterior and prior parameter value normalized by the total parameter variation used in the 488 

optimization. Finally, the median value was taken as the mean deviation from all 12 sites. We 489 

did not find that parameters deviate more, or the uncertainty reduction (calculated as 1 – 490 

(posterior parameter uncertainty / prior parameter uncertainty)) was much different, when only 491 

one subset or two parameter subsets were included in the optimization instead of all three (e.g. 492 

cf. P2 with P1), although posterior values are different for each assimilation scenario (Figure 5). 493 

In particular, most of the post C uptake parameters deviate strongly from the prior median 494 

deviations (>20% of total parameter bound). There are also significant uncertainty reductions 495 

(>50%) for most of the parameters which show strong deviations from their prior value: 10 for 496 

phenology (out of 42), 7 for photosynthesis (out of 31) and 7 for post C uptake (out of 16) 497 

(Figure 5). The error correlations between the estimated parameters are usually minimal except 498 

between post C uptake parameters (see example for one site in Figure S9). 499 

 500 



manuscript submitted to Journal of Geophysical Research Biogeosciences 

 

 501 

Fi
gu

re
 5

. O
pt

im
iz

ed
 m

ed
ia

n 
pa

ra
m

et
er

 d
ev

ia
tio

ns
 [(

po
ste

rio
r -

 p
rio

r) 
/ (

m
ax

 - 
m

in
)] 

(b
lu

e 
ba

rs
) a

nd
 a

ss
oc

ia
te

d 
m

ed
ia

n 
pa

ra
m

et
er

 
un

ce
rta

in
ty

 re
du

ct
io

ns
 (g

re
y 

ba
rs

) f
or

 a
ll 

pa
ra

m
et

er
s c

on
tro

lli
ng

 p
he

no
lo

gy
, p

ho
to

sy
nt

he
sis

 a
nd

 p
os

t C
 u

pt
ak

e 
as

sim
ila

tin
g 

N
EE

 
da

ta
 (P

1-
P7

). 
Ba

rs
 re

pr
es

en
t t

he
 m

ed
ia

n 
ac

ro
ss

 a
ll 

12
 si

te
s. 

Th
e 

as
te

ris
ks

 a
bo

ve
 b

lu
e 

ba
rs

 in
di

ca
te

 th
e 

pa
ra

m
et

er
s t

ha
t h

av
e 

la
rg

er
 

th
an

 5
0%

 u
nc

er
ta

in
ty

 re
du

ct
io

n.
 E

ac
h 

lin
e 

co
rre

sp
on

ds
 to

 a
 sp

ec
ifi

c 
op

tim
iz

at
io

n 
te

st 
(s

ho
w

n 
on

 th
e 

rig
ht

 a
xi

s)
. T

he
 p

ar
am

et
er

s 
ar

e 
gi

ve
n 

on
 th

e 
bo

tto
m

 a
xi

s. 
Th

e 
ve

rti
ca

l d
as

he
d 

lin
es

 se
pa

ra
te

 th
e 

di
ff

er
en

t p
ar

am
et

er
 su

bs
et

s (
ph

en
ol

og
y,

 p
ho

to
sy

nt
he

sis
 a

nd
 

po
st 

C 
up

ta
ke

). 
Ta

bl
e 

S1
 d

et
ai

ls 
th

e 
pr

io
r a

nd
 p

os
te

rio
r p

ar
am

et
er

 v
al

ue
s a

nd
 th

ei
r u

nc
er

ta
in

ty
 fo

r a
ll 

pa
ra

m
et

er
s t

og
et

he
r w

ith
 

th
e 

m
ax

im
um

 a
nd

 m
in

im
um

 b
ou

nd
s u

se
d 

in
 th

e 
op

tim
iz

at
io

ns
. 



manuscript submitted to Journal of Geophysical Research Biogeosciences 

 

Certain phenology parameters are important across all assimilation scenarios: i) 502 

parameters related to leaf age; ii) a parameter related to the critical temperature threshold for the 503 

start of deciduous shrub leaf growth (ncdgdd_temp); iii) moisture thresholds that govern C4 504 

grass senescence (nosenescence_hum); and iv) various parameters that control the time scales 505 

used in phenology schemes (e.g. tau_climatology, tau_hum_week) (Figure 5). The phenology 506 

models are highly dependent on such empirical parameters, which likely need to be optimized 507 

for each site. Key photosynthesis related parameters are SLA, parameters involved in the 508 

calculation of Vc,max (the maximum carboxylation rate, which has been shown to be a highly 509 

sensitive model parameter in previous studies, e.g. Kuppel et al., 2014), and the parameter that 510 

represents the root profile in the empirical calculation of leaf water stress (hydrol_humcste), 511 

which downregulates photosynthesis and stomatal conductance in the dry season. The most 512 

important post C uptake parameters are fairly similar across assimilation scenario tests, and are 513 

related to: i) the calculation of the maintenance respiration as a fraction of biomass; ii) 514 

aboveground biomass residence time and various turnover rates for biomass and litter pools; and 515 

finally, iii) the Q10 parameter involved in the temperature dependence of soil C decomposition 516 

