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Key Points:12

• We provide a review of the derivation of the functional response equations, uni-13

fied across all common response types and parameter schemes.14

• Zooplankton grazing parameter values vary by 3 to 4 orders of magnitude with15

inconsistent allometric relationships, both in models and experiments.16

• The apparent mean functional response, averaged across sufficient sub-grid scale17

heterogeneity, begins to resembles the shape and parameter sensitivity of a type18

III Michaelis-Menten response even when a local type II disk response is prescribed.19

• We recommend a type II disk response in smaller scale, finer resolution models20

but a type III Michaelis-Menten response in larger scale, coarser resolution mod-21

els.22

• We recommend considering a wide range of K1/2 values, particularly low ones.23
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Abstract24

For nearly a century, the functional response curves, which describe how predation rates25

vary with prey density, have been a mainstay of ecological modelling. While originally26

derived to describe terrestrial interactions, they have been adopted to characterize aquatic27

systems in marine biogeochemical, size-spectrum, and population models. However, ma-28

rine ecological modellers disagree over the qualitative shape of the curve (e.g. Type II29

vs. III), whether its parameters should be mechanistically or empirically defined (e.g.30

disk vs. Michaelis-Menten scheme), and the most representative value of those param-31

eters. As a case study, we focus on marine biogeochemical models, providing a compre-32

hensive theoretical, empirical, and numerical road-map for interpreting, formulating, and33

parameterizing the functional response when used to prescribe zooplankton specific graz-34

ing rates on a single prey source. After providing a detailed derivation of each of the canon-35

ical functional response types explicitly for aquatic systems, we review the literature de-36

scribing their parameterization. Empirical estimates of each parameter vary by over three37

orders of magnitude across 10 orders of magnitude in zooplankton size. However, the strength38

and direction of the allometric relationship between each parameter and size differs de-39

pending on the range of sizes being considered. In models, which must represent the mean40

state of different functional groups, size spectra or in many cases the entire ocean’s zoo-41

plankton population, the range of parameter values is smaller, but still varies by two to42

three orders of magnitude. Next, we conduct a suite of 0-D NPZ simulations to isolate43

the sensitivity of phytoplankton population size and stability to the grazing formulation.44

We find that the disk parameterizations scheme is much less sensitive to it parameter-45

ization than the Michaelis-Menten scheme, and quantify the range of parameters over46

which the Type II response, long known to have destabilizing properties, introduces dy-47

namic instabilities. Finally, we use a simple theoretical model to show how the mean ap-48

parent functional response, averaged across sufficient sub-grid scale heterogeneity diverges49

from the local response. Collectively, we recommend using a type II disk response for50

models with smaller scales and finer resolutions but suggest that a type III Michaelis-51

Menten response may do a better job of capturing the complexity of all processes be-52

ing averaged across in larger scale and coarser resolution modal, not just local consump-53

tion and capture rates. While we focus specifically on the grazing formulation in marine54

biogeochemical models, we believe these recommendations are robust across a much broader55

range of ecosystem models.56

1 Introduction57

In the late 1950s, Buzz Holling began studying the predation of sawfly cocoons by58

small mammals (Holling, 1959a) to better understand how predation rates varied with59

prey density, a relationship coined a decade earlier as the functional response (Solomon,60

1949). Holling observed that individual predators consumed more prey at higher prey61

densities, but found that this relationship was not necessarily linear or consistent across62

species. Over the course of three seminal papers, Holling went on to develop a theoret-63

ical framework to describe how different assumptions about the rates at which preda-64

tors captured and consumed their prey could explain observed nonlinearities and vari-65

ability in the shape of functional response curve (Holling, 1959a, 1959b, 1965). Using66

this mechanistic approach, Holling derived three qualitatively distinct response types to67

describe differences in predator-prey interactions and their associated rates. In the en-68

suing decades, these equations have been further generalized (Real, 1977, 1979) and ce-69

mented into the bedrock of ecological modelling (Beardsell et al., 2021; Denny, 2014).70

Although the functional response was originally developed for terrestrial applica-71

tions (Holling, 1959a), the equations are also common in marine ecological modelling (Evans72

& Parslow, 1985; Fasham, 1995; Franks, Wroblewski, & Flierl, 1986). In the ocean, the73

functional response equations are now routinely used to link trophic dynamics in ma-74

rine biogeochemical (Law et al., 2017; Moore, Lindsay, Doney, Long, & Misumi, 2013),75
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size spectrum (Heneghan et al., 2020), and population models (Alver, Broch, Melle, Bagøien,76

& Slagstad, 2016). They are used to simulate both the rate at which heterotrophic zoo-77

plankton graze on autotrophic phytoplankton (Evans & Parslow, 1985; Franks et al., 1986)78

as well as the transfer of mass and energy further up the food chain in ecosystem (Buten-79

schön et al., 2016) and fisheries models (Maury, 2010; Tittensor et al., 2018, 2021).80