(Figure 5).  517 

4 Discussion and Conclusions 518 

In this study, we have shown that it is possible to account for model discrepancies in both 519 

the mean annual NEE and NEE IAV at a range of semi-arid SW US sites via optimization of C 520 

cycle parameters within a Bayesian DA framework. We used weak prior constraints (i.e. large 521 

prior parameter bounds) to give the assimilation the maximum chance to correct any model 522 

errors. Our goal was not to identify the ideal “correct” set of C cycle parameters for capturing 523 

semi-arid vegetation and C cycle dynamics, but rather to identify whether, within the current 524 

model representation, we could account for model-data mismatches. Looking at the individual 525 

parameter plots for the P1 assimilation scenario (Figure S10), we find that at some sites several 526 

posterior parameters are “edge-hitting” (e.g. soil Q10). Given we chose weak prior constraints in 527 

the assimilation, the fact that some posterior parameters are hitting their bounds suggests that the 528 

optimization may be aliasing model structural error onto the parameters (as demonstrated in 529 

MacBean et al., 2016) and/or that the model cannot improve further via parameter optimization. 530 
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This suggests that further model developments are likely needed to address structural 531 

uncertainties and missing processes.  532 

Hypotheses as to which processes might be responsible for model inability to capture 533 

semi-arid CO2 fluxes are numerous and will take time to explore fully (MacBean et al., in 534 

review). Here, we aimed to speed up that process by using the different assimilation scenarios as 535 

tests of which parameter sets (and therefore, which processes) may be responsible for model 536 

errors. The assimilation with all C cycle and vegetation parameters (P1) performed the best in 537 

terms of correcting underestimates in modeled mean annual NEE and IAV. However, the 538 

additional assimilation scenarios (P2 to P7) further demonstrated that phenology parameters are 539 

likely key for improving semi-arid ecosystem NEE IAV. Issues with semi-arid phenology in 540 

TBMs have been documented elsewhere (Traore et al., 2014; Dahlin et al., 2015; MacBean et al., 541 

2015; Renwick et al., 2019; Whitley et al., 2016; Teckentrup et al., in review). Further evidence 542 

for inadequate TBM phenology schemes comes from MacBean et al. (2020), who noted that 543 

while the ORCHIDEE model can capture evapotranspiration (ET) fluxes extremely well, even 544 

without parameter optimization, the model simulates a delayed increase in transpiration/ET 545 

(T/ET) ratios during the summer monsoon when compared to two independent T/ET estimates. 546 

This suggests that the model is getting ET right for the wrong reasons – i.e. the partitioning of 547 

ET into its component fluxes of T and bare soil evaporation is incorrect. This lagged response of 548 

T to increasing rainfall is consistent with the results of MacBean et al. (in review) who found 549 

across a suite of TBMs (TRENDY v7) too weak ecosystem-scale water use efficiency (WUE) – 550 

i.e. a too weak response of GPP to increasing ET – during the monsoon was likely the cause of 551 

their inability to capture NEE IAV. Put simply, the models simulate too weak a response of 552 

vegetation growth to pulses of moisture availability. Thus, the evidence from all these studies, 553 

including our results presented here, is pointing to issues with phenology, plant hydraulics, 554 

and/or the fraction of vegetation prescribed in the model. As noted by MacBean et al. (2020), the 555 

static PFT fractions prescribed in the models likely prevent monsoon season growth of summer 556 

annual C4 grasses in the interstitial bare soil patches. Errors in PFT fractions in sparsely 557 

vegetated regions have also been shown to propagate into large model errors in simulated 558 

carbon, water and energy fluxes (Hartley et al., 2017). The optimization of numerous phenology 559 

parameters with weak constraints in this study could be partially accounting for such a model 560 

error. But it is also possible that this issue of static PFT fractions explains even the posterior 561 



manuscript submitted to Journal of Geophysical Research Biogeosciences 

 

model’s inability to capture peak GPP fluxes for some sites (see Section 3.1), and the fact that in 562 

the posterior simulations, the phase remains the strongest contribution to the NEE MSD.  563 

The same Bayesian DA system was used by MacBean et al (2015) to correct phenology 564 

model issues in a previous version of ORCHIDEE that was nonetheless identical in its 565 

representation of phenology. However, while they were able to correct the seasonal leaf 566 

dynamics in temperate and boreal ecosystems, they found the parameter optimization was unable 567 

to correct for phenology model issues in semi-arid ecosystems. While the data they used were 568 

different – normalized difference vegetation index (NDVI) from the MODIS satellite instrument 569 

as opposed to the flux tower NEE used here – they also used stronger prior constraints and fewer 570 

phenology parameters, suggesting that the additional degrees of freedom in the assimilations in 571 

this study (from weaker prior constraints and a greater number of phenology parameters) may 572 

have resulted in the improvements from the parameter optimization. Still, as we noted above, the 573 

combination of weak prior constrains and edge-hitting posterior parameters suggests the 574 

assimilations are accounting for other structural errors in the model, and phase errors remain a 575 

strong source of NEE MSD even after optimization. As also noted, the phenology schemes in 576 

these models are highly dependent on a number of empirical parameters that require site 577 

calibration and which were typically not developed for dryland ecosystems. Future developments 578 

in this area should take account of the variety of different strategies in dryland plants for dealing 579 

with water stress (Smith et al., 2012). 580 

MacBean et al. (in review) also presented a range of other hypotheses as to which 581 

processes might be causing model errors in capturing semi-arid phenology other than the need to 582 

represent summer annual C4 grass fractional cover and phenology, including: the lack of 583 

drought-deciduous shrub phenology schemes in TBMs; the lack of deep tap shrub and tree roots 584 

that draw up groundwater needed for growth during drier periods; and the lack of dynamic root 585 

growth as moisture becomes more available. Future studies need to systematically test all of the 586 

proposed hypotheses to determine which, if any, can explain the observed model-data 587 

discrepancies. 588 

Our assimilation tests also showed that so-called “post C uptake” parameters related to 589 

maintenance respiration, biomass and litter turnover, and soil C decomposition are mainly 590 

responsible for reducing the strong model underestimate of mean annual NEE, particularly at the 591 
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higher elevation forested C sink sites. We did not focus on correcting mean annual NEE, and 592 

instead focused more on correcting errors in NEE IAV, because the variability in eddy 593 

covariance measurements of NEE are more trusted than the absolute values due to errors in flux 594 

partitioning. Furthermore, for the semi-arid sites that pivot between a C source and sink, their 595 

mean sink versus source behavior may be a function of a time period involved. In particular, the 596 

only mean C source site (US-Aud) is likely a source because of a fire in 2002 from which the site 597 

was still recovering during the measurement period. As discussed, we know that even TBMs that 598 

include wildfire modules will likely not reproduce the specific impacts of an individual fire. 599 

Nevertheless, while we do not focus on the C source site, we do know that the high elevation 600 

forested sites in this study are consistently sinks of C, even during the drought period that has 601 

been affecting the SW US for most of this century (Scott et al., 2015). It is important that we are 602 

able to capture this dryland forested site C sink, particularly given these ecosystems have been 603 

shown to contribute to long-term trends in the global C cycle (Ahlstrom et al., 2015). Drylands 604 

are vulnerable to future increases in drought, which may reduce the C sink (Bodner and Robles, 605 

2017). On the other hand, drought impacts on dryland vegetation could be mitigated by increases 606 

in WUE and vegetation growth under elevated CO2 (e.g. Donohue et al., 2013). Thus, it is an 607 

important contribution that parameter optimizations presented here can account for these biases 608 

in modeling C sinks at high elevation forested sink sites. MacBean et al. (in review) postulated 609 

that TRENDY TBM underestimates in mean annual NEE at these sites was due to 610 

underestimates in spring GPP, possibly due to issues with model snow melt not providing 611 

enough moisture for spring growth. In constrast, the results presented here suggest that the issues 612 

at the high elevation forested sink sites may be more linked to processes that occur after the 613 

gross uptake of CO2, such as maintenance respiration, biomass turnover, and temperature 614 

limitation on soil C decomposition (Figure S11). If true, it may be that the processes in TBMs 615 

can accurately capture dryland forested site photosynthesis if the parameters are better adapted 616 

for dryland PFTs, which simply requires more careful calibration across a range of dryland forest 617 

sites.  618 

As discussed in the introduction, we have focused on correcting parameters related to 619 

GPP because MacBean et al. (in review) found that GPP, and particularly summer monsoon 620 

season GPP, is the dominant driver of NEE IAV. We also are obliged to focus on GPP 621 

parameters because the number of model parameters is higher for GPP. In a follow up study, we 622 
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are assessing how the number of parameters linked to each different process affects the ability of 623 

the optimization to correct for errors in those processes. We may find, for example, that the sheer 624 

number of parameters related to phenology that are included here results in those parameters 625 

being the more important for correcting NEE IAV. This then becomes an issue of wider model 626 

development because we can only include in the optimization that are in the model. Still, the fact 627 

that the relatively few “post C uptake” parameters included in the assimilation tests carried out in 628 

this study can account for biases in mean annual NEE suggests that the number of parameters 629 

linked to each process does not prevent us from identifying which set of parameters (and 630 

processes) are mostly causing model-data discrepancies. It is still possible that those parameters 631 

are accounting for other structural errors in the model, as we have discussed above. The specific 632 

DA configuration (e.g. type of data included – e.g. net or gross CO2 fluxes, the number of 633 

parameters included, and to which processes they are related) can lead to different posterior 634 

values and degree of improvement in model-data fit. Therefore, further tests of different DA 635 

configurations and optimizations at other locations are needed to explore the potential of 636 

Bayesian DA systems for quantifying and reducing error in semi-arid ecosystem C fluxes. While 637 

we have particularly highlighted one key area of the model that needs improvement (dryland 638 

phenology schemes and associated processes related to plant water availability), we have also 639 

shown that all C cycle model parameters and processes in semi-arid ecosystems need either 640 

optimizing or further development by TBM groups. Only by addressing these issues will we be 641 

able to reliably use these models to accurately simulate dryland  contributions to IAV and long-642 

term trends in the global C cycle.   643 

 644 

Acknowledgments  645 

Funding for AmeriFlux data resources and data collection at US-SRM, US-SRG, US-646 

Wkg, and US-Whs was provided by the U.S. Department of Energy’s Office of Science and the 647 