However, there remains a great deal of uncertainty surrounding the formulation of81

the functional response. For example, trade offs between the ecological veracity and nu-82

merical stability of different response types (Gismervik, 2005; A. Morozov, 2010; A. Mo-83

rozov, Arashkevich, Reigstad, & Falk-Petersen, 2008) have led to disagreement over which84

is best suited for rapidly growing, easily excitable, microbial systems common in marine85

ecology (Fasham, 1995; Flynn & Mitra, 2016; Gentleman & Neuheimer, 2008). Even amongst86

mathematically identical curves, there is not a consensus on how to define their param-87

eters, no less prescribe them. While some modellers opt for a parameter scheme that mir-88

rors the Michaelis–Menten (Michaelis & Menten, 1913) and Monod (Monod, 1949) equa-89

tions developed to describe enzyme kinetics and bacterial growth rates (Aumont & Bopp,90

2006; Dutkiewicz et al., 2015; Moore et al., 2013; Vichi, Pinardi, & Masina, 2007), oth-91

ers use a parameter scheme that mirrors the disk equation (Holling, 1959b, 1965) devel-92

oped by Holling to describe terrestrial interactions (Fasham, 1995; Laws, Falkowski, Smith,93

Ducklow, & McCarthy, 2000; Oke et al., 2013; Schartau & Oschlies, 2003b). While the94

parameters used in the Michaelis–Menten scheme are overtly empirical, those used in the95

disk scheme are theoretically mechanistic. Disagreement over which parameter set to use96

can confuse inter-model comparisons and influence the parameter space considered in97

optimization schemes, especially if there are not robust observations to bound them.98

Here, we focus on the formulation of grazing in marine biogeochemical models, which99

are a critical component of coupled climate models (Eyring et al., 2016; Flato et al., 2013;100

Taylor, Stouffer, & Meehl, 2012) and often used to drive fisheries models (Maury, 2010;101

Tittensor et al., 2018, 2021), but are increasingly under constrained and over parame-102

terized (Doney, 1999; Matear, 1995; Schartau et al., 2017; Ward, Friedrichs, Anderson,103

& Oschlies, 2010). Accurately representing grazing is critical to both climate and fish-104

eries models, as it mediates the biological transport of carbon fixed via net primary pro-105

duction (Behrenfeld, Doney, Lima, Boss, & Siegel, 2013; Laufkötter et al., 2015) and trans-106

ported to higher trophic levels via secondary production (Brander, 2007; Scherrer et al.,107

2020). Still, despite the growing recognition that biogeochemical models are highly sen-108

sitive to the grazing formulation (Adjou, Bendtsen, & Richardson, 2012; Anderson, Gen-109

tleman, & Sinha, 2010; Chenillat, Rivière, & Ohman, 2021; Fasham, 1995; Flynn & Mi-110

tra, 2016; Fussmann & Blasius, 2005; Gentleman & Neuheimer, 2008; Gross, Ebenhöh,111

& Feudel, 2004), it remains challenging to constrain global zooplankton dynamics us-112

ing a limited number of simplified equations, state variables, and parameters. Most bio-113

geochemical models represent only 1-2 zooplankton functional groups, but parameters114

inferred empirically vary largely across zooplankton species, size and age (Hansen, Bjørnsen,115

& Hansen, 1997; Hirst & Bunker, 2003). Allometric models can vary parameters across116

size class, but measured allometric relationships are not always robust (Hansen et al.,117

1997). Even once parameters are chosen, global simulations cannot be easily validated118

because we lack the required spatial resolution in observed distributions of zooplankton119

biomass and their associated grazing parameters (but see (Moriarty, Buitenhuis, Le Quéré,120

& Gosselin, 2013; Moriarty & O’Brien, 2012)). Moreover, the equations modellers must121

parameterize are empirical and theoretical oversimplifications and may not be adequate122

to represent the mean-state of diverse communities grazing in fundamentally different123

ways distributed heterogeneously across a patchy ocean.124

Depending on the model, zooplankton diets range from a single generic phytoplank-125

ton to a complex portfolio of multiple phytoplankton, smaller zooplankton, and detri-126

tus. When multiple prey is available, the distribution of grazing across them is deter-127

mined by one of many multiple-prey response functions, which can take into account both128
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the relative distribution of prey options and their intrinsic desirability (Fasham, Duck-129

low, & McKelvie, 1990). These equations, which are typically extensions of the single-130

prey response functions, have been reviewed in detail by Gentleman, Leising, Frost, Strom,131

and Murray (2003). Here, we focus on the single-prey response functions, which are a132

prerequisite for understanding the multiple-prey response functions and often describe133

their implied behavior when only one prey option is available. While many modern mod-134

els use a multiple-prey response Aumont, Ethé, Tagliabue, Bopp, and Gehlen (2015); Stock135

et al. (2020); Totterdell (2019); Yool et al. (2021), zooplankton grazing with a single-prey136

response remains common in state-of-the-art many CMIP6-class global climate models137