USDA (an equal-opportunity employer). Data collection at sites US-Vcp, US-Vcm, US-Mpj, 648 

US-Wjs, US-Seg, and US-Ses were funded by the U.S. Department of Energy EPSCoR (DE‐649 

FG02‐08ER46506), and the Department of Energy Ameriflux Management Project (Subcontract 650 

7074628), and the Sevilleta Long Term Ecological Research site (NSF‐DEB LTER 1440478). 651 

The US-Fuf site was supported by grants from the North American Carbon Program/USDA 652 



manuscript submitted to Journal of Geophysical Research Biogeosciences 

 

CREES NRI (2004-35111-15057 and 2008-35101-19076), Science Foundation Arizona (CAA 0-653 

203-08), the Arizona Water Institute, and the Mission Research Program, School of Forestry, 654 

Northern Arizona University (McIntire-Stennis/Arizona Bureau of Forestry). KM was funded by 655 

Indiana University Prepared for Environmental Change Grand Challenge. We would like to 656 

thank the ORCHIDEE team for development and maintenance of the ORCHIDEE code and for 657 

providing the ORCHIDEE version used in this study. 658 

 659 

Code availability  660 

The ORCHIDEE model is under a free software license (CeCILL; see 661 

http://www.cecill.info/index.en.html) and the source code is visible here: 662 

https://forge.ipsl.jussieu.fr/orchidee/browser/tags/ORCHIDEE. The ORCHIDEE model code is 663 

written in Fortran 90 and is maintained and developed under an SVN version control system at 664 

the Institute Pierre Simon Laplace (IPSL) in France. The ORCHIDAS code is currently in the 665 

process of being put on a GitHub repository but for now it is available on request to 666 

vladislav.bastrikov@lsce.ipsl.fr. 667 

 668 

Data availability 669 

Meteorological forcing data and eddy covariance measurements of net surface energy and 670 

carbon exchanges at 30-minutes intervals are available from the AmeriFlux data portal 671 

(http://ameriflux.lbl.gov). The model outputs from ORCHIDEE simulations and post-processing 672 

python scripts for manuscript figures and tables are freely available in a Git repository 673 

(https://github.com/kashifmahmud/SW_US_semiarid). 674 

 675 

References 676 

Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., 677 

Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B. D., 678 

Viovy, N., Wang, Y. P., Wiltshire, A., Zaehle, S., & Zeng, N. (2015). Carbon cycle. The 679 

dominant role of semi-arid ecosystems in the trend and variability of the land CO₂ sink. Science, 680 

348(6237), 895–899. 681 



manuscript submitted to Journal of Geophysical Research Biogeosciences 

 

Anderson-Teixeira, K. J., Delong, J. P., Fox, A. M., Brese, D. A., & Litvak, M. E. (2011). 682 

Differential responses of production and respiration to temperature and moisture drive the carbon 683 

balance across a climatic gradient in New Mexico. In Global Change Biology (Vol. 17, Issue 1, 684 

pp. 410–424). https://doi.org/10.1111/j.1365-2486.2010.02269.x 685 

Bacour, C., Maignan, F., Peylin, P., MacBean, N., Bastrikov, V., Joiner, J., Köhler, P., Guanter, 686 

L., & Frankenberg, C. (2019). Differences Between OCO‐2 and GOME‐2 SIF Products From a 687 

Model‐Data Fusion Perspective. In Journal of Geophysical Research: Biogeosciences (Vol. 124, 688 

Issue 10, pp. 3143–3157). https://doi.org/10.1029/2018jg004938 689 

Bastrikov, V., MacBean, N., Bacour, C., Santaren, D., Kuppel, S., & Peylin, P. (2018). Land 690 

surface model parameter optimisation using in situ flux data: comparison of gradient-based 691 

versus random search algorithms (a case study using ORCHIDEE v1.9.5.2). In Geoscientific 692 

Model Development (Vol. 11, Issue 12, pp. 4739–4754). https://doi.org/10.5194/gmd-11-4739-693 

2018 694 

Biederman, J. A., Scott, R. L., Bell, T. W., Bowling, D. R., Dore, S., Garatuza-Payan, J., Kolb, 695 

T. E., Krishnan, P., Krofcheck, D. J., Litvak, M. E., Maurer, G. E., Meyers, T. P., Oechel, W. C., 696 

Papuga, S. A., Ponce-Campos, G. E., Rodriguez, J. C., Smith, W. K., Vargas, R., Watts, C. J., … 697 

Goulden, M. L. (2017). CO exchange and evapotranspiration across dryland ecosystems of 698 

southwestern North America. Global Change Biology, 23(10), 4204–4221. 699 

Biederman, J. A., Scott, R. L., Goulden, M. L., Vargas, R., Litvak, M. E., Kolb, T. E., Yepez, E. 700 

A., Oechel, W. C., Blanken, P. D., Bell, T. W., Garatuza-Payan, J., Maurer, G. E., Dore, S., & 701 