(Christian et al., 2021; Hajima et al., 2020; Law et al., 2017; Long et al., 2021; Tjipu-138

tra et al., 2020)139

By combining theory, empirical data, and numerical models, we consolidate a com-140

prehensive guide to how the single-prey functional response is employed in marine eco-141

logical models to represent grazing. We begin by presenting a unified review of how each142

functional response and its associated parameter schemes are derived, providing detailed143

insights into how they relate to each other and first principles Section 2). Next we re-144

view the mathematical influence of different grazing formulations on population stabil-145

ity (Section 3) and survey the literature to assess the range of parameter values that146

have been estimated empirically and used prescriptively in models (Section 4). Then147

we conduct a suite of simulations to isolate the sensitivity of phytoplankton population148

size and stability to the parameterization of the functional response using four different149

combinations of response type (i.e. II vs. III) and parameter scheme (i.e. disk vs. Michaelis-150

Menten) (Section 5). Finally, we use a simple theoretical model to examine the influ-151

ence of sub-grid scale heterogeneity on the shape of the functional response (Section152

6). We conclude with a set recommendations for the formulation of grazing based on the153

evidence presented (Section 7). These recommendations are tailored to the single-prey154

representation of grazing in marine biogeochemical models, but are broadly applicable155

to much wider usage of the functional response across marine and terrestrial applications.156

2 Derivation of the grazing formulation157

The rate at which prey is grazed by zooplankton is generally expressed as the graz-158

ing rate (G) in units of prey concentration lost per unit time (e.g. mmolC
m3d ). Here, we gen-159

erally refer to prey as phytoplankton, but all results are relevant to grazing on any generic160

single prey (e.g. bacteria, detritus, or carnivory on other zooplankton). The grazing rate161

is equal to the product of the ambient zooplankton concentration, [Z], and the zooplank-162

ton specific grazing rate (g), often referred to as the ingestion rate (Franks et al., 1986;163

Gentleman & Neuheimer, 2008), which describes the concentration of phytoplankton grazed164

per unit zooplankton per unit time, reducing to units of one over time (e.g. 1/d), such165

that166

G = g[Z] (1)

To account for the intuitive fact that grazing is less successful when phytoplank-167

ton are scarce, the zooplankton specific grazing rate, g, must vary with the ambient phy-168

toplankton concentration, [P ], particularly when [P ] is low. The mathematical formula169

that describes these relationships is know as the functional response.170

Buzz Holling originally derived the functional response by assuming there was a171

fixed time interval, T , over which predator and prey were exposed (e.g. same location,172

same time, predator is awake), and that predators were assumed to exclusively be cap-173

turing (e.g. searching, encountering, hunting, attacking) (Tcap) or consuming (e.g. killing,174

handling, processing, eating, digesting) prey (Tcon) during this interval (Holling, 1959a),175

such that176
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T = Tcap + Tcon. (2)

The canonical type I, II, and III functional responses (Fig. 1a) were consequently177

derived (Fig. 1b) from different assumptions (Fig. 1c) about the efficiency of the cap-178

ture and consumption processes, the associated total time needed to capture and con-179

sume a given amount of prey, and how those rates and times vary with prey density (see180

Table 1 for a catalogue of terms). However, prey density was originally expressed in dis-181

crete units of prey over a given circular area (or disk). Here, we instead provide a deriva-182

tion of the type I (Section 2.2), II (Section 2.3), and III (Section 2.4) responses ex-183

plicitly for aquatic systems, with example units of carbon biomass per meter cubed (mmolC/m3)184

for phytoplankton and zooplankton concentrations and days (d) for time. Further, we185

show how each functional response can be described by two sets of parameters: the disk186

scheme in which the consumption and capture processes are explicitly prescribed and187

mechanistically defined, and the Michaelis-Menten scheme, in which the maximum graz-188

ing rate and half saturation concentration of the curve are explicitly prescribed and em-189

pirically defined. Note, many of these equations have been derived in various forms and190

various contexts before (Aksnes & EGGE, 1991; Caperon, 1967). Here, we present them191

together, specifically in the context of zooplankton grazing, with careful attention to how192

they relate theoretically and mathematically to each other and first principles.193

For each derivation, consider some concentration of phytoplankton, [PG] (mmolC/m3),194

that is grazed (i.e. captured and consumed) by the ambient zooplankton population, [Z]195

(mmolC/m3), over the fixed grazing (or exposure) interval, T (d), at a grazing rate of196

G = [PG]
T and a zooplankton specific (i.e. considering the amount of predator present)197

grazing rate of g = [PG]
[Z]T . To derive each functional response type, g([P ]), we must solve198

for g (1/d) in terms of the ambient phytoplankton population, [P ] (mmolC/m3), con-199

sidering their respective assumptions regarding capture and consumption rates.200

2.1 Type 0 response201

A type 0 functional response is described by a straight horizontal line in which a202

zooplankton specific grazing rate is invariant to the ambient phytoplankton population203

(g([P ]) = constant, Fig. 1; magenta). A type 0 response is not ecologically realistic204

for any species, nor does it appear in any models, but for pedagogical purposes assumes205

that the capture process is unaffected by prey scarcity and that the consumption pro-206

cess is negligible.207

2.2 Type I response208

A type I functional response is described by a straight line (Holling, 1959b), in which209

the zooplankton specific grazing rate (g([P ])) increases linearly with the ambient phy-210

toplankton concentration (See Fig. 1; black). Ecologically, a type I response assumes211

that zooplankton capture prey faster when it is more abundant and that the time needed212

to consume it is negligible compared with the time needed to capture it (Tcap >> Tcon).213

Accordingly, zooplankton can spend all of their time capturing prey, such that214

T = Tcap. (3)

The time, Tcap (d), that it takes to capture some concentration of phytoplankton,215

[PCap] (mmolC/m3), can be related to the capture rate, C (mmolC/m
3

d ), or the concen-216

tration of phytoplankton captured per unit time, by the equation217

Tcap =
[PCap]

C
, (4)
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Figure 1. The functional response of the grazing formulation. a) The zooplankton specific grazing rate (or ingestion rate) as

a function of prey density, known as the the functional response curve is plotted for a type I, II, and III response, along with b) a

description their associated attributes, assumptions, and formulations. Each response type is parameterized such that the maximum

specific grazing rate, gmax, and the half saturation concentration, K1/2 are equal to one. Note, this requires different parameters for

the disk parameter scheme. Dashed lines in a) show what each response reduces to a low and high prey densities.
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Variable Notation
Conceptual

Units
Reduced

Units
Relevant

Relationships
Description

Phytoplankton
concentrations

[P ], [PG ],
[PC ap ], [PCon]

[P ] mmolC
m3

[PG ] =GT = g [Z ]T
[PG ] = [PC ap ] = [PCon]

Concentration of ambient, grazed (i.e.
captured and consumed), captured, and

consumed phytoplankton over
the exposure period, respectively

Zooplankton
concentration

[Z ] [Z ] mmolC
m3 - Concentration of Zooplankton biomass

Functional response g([P]) [P ]
[Z ]t i me

1
d

g ([P ]) = ≤[P ] (I)

= gmax

2K1/2
[P ] (I-Rect)

g ([P ]) = gmax≤[P ]

gmax +≤[P ]
(II)

= gmax [P ]

K1/2 + [P ]

g ([P ]) = gmax (1°e°∏[P ]) (II-Iv)

g ([P ]) = gmax≤c [P ]2

gmax +≤c [P ]2 (III)

= gmax [P ]2

K 2
1/2 + [P ]2

Functional description of how the
zooplankton specific grazing rate varies
with the phytoplankton concentration

Half saturation
concentration

K1/2 [P ] mmolC
m3

K1/2 =
gmax

2≤
(II-R)

K1/2 =
gmax

≤
(II)

K1/2 =
°ln(.5)

∏
(II-Iv)

K1/2 =
r

gmax

≤c
(III)

Phytoplankton concentration where g = gmax
2

Maximum grazing
rate

gmax
[P ]

[Z ]t i me
1
d gmax = 1

h
Rate of phytoplankton consumption per

unit zooplankton when food is replete

Grazing rate G [P ]
t i me

mmolC
m3d

G = [PG ]

T
G = g [Z ]

Rate at which phytoplankton are
grazed by the zooplankton population

Phytoplankton specific
grazing loss rate

l [P ]
[P ]t i me

1
d l = G

[P ]
Phytoplankton specific rate at which

phytoplankton are lost to grazing

Zooplankton specific
grazing rate

(i.e. ingestion rate)
g [P ]

[Z ]t i me
1
d g = G

[Z ]

Zooplankton specific rate at which
phytoplankton are grazed. The way in which
g varies with [P ] is the functional response

Clearance rate C l [P ]
[P ][Z ]t i me

m3

mmolC d

C l = G

[P ][Z ]

C l = g

[P ]

Phytoplankton specific rate at which
phytoplankton are grazed per unit zooplankton

Exposure period T ti me d T = Tcap +Tcon
Fixed period over which zooplankton

and phytoplankton are exposed

Capture period Tcap t i me d TC ap = [PG ]
[Z ]≤[P ] Time spent capturing phytoplankton

Consumption period Tcon ti me d
TCon = 0 (I)

TCon = h[PG ]

[Z ]
(II,III)

Time spent consuming phytoplankton

Capture rate C [P ]
t i me

mmolC
m3d

C = [Pcap ]

TC ap

C = E [Z ] (II)

C = ≤c [Z ]2 (III)

Rate at which phytoplankton are
captured by the zooplankton population

Zooplankton specific
capture rate

E [P ]
[Z ]t i me

1
d

E = C

[Z ]
E = ≤[P ]

Specific rate at which phytoplankton
are captured per unit zooplankton

Prey capture
efficiency

≤ [P ]
[P ][Z ]t i me

m3

mmolC d

≤= ≤c [P ] (III)

≤=∏gmax (II-Iv)

Rate at which the zooplankton specific
capture rate increases with the

ambient phytoplankton concentration

Prey capture
efficiency coefficient

≤c
[P ]