Burns, S. P. (2016). Terrestrial carbon balance in a drier world: the effects of water availability 702 

in southwestern North America. In Global Change Biology (Vol. 22, Issue 5, pp. 1867–1879). 703 

https://doi.org/10.1111/gcb.13222 704 

Bodner, G. S., & Robles, M. D. (2017). Enduring a decade of drought: Patterns and drivers of 705 

vegetation change in a semi-arid grassland. Journal of Arid Environments, 136, 1-14. 706 

Cleverly, J., Eamus, D., Luo, Q., Coupe, N. R., Kljun, N., Ma, X., Ewenz, C., Li, L., Yu, Q., & 707 

Huete, A. (2016). The importance of interacting climate modes on Australia’s contribution to 708 

global carbon cycle extremes. In Scientific Reports (Vol. 6, Issue 1). 709 

https://doi.org/10.1038/srep23113 710 



manuscript submitted to Journal of Geophysical Research Biogeosciences 

 

Cox, P. M., Pearson, D., Booth, B. B., Friedlingstein, P., Huntingford, C., Jones, C. D., & Luke, 711 

C. M. (2013). Sensitivity of tropical carbon to climate change constrained by carbon dioxide 712 

variability. Nature, 494(7437), 341–344. 713 

Dahlin, K. M., Fisher, R. A., & Lawrence, P. J. (2015). Environmental drivers of drought 714 

deciduous phenology in the Community Land Model. Biogeosciences, 12(16), 5061-5074. 715 

Desai, A. R., Richardson, A. D., Moffat, A. M., Kattge, J., Hollinger, D. Y., Barr, A., Falge, E., 716 

Noormets, A., Papale, D., Reichstein, M., & Stauch, V. J. (2008). Cross-site evaluation of eddy 717 

covariance GPP and RE decomposition techniques. In Agricultural and Forest Meteorology 718 

(Vol. 148, Issues 6-7, pp. 821–838). https://doi.org/10.1016/j.agrformet.2007.11.012 719 

Donohue RJ, Roderick ML, McVicar TR, Farquhar GD. 2013. Impact of CO2 fertilization on 720 

maximum foliage cover across the globe’s warm, arid environments. Geophysical Research 721 

Letters 40: 3031–3035. 722 

Dore, S., Montes-Helu, M., Hart, S. C., Hungate, B. A., Koch, G. W., Moon, J. B., Finkral, A. J., 723 

& Kolb, T. E. (2012). Recovery of ponderosa pine ecosystem carbon and water fluxes from 724 

thinning and stand-replacing fire. Global Change Biology, 18(10), 3171–3185. 725 

Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., 726 

Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, 727 

P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., … Vuichard, N. (2013). Climate change 728 

projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. In Climate 729 

Dynamics (Vol. 40, Issues 9-10, pp. 2123–2165). https://doi.org/10.1007/s00382-012-1636-1 730 

Fu, Z., Dong, J., Zhou, Y., Stoy, P. C., & Niu, S. (2017). Long term trend and interannual 731 

variability of land carbon uptake—the attribution and processes. In Environmental Research 732 

Letters (Vol. 12, Issue 1, p. 014018). https://doi.org/10.1088/1748-9326/aa5685 733 

Gauch, H. G., Gene Hwang, J. T., & Fick, G. W. (2003). Model Evaluation by Comparison of 734 

Model-Based Predictions and Measured Values. In Agronomy Journal (Vol. 95, Issue 6, pp. 735 

1442–1446). https://doi.org/10.2134/agronj2003.1442 736 

Goldberg, D. E., David Edward, G., Goldberg, D. E. G., & Visiting Assistant Professor of 737 

History David E Goldberg. (1989). Genetic Algorithms in Search, Optimization, and Machine 738 

Learning. Addison-Wesley Publishing Company. 739 



manuscript submitted to Journal of Geophysical Research Biogeosciences 

 

Hartley, A. J., MacBean, N., Georgievski, G., & Bontemps, S. (2017). Uncertainty in plant 740 

functional type distributions and its impact on land surface models. Remote Sensing of 741 

Environment, 203, 71-89. 742 

Haupt, R. L., Haupt, S. E., & Haupt, S. E. A. (2004). Practical Genetic Algorithms. Wiley. 743 

Haverd, V., Ahlström, A., Smith, B., & Canadell, J. G. (2017). Carbon cycle responses of semi-744 

arid ecosystems to positive asymmetry in rainfall. Global Change Biology, 23(2), 793–800. 745 

Haverd, V., Raupach, M. R., Briggs, P. R., Canadell, J. G., Isaac, P., Pickett-Heaps, C., 746 

Roxburgh, S. H., van Gorsel, E., Viscarra Rossel, R. A., & Wang, Z. (2013a). Multiple 747 

observation types reduce uncertainty in Australia’s terrestrial carbon and water cycles. In 748 

Biogeosciences (Vol. 10, Issue 3, pp. 2011–2040). https://doi.org/10.5194/bg-10-2011-2013 749 

Haverd, V., Raupach, M. R., Briggs, P. R., Canadell, J. G., Isaac, P., Pickett-Heaps, C., 750 

Roxburgh, S. H., van Gorsel, E., Viscarra Rossel, R. A., & Wang, Z. (2013b). Multiple 751 

observation types reduce uncertainty in Australia’s terrestrial carbon and water cycles. In 752 