[P ]2[Z ]t i me
m6

mmolC 2 d
-

Rate at which the prey capture
efficiency increases with the

ambient phytoplankton concentration

Consumption time h [Z ]t i me
[P ] d -

Time it takes for one unit of zooplankton
to eat one unit of phytoplankton

Consumption rate 1
h

[P ]
[Z ]t i me

1
d -

Rate of phytoplankton consumption
per unit zooplankton

Ivlev parameter ∏ 1
[P ]

m3

mmolC d -
Used to parameterize Ivlev equation

which is qualitatively similar to a type II

Table 1. List of terms relevant to the derivation, parameterization and context of the func-

tional response. Conceptual units distinguish between phytoplankton and zooplankton concentra-

tion and are not reduced.
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The capture rate can then be decomposed into the product of the ambient zooplank-218

ton concentration, [Z] (mmolC/m3), and the zooplankton specific capture rate, E (1/d),219

which describes the concentration of phytoplankton captured per unit zooplankton per220

unit time, such that221

C = E[Z]. (5)

Depending on the zooplankton in question, the zooplankton specific capture rate,222

E (1/d), can represent a passive encounter rate (e.g. filter feeding) or an active search223

and attack rate (e.g. hunting), but does not include the time required to consume phy-224

toplankton once captured. Either way, E (1/d) is assumed to increase linearly with the225

ambient phytoplankton concentration, [P ] (mmolC/m3), to account for the fact that zoo-226

plankton are stochastically more likely to encounter and capture phytoplankton at higher227

ambient phytoplankton concentrations. The rate (per unit phytoplankton) at which the228

zooplankton specific capture rate increases with the ambient phytoplankton concentra-229

tion can be considered the prey capture efficiency, ε ( 1
(mmolC/m3)d ), such that230

E = ε[P ]. (6)

The prey capture efficiency can be thought of as the fraction of the ambient phytoplank-231

ton concentration captured per unit zooplankton per unit time, in which units of (mmolC/m3)
(mmolC/m3)2d232

reduce to 1
(mmolC/m3)d , and reflects the efficiency with zooplankton can capture the prey233

they are exposed to. Note that the prey capture efficiency is variously referred to as the234

prey capture rate (Schartau & Oschlies, 2003b), attack rate (Gentleman & Neuheimer,235

2008), affinity, and maximum clearance rate. It is also qualitatively similar to the search236

area defined by Holling (1959b), but not identical for concentration-based rates.237

Substituting eqs. 5 & 6 into eq. 4 yields,238

Tcap =
[PCap]

ε[P ][Z]
. (7)

Next, we can substitute Tcap for T because of our assumption that no time is needed239

for zooplankton to consume phytoplankton (i.e. Tcon = 0), and substitute [PCap] for240

[PG] because the entire concentration of phytoplankton lost to grazing, [PG], must first241

be captured, [PCap]. Finally, we solve for the rate at which phytoplankton are grazed242

by the zooplankton population (G = gZ = [PG]
T ) as a function of [P ],243

G([P ]) =
[PG]

T
= ε[P ][Z], (8)

and divide by [Z] to yield the zooplankton specific grazing rate, g (1/d), as a function244

of the ambient phytoplankton concentration [P ], such that,245

g([P ]) =
[PG]

T [Z]
= ε[P ]. (9)

With eq. 9 we have arrived at the type I functional response, wherein g([P ]) in-246

creases linearly with the ambient phytoplankton concentration, [P ], at a rate described247

by the prey capture efficiency, ε. This type of response is akin to a food-limited system248

in which it takes much longer to find and capture prey than it takes to consume it, and249

is analogous to the classic Lotka-Voltera equations (Lotka, 1910; Volterra, 1927) used250

to describe simple predator-prey dynamics. Note that here the grazing rate is identical251
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to the capture rate (G = C) and the zooplankton specific grazing rate is identical to252

the zooplankton specific capture rate (g = E = ε[P ]). This is because the entire graz-253

ing process is assumed to be described by the capture process; however, this is not the254

case for higher order functional responses, in which zooplankton are assumed to spend255

a non-trivial amount of time consuming phytoplankton in addition to capturing them.256

A standard type I response may be characteristic of passive filter feeders (Jeschke,257

Kopp, & Tollrian, 2004), but can overestimate the zooplankton specific grazing rate of258

mesozooplankton such as copepods (Gentleman & Neuheimer, 2008) by over an order259

of magnitude compared to observations (Frost, 1972; Hansen et al., 1997) because it does260

not account for predator satiation at high prey densities. To account for predator sati-261

ation, the type I response can be extended to a rectilinear response (Chen, Laws, Liu,262

& Huang, 2014; Frost, 1972; Hansen, Bjørnsen, & Hansen, 2014; Mayzaud, Tirelli, Bernard,263

& Roche-Mayzaud, 1998), in which g([P ]) reaches some maximum rate, gmax (d−1) such264

that265

g([P ]) = ε[P ] if [P ] <
gmax
ε

g([P ]) = gmax if [P ] >
gmax
ε

,
(10)

where gmax

ε (mmolCm3 ) describes the prey concentration required to reach the maximum266

zooplankton specific grazing rate, gmax, for a given prey capture efficiency, ε.267

Solving for [P ] when g([P ]) = gmax

2 returns the half saturation concentration, K1/2 =268

gmax

2ε . Note that parameterizing eq. 10 with K1/2 allows one to explicitly define the lo-269

cation of satiation using a single variable (as opposed to gmax

2ε ); however, changing K1/2270

with a fixed gmax necessarily alters the slope of the response, ε, and therefor implicitly271

alters assumptions about the prey capture efficiency.272

2.3 Type II response273

A type II functional response assumes a more gradual transition to satiation by em-274

ploying a rectangular hyperbola with downward concavity (Holling, 1959b), in which the275

zooplankton specific grazing rate (g([P ])) saturates towards a maximum asymptote at276

high phytoplankton concentrations (See Fig. 1; blue). Ecologically, a type II response277

assumes that zooplankton capture prey faster when it is more abundant and that a fixed,278

non-trivial, amount of time is needed to consume it (Tcon > 0), allowing for gradual279

predator satiation as the prey density increases and more time is needed to consume all280

of it (Jeschke et al., 2004). Note, all assumptions about the capture process and zooplank-281

ton specific capture rate (E = ε[P ]) from the type I response are held.282

The time it takes to consume the captured phytoplankton is parameterized by the283

consumption time, h (d), also commonly referred to as the handling time (Holling, 1959b,284

1965), which is assumed to be equal to the fixed amount of time it takes for one unit of285

zooplankton to eat one unit of phytoplankton. The total time, Tcon (d), needed for con-286

sumption of the entire captured phytoplankton concentration, [PCap] (mmolC/m3), by287

the ambient zooplankton concentration, [Z] (mmolC/m3), can then be expressed as the288

consumption time, h, multiplied by the ratio of the concentration of phytoplankton cap-289

tured relative to the ambient concentration of zooplankton capturing them (
[PCap]
[Z] ), such290

that291

Tcon =
h[PCap]

[Z]
. (11)
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Remembering that all phytoplankton grazed must first be captured (i.e. [PG] = [PCap])292

and substituting Tcap and Tcon into eq. 2 yields293

T = Tcap + Tcon =
[PG]

ε[P ][Z]
+
h[PG]

[Z]
. (12)

Solving for the concentration of phytoplankton lost to grazing, [PG], yields the aquatic294

analogue to familiar disk equation, originally derived by Holling (1959b) for terrestrial295

predation on a planar disk,296

[PG] =
ε[P ][Z]T

1 + εh[P ]
, (13)

where dividing by T returns the grazing rate,297

G =
[PG]

T
=

ε[P ][Z]

1 + εh[P ]
, (14)

and dividing again by Z returns the zooplankton specific grazing rate, which is equiv-298

alent to the type II functional response,299

g([P ]) =
[PG]

[Z]T
=

ε[P ]

1 + εh[P ]
. (15)

Note that by factoring out ε[P ] from the denominator and rearranging eq. 15 as300

g([P ]) =
1

1
ε[P ] + h

, (16)

it becomes clear that when food is limiting the type II disk equation reduces to a type301

I linear Lotka-Voltera functional response with a slope equal to the prey capture efficiency302

(Fig. 1a; dashed blue line). If the consumption rate ( 1
h ) is much faster than the zoo-303

plankton specific capture rate (E = ε[P ]), such that 1
h >> ε[P ] or equivalently h <<304

1
ε[P ] , then eqs. 15 & 16 reduce to g([P ]) = ε[P ] (i.e. eq. 9). This occurs when the305

consumption time, h, is very fast (i.e. type I, Section 2.1.1), or the phytoplankton con-306

centration, [P ], is very low (i.e. a food-limited system). The slope of the307

Alternatively, we see that eqs. 15 & 16 saturate towards g([P ]) = 1/h when the308

consumption rate ( 1
h ) is much slower than the zooplankton specific capture rate (E =309

ε[P ]), such that 1
h << ε[P ] or equivalently h >> 1

ε[P ] (Fig. 1a; dashed black line).310

This is typical of a food replete system (high [P ]), where more food is captured as soon311

as the previous prey item has been consumed. The maximum grazing rate, gmax (1/d),312

can now be defined by the consumption rate, or one over the consumption time, such313

that gmax = 1
h . Note, however, gmax is approached slowly in a type II response, and314

g([P ]) is still only 80% of gmax even when [P ] > 4K1/2.315

The disk equation (eq. 13) can be simplified by substituting the parameter gmax =316

1
h into eq. 15 and multiplying by gmax

gmax
to arrive at317

Type II (disk)

g([P ]) =
gmaxε[P ]

gmax + ε[P ]

(17)
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Henceforth, this will be referred to as the disk parameter scheme. Note, the formulation318

of the disk equation used here differs from the traditional form (eq. 14) because we re-319

placed the handling time with its reciprocal (gmax)320

Finally, eq. 17 can be rewritten as the familiar Michaelis–Menten equation orig-321

inally derived for enzyme kinetics (Michaelis & Menten, 1913) (or Monod equation de-322

rived for bacterial growth (Monod, 1949)) by defining the half-saturation concentration,323

K1/2 (mmolC/m3), in terms of parameters gmax and ε. Setting g([P ]) = gmax

2 and solv-324

ing for [P ], we find,325

[P ] = K1/2 =
gmax
ε

. (18)

Substituting ε = gmax

K1/2
into eq. 17 and rearranging yields the familiar form,326

Type II (Michaelis–Menten)

g([P ]) =
gmax[P ]

K1/2 + [P ]
.