Biogeosciences (Vol. 10, Issue 3, pp. 2011–2040). https://doi.org/10.5194/bg-10-2011-2013 753 

Hogue, T. S., Bastidas, L., Gupta, H., Sorooshian, S., Mitchell, K., & Emmerich, W. (2005). 754 

Evaluation and Transferability of the Noah Land Surface Model in Semiarid Environments. In 755 

Journal of Hydrometeorology (Vol. 6, Issue 1, pp. 68–84). https://doi.org/10.1175/jhm-402.1 756 

Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., 757 

Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., 758 

Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., … Zhang, 759 

X. (2020). Harmonization of global land use change and management for the period 850–2100 760 

(LUH2) for CMIP6. Geoscientific Model Development, 13(11), 5425–5464. 761 

Kobayashi, K., & Salam, M. U. (2000). Comparing Simulated and Measured Values Using Mean 762 

Squared Deviation and its Components. In Agronomy Journal (Vol. 92, Issue 2, p. 345). 763 

https://doi.org/10.1007/s100870050043 764 

Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, 765 

P., Sitch, S., & Colin Prentice, I. (2005). A dynamic global vegetation model for studies of the 766 

coupled atmosphere-biosphere system. In Global Biogeochemical Cycles (Vol. 19, Issue 1). 767 

https://doi.org/10.1029/2003gb002199 768 



manuscript submitted to Journal of Geophysical Research Biogeosciences 

 

Krishnan, P., Meyers, T. P., Scott, R. L., Kennedy, L., & Heuer, M. (2012). Energy exchange 769 

and evapotranspiration over two temperate semi-arid grasslands in North America. In 770 

Agricultural and Forest Meteorology (Vol. 153, pp. 31–44). 771 

https://doi.org/10.1016/j.agrformet.2011.09.017 772 

Kuppel, S., Peylin, P., Chevallier, F., Bacour, C., Maignan, F., & Richardson, A. D. (2012). 773 

Constraining a global ecosystem model with multi-site eddy-covariance data. In Biogeosciences 774 

(Vol. 9, Issue 10, pp. 3757–3776). https://doi.org/10.5194/bg-9-3757-2012 775 

Kuppel, S., Peylin, P., Maignan, F., Chevallier, F., Kiely, G., Montagnani, L., & Cescatti, A. 776 

(2014). Model–data fusion across ecosystems: from multisite optimizations to global 777 

simulations. In Geoscientific Model Development (Vol. 7, Issue 6, pp. 2581–2597). 778 

https://doi.org/10.5194/gmd-7-2581-2014 779 

MacBean, N., Maignan, F., Bacour, C., Lewis, P., Peylin, P., Guanter, L., Köhler, P., Gómez-780 

Dans, J., & Disney, M. (2018). Strong constraint on modelled global carbon uptake using solar-781 

induced chlorophyll fluorescence data. Scientific Reports, 8(1), 1973. 782 

MacBean, N., Maignan, F., Peylin, P., Bacour, C., Bréon, F.-M., & Ciais, P. (2015). Using 783 

satellite data to improve the leaf phenology of a global terrestrial biosphere model. In 784 

Biogeosciences (Vol. 12, Issue 23, pp. 7185–7208). https://doi.org/10.5194/bg-12-7185-2015 785 

MacBean, N., Peylin, P., Chevallier, F., Scholze, M., & Schürmann, G. (2016). Consistent 786 

assimilation of multiple data streams in a carbon cycle data assimilation system. In Geoscientific 787 

Model Development (Vol. 9, Issue 10, pp. 3569–3588). https://doi.org/10.5194/gmd-9-3569-788 

2016 789 

MacBean, N., R. L. Scott, J. A. Biederman, P. Peylin, T. Kolb, M. Litvak, P. Krishnan, T. 790 

Meyers, V. Arora, V. Bastrikov, D. Goll, D. L. Lombardozzi, J. Nabel, J. Pongratz, S. Sitch, A. 791 

P. Walker, S. Zaehle, and D. J. P. Moore. (n.d.). Dynamic Global Vegetation Models 792 

Underestimate Net CO2 Flux Mean and Inter-Annual Variability in Semiarid Ecosystems. In 793 

review for Environmental Research Letters. Preprint Available upon Request. 794 

MacBean, N., Scott, R. L., Biederman, J. A., Ottlé, C., Vuichard, N., Ducharne, A., Kolb, T., 795 

Dore, S., Litvak, M., & Moore, D. J. P. (2020). Testing water fluxes and storage from two 796 

hydrology configurations within the ORCHIDEE land surface model across US semi-arid sites. 797 



manuscript submitted to Journal of Geophysical Research Biogeosciences 

 

In Hydrology and Earth System Sciences (Vol. 24, Issue 11, pp. 5203–5230). 798 

https://doi.org/10.5194/hess-24-5203-2020 799 

Peng, S., Ciais, P., Chevallier, F., Peylin, P., Cadule, P., Sitch, S., Piao, S., Ahlström, A., 800 

Huntingford, C., Levy, P., Li, X., Liu, Y., Lomas, M., Poulter, B., Viovy, N., Wang, T., Wang, 801 