(19)

Henceforth, this will be referred to as the Michaelis–Menten parameter scheme. Note,327

that in the Michaelis–Menten formulation g([P ]) still reduces to gmax, or 1
h , when [P ] >>328

K1/2 and to gmax
K1/2

, or (eq. 18), when [P ] << K1/2.329

Eq. 19 is mathematically identical to eq. 17. That is, for all parameter sets {gmax, ε},330

there exists a parameter set {gmax,K1/2} that can identically describe g([P ]). As with331

the type I response (eq. 10), the difference is that {gmax, ε} are ecologically indepen-332

dent, while {gmax,K1/2} more directly define the shape of the curve. For example, in-333

creasing gmax in eq. 17 does not affect the prey capture efficiency, ε, but it does increase334

the half-saturation concentration. This makes sense ecologically, as it should require a335

higher phytoplankton concentration for a faster consumption time (i.e. higher gmax) to336

become limiting, given a constant prey capture efficiency. On the other hand, increas-337

ing gmax in eq. 19 does not change the location of K1/2, but implicitly assumes that338

the prey capture efficiency, ε, increases in order to maintain a constant K1/2.339

Note, another common formulation that is qualitatively similar to the type II re-340

sponse is the Ivlev equation (Ivlev, 1961), where341

g([P ]) = gmax(1− e−λ[P ]) (20)

(Anderson et al., 2010; C. A. Edwards, Batchelder, & Powell, 2000; Franks & Chen, 2001;342

Shigemitsu et al., 2012). However, the Ivlev formulation is strictly empirical and can-343

not be derived mechanistically, but is qualitatively similar to the type II response (See344

Fig. 1a; cyan). All else being equal, the Ivlev equation will yield slower grazing rates345

below the half saturation concentration and faster grazing rates above the half satura-346

tion concentration. As noted elsewhere (Aldebert & Stouffer, 2018; Anderson et al., 2010;347

Gentleman et al., 2003), the half saturation point and prey capture efficiency can be re-348

lated to the Ivlev parameter, λ ( 1
mmolC/m3 ), as349

K1/2 =
−ln(.5)

λ
ε = λgmax

(21)
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2.4 Type III response350

A type III functional response is described by a sigmoidal curve (Jeschke et al., 2004),351

in which the zooplankton specific grazing rate (g([P ])) increases quadratically at low phy-352

toplankton concentrations and approaches saturation much faster at high ones (Fig. 1;353

red). Ecologically, a type III response further assumes that the prey capture efficiency,354

ε ( 1
(mmolC/m3)d ), increases with prey density. That is, the zooplankton specific capture355

rate, E = ε[P ], does not just increase due to a stochastic increase in the likelihood of356

encountering phytoplankton as the ambient phytoplankton concentration increases, but357

zooplankton additionally become more efficient grazers as well, capturing an increasing358

fraction of the ambient phytoplankton concentration. Consequently, specific grazing rates359

increases quadratically at low [P ] and approach saturation much faster than at high [P ]360

Mathematically, this change in behavior can be represented by assuming the prey361

capture efficiency, ε ( 1
(mmolC/m3)d ), is a function of the ambient phytoplankton concen-362

tration, [P ]. In a type III response this function is assumed to be linearly proportional363

to some prey capture efficiency coefficient, εc ( 1
(mmolC/m3)2d ), such that,364

ε = εc[P ], (22)

and365

E = εc[P ]2. (23)

By assuming that the prey capture efficiency, ε, increases linearly with the phyto-366

plankton concentration at a rate described by the prey capture efficiency coefficient, εc,367

we are in turn assuming that the zooplankton specific grazing rate, E, increases quadrat-368

ically with the phytoplankton population (i.e. E = εc[P ]2). Note that higher order func-369

tional responses can be achieved by modifying the relationship between the prey cap-370

ture efficiency and the phytoplankton concentration (e.g. ε = εc[P ]2).371

Following the same derivation as Section 2.3, but now using eq. 23 instead of372

eq. 6 to define the specific capture rate, yields the disk parameterization of the type III373

functional response,374

Type III (disk)

g([P ]) =
gmaxεc[P ]2

gmax + εc[P ]2
.