X., Zaehle, S., Zeng, N., Zhao, H. (2015). Benchmarking the seasonal cycle of CO2fluxes 802 

simulated by terrestrial ecosystem models. In Global Biogeochemical Cycles (Vol. 29, Issue 1, 803 

pp. 46–64). https://doi.org/10.1002/2014gb004931 804 

Petrie, M. D., Collins, S. L., Swann, A. M., Ford, P. L., & Litvak, M. E. (2015). Grassland to 805 

shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert. 806 

Global Change Biology, 21(3), 1226–1235. 807 

Peylin, P., Bacour, C., MacBean, N., Leonard, S., Rayner, P., Kuppel, S., Koffi, E., Kane, A., 808 

Maignan, F., Chevallier, F., Ciais, P., & Prunet, P. (2016). A new stepwise carbon cycle data 809 

assimilation system using multiple data streams to constrain the simulated land surface carbon 810 

cycle. In Geoscientific Model Development (Vol. 9, Issue 9, pp. 3321–3346). 811 

https://doi.org/10.5194/gmd-9-3321-2016 812 

Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X., Ahlström, A., Anav, A., 813 

Canadell, J. G., Cong, N., Huntingford, C., Jung, M., Levis, S., Levy, P. E., Li, J., Lin, X., 814 

Lomas, M. R., Lu, M., Luo, Y., … Zeng, N. (2013). Evaluation of terrestrial carbon cycle 815 

models for their response to climate variability and to CO2 trends. Global Change Biology, 816 

19(7), 2117–2132. 817 

Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., Broquet, G., Canadell, J. G., 818 

Chevallier, F., Liu, Y. Y., Running, S. W., Sitch, S., & van der Werf, G. R. (2014). Contribution 819 

of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 509(7502), 820 

600–603. 821 

Poulter, B., MacBean, N., Hartley, A., Khlystova, I., Arino, O., Betts, R., Bontemps, S., 822 

Boettcher, M., Brockmann, C., Defourny, P., Hagemann, S., Herold, M., Kirches, G., Lamarche, 823 

C., Lederer, D., Ottlé, C., Peters, M., & Peylin, P. (2015). Plant functional type classification for 824 

earth system models: results from the European Space Agency’s Land Cover Climate Change 825 

Initiative. Geoscientific Model Development, 8(7), 2315–2328. 826 



manuscript submitted to Journal of Geophysical Research Biogeosciences 

 

Raczka, B. M., Davis, K. J., Huntzinger, D., Neilson, R. P., Poulter, B., Richardson, A. D., Xiao, 827 

J., Baker, I., Ciais, P., Keenan, T. F., Law, B., Post, W. M., Ricciuto, D., Schaefer, K., Tian, H., 828 

Tomelleri, E., Verbeeck, H., & Viovy, N. (2013). Evaluation of continental carbon cycle 829 

simulations with North American flux tower observations. In Ecological Monographs (Vol. 83, 830 

Issue 4, pp. 531–556). https://doi.org/10.1890/12-0893.1 831 

Renwick, K. M., Fellows, A., Flerchinger, G. N., Lohse, K. A., Clark, P. E., Smith, W. K., 832 

Emmett, K., & Poulter, B. (2019). Modeling phenological controls on carbon dynamics in 833 

dryland sagebrush ecosystems. In Agricultural and Forest Meteorology (Vol. 274, pp. 85–94). 834 

https://doi.org/10.1016/j.agrformet.2019.04.003 835 

Santaren, D., Peylin, P., Bacour, C., Ciais, P., & Longdoz, B. (2014). Ecosystem model 836 

optimization using in situ flux observations: benefit of Monte Carlo versus variational schemes 837 

and analyses of the year-to-year model performances. In Biogeosciences (Vol. 11, Issue 24, pp. 838 

7137–7158). https://doi.org/10.5194/bg-11-7137-2014 839 

Santaren, D., Peylin, P., Viovy, N., & Ciais, P. (2007). Optimizing a process-based ecosystem 840 

model with eddy-covariance flux measurements: A pine forest in southern France. In Global 841 

Biogeochemical Cycles (Vol. 21, Issue 2). https://doi.org/10.1029/2006gb002834 842 

Schaefer, K., Schwalm, C. R., Williams, C., Altaf Arain, M., Barr, A., Chen, J. M., Davis, K. J., 843 

Dimitrov, D., Hilton, T. W., Hollinger, D. Y., Humphreys, E., Poulter, B., Raczka, B. M., 844 

Richardson, A. D., Sahoo, A., Thornton, P., Vargas, R., Verbeeck, H., Anderson, R., … Zhou, X. 845 

(2012). A model-data comparison of gross primary productivity: Results from the North 846 

American Carbon Program site synthesis. In Journal of Geophysical Research: Biogeosciences 847 

(Vol. 117, Issue G3). https://doi.org/10.1029/2012jg001960 848 

Scott, R. L. (2010). Using watershed water balance to evaluate the accuracy of eddy covariance 849 

evaporation measurements for three semiarid ecosystems. In Agricultural and Forest 850 

Meteorology (Vol. 150, Issue 2, pp. 219–225). https://doi.org/10.1016/j.agrformet.2009.11.002 851 

Scott, R. L., Biederman, J. A., Hamerlynck, E. P., & Barron‐Gafford, G. A. (2015). The carbon 852 

balance pivot point of southwestern U.S. semiarid ecosystems: Insights from the 21st century 853 

drought. In Journal of Geophysical Research: Biogeosciences (Vol. 120, Issue 12, pp. 2612–854 

2624). https://doi.org/10.1002/2015jg003181 855 



manuscript submitted to Journal of Geophysical Research Biogeosciences 

 

Scott, R. L., Darrel Jenerette, G., Potts, D. L., & Huxman, T. E. (2009). Effects of seasonal 856 

drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. In 857 

Journal of Geophysical Research (Vol. 114, Issue G4). https://doi.org/10.1029/2008jg000900 858 

Smith, S. D., Monson, R., & Anderson, J. E. (2012). Physiological Ecology of North American 859 

Desert Plants. Springer Science & Business Media. 860 

Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. 861 

https://doi.org/10.1137/1.9780898717921 862 

Teckentrup, L., De Kauwe, M. G., Pitman, A. J., Goll, D., Haverd, V., Jain, A. K., ... & Zaehle, 863 

S. (2021). Assessing the representation of the Australian carbon cycle in global vegetation 864 

models. Biogeosciences Discussions, 1-47. 865 

Traore, A., Ciais, P., Vuichard, N., MacBean, N., Dardel, C., Poulter, B., Piao, S., Fisher, J., 866 

Viovy, N., Jung, M., & Myneni, R. (2014). 1982–2010 Trends of Light Use Efficiency and 867 

Inherent Water Use Efficiency in African vegetation: Sensitivity to Climate and Atmospheric 868 

CO2 Concentrations. In Remote Sensing (Vol. 6, Issue 9, pp. 8923–8944). 869 

https://doi.org/10.3390/rs6098923 870 

Trudinger, C. M., Haverd, V., Briggs, P. R., & Canadell, J. G. (2016). Interannual variability in 871 

Australia’s terrestrial carbon cycle constrained by multiple observation types. In Biogeosciences 872 

(Vol. 13, Issue 23, pp. 6363–6383). https://doi.org/10.5194/bg-13-6363-2016 873 

Unland, H. E., Houser, P. R., Shuttleworth, W. J., & Yang, Z.-L. (1996). Surface flux 874 

measurement and modeling at a semi-arid Sonoran Desert site. In Agricultural and Forest 875 

Meteorology (Vol. 82, Issues 1-4, pp. 119–153). https://doi.org/10.1016/0168-1923(96)02330-1 876 

Verbeeck, H., Peylin, P., Bacour, C., Bonal, D., Steppe, K., & Ciais, P. (2011). Seasonal patterns 877 

of CO2fluxes in Amazon forests: Fusion of eddy covariance data and the ORCHIDEE model. In 878 

Journal of Geophysical Research (Vol. 116, Issue G2). https://doi.org/10.1029/2010jg001544 879 

Vuichard, N., Messina, P., Luyssaert, S., Guenet, B., Zaehle, S., Ghattas, J., Bastrikov, V., & 880 

Peylin, P. (2019). Accounting for carbon and nitrogen interactions in the global terrestrial 881 

ecosystem model ORCHIDEE (trunk version, rev 4999): multi-scale evaluation of gross primary 882 

production. In Geoscientific Model Development (Vol. 12, Issue 11, pp. 4751–4779). 883 

https://doi.org/10.5194/gmd-12-4751-2019 884 



manuscript submitted to Journal of Geophysical Research Biogeosciences 

 

Vuichard, N., & Papale, D. (2015). Filling the gaps in meteorological continuous data measured 885 

at FLUXNET sites with ERA-Interim reanalysis. In Earth System Science Data (Vol. 7, Issue 2, 886 

pp. 157–171). https://doi.org/10.5194/essd-7-157-2015 887 

Wang, F., Cheruy, F., & Dufresne, J.-L. (2016). The improvement of soil thermodynamics and 888 

its effects on land surface meteorology in the IPSL climate model. Geoscientific Model 889 

Development, 9(1), 363–381. 890 

Wang, T., Ottlé, C., Boone, A., Ciais, P., Brun, E., Morin, S., Krinner, G., Piao, S., & Peng, S. 891 

(2013). Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE 892 

land surface model: ORCHIDEE SNOW MODEL EVALUATION. Journal of Geophysical 893 

Research, 118(12), 6064–6079. 894 

Whitley, R., Beringer, J., Hutley, L. B., Abramowitz, G., De Kauwe, M. G., Duursma, R., Evans, 895 

B., Haverd, V., Li, L., Ryu, Y., Smith, B., Wang, Y.-P., Williams, M., & Yu, Q. (2016a). A 896 

model inter-comparison study to examine limiting factors in modelling Australian tropical 897 

savannas. In Biogeosciences (Vol. 13, Issue 11, pp. 3245–3265). https://doi.org/10.5194/bg-13-898 

3245-2016 899 

Yin, X., and Struik, P. C.: C3 and C4 photosynthesis models: An overview from the perspective 900 

of crop modelling, NJAS - Wageningen Journal of Life Sciences, 57, 27-38, 901 

https://doi.org/10.1016/j.njas.2009.07.001, 2009. 902 

 903 