(24)

As for the type II response, g([P]) reduces to the zooplankton specific capture rate (E =375

εc[P ]2) at low phytoplankton densities (Fig. 1a; dashed red line) and saturates towards376

the consumption rate (1/h) at high phytoplankton densities (Fig. 1a; dashed black line).377

Now, however, because the zooplankton specific capture rate, E, is described by a quadratic378

function of [P ], the functional response, g(P ), is sigmoidal in shape (Fig. 1a).379

The prey capture efficiency, ε, in eq. 17 has been replaced with the prey capture380

efficiency coefficient, εc, in eq. 24, which describes how ε varies with [P ]. Units of εc are381

non-intuitive, but can be considered as the fraction of the phytoplankton population cap-382

tured per unit zooplankton, per unit phytoplankton, per unit time, which reduces to 1
(mmolC/m3)2d .383

Finally, following identical logic to the type II response, eq. 24 can be transformed384

to the Michaelis–Menten function by setting g([P ]) equal to gmax

2 , solving for [P ] to find385

K1/2, and substituting the ensuing value of K1/2 into eq. 24. The result is the Michaelis–Menten386

parameterization of the type III functional response,387

–12–



manuscript submitted to Progress in Oceanography

Type III (Michaelis–Menten)

g([P ]) =
gmax[P ]2

K2
1/2 + [P ]2

,
(25)

where,388

K1/2 =

√
gmax
εc

. (26)

Note that the Michaelis-Menten parameter scheme employs the same parameters in each389

response type (K1,2, gmax), while the disk scheme requires a slightly different parame-390

ter set in a type II (ε, gmax) and III (εc, gmax) response.391

Finally, note that where we refer to the disk and Michaelis–Menten parameteriza-392

tion of the type III response, throughout the literature they are often referred to as the393

‘Sigmoidal Type III’ and ‘Holling Type III’ response, respectively. We use the former394

nomenclature to clarify that both functions are sigmoidal in shape and because it allows395

us to refer to the parameter scheme generically without specifying the response type. This396

is semantically useful for comparisons between parameter scheme but not response type397

which occur throughout the manuscript.398

3 Stability of the grazing formulation399

A suite of past studies have shown that the shape of these theoretical relationships,400

when embedded into models and integrated forward in time, influences the dynamical401

stability of the system, and in turn the propensity for phytoplankton extinction (Adjou402

et al., 2012; Dunn & Hovel, 2020; J. Steele, 1974) and excitation (i.e. blooms) (Hernández-403

Garćıa & López, 2004; Malchow, Hilker, Sarkar, & Brauer, 2005; Truscott & Brindley,404

1994; Truscott, Brindley, Brindley, & Gray, 1994). In particular, (Gentleman & Neuheimer,405

2008) have shown how the stabilizing influence of the grazing formulation is determined406

by the sign of the first derivative of the clearance rate ( dCld[P ] ). The clearance rate (Cl)407

is equal to the the functional response (g([P ])) normalized by the ambient phytoplank-408

ton concentration (i.e. Cl = g([P ])/[P ]). This is equivalent to the phytoplankton spe-409

cific loss rate to grazing per unit zooplankton (see Table 1) or in other words, the vol-410

ume of water completely cleared of phytoplankton per unit time, per unit zooplankton411

(Gentleman & Neuheimer, 2008). Ecologically, higher clearance rates imply individual412

zooplankton are either spending less time consuming their prey or more efficiently cap-413

turing it.414

Gentleman and Neuheimer (2008) showed how clearance rates vary with prey den-415

sity in different functional response types (see Fig. 2 there-in). In a type I functional416

response clearance rates are constant because it is assumed that the prey capture effi-417

ciency (ε) is constant and the consumption time is negligible (thus constant). In a type418

II response clearance rates decrease with increasing prey density because the consump-419

tion rate is no longer assumed negligible, meaning the more zooplankton graze, the more420

time they need to consume their food, leaving less time to capture it. In a type III re-421

sponse clearance rates first increase, then decrease with prey density based on the bal-422

ance between increasing consumption time and increasing prey capture efficiency.423

The stabilizing influence of the functional response is negative, or destabilizing, when424

clearance rates decrease with increasing prey density ( dCld[P ] < 0). In turn, growing (de-425

caying) phytoplankton populations are subject to decreasing (increasing) per capita graz-426

ing pressure, creating a destabilizing feedback that amplifies changes in phytoplankton427

growth (decay) and increases the likelihood of excitation (extinction). This occurs when428
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the functional response has downward concavity, such that a type II response has a desta-429

bilizing influence at all prey densities, while a type III response has a destabilizing in-430

fluence only above K1/2 (Gentleman & Neuheimer, 2008). The stabilizing influence of431

the functional response is positive, or stabilizing when clearance rates increase with in-432

creasing prey density ( dCld[P ] < 0). In turn, growing (decaying) phytoplankton popula-433

tions are subject to increasing (decreasing) per capita grazing pressure, creating a sta-434

bilizing feedback that buffers changes in phytoplankton growth (decay) and decreases435

the likelihood of excitation (extinction). This occurs when the functional response has436

upward concavity, such that a type III response has stabilizing influence below K1/2 (Gen-437

tleman & Neuheimer, 2008). A type I response, in which clearance rates are constant438

( dCld[P ] = 0), has no first order influence on stability.439

The parameterization of the functional response can influence stability in two ways.440

First, increasing gmax or decreasing K1/2 both increase the curvature of the response,441

which directly increases its stabilizing or destabilizing influence. Thus, a type II response442

with a higher gmax or lower K1/2 is more destabilizing at all prey densities. However,443

a type III response is more destabilizing above K1/2 but more stabilizing below K1/2.444

This is illustrated clearly in Figure 5 of Gentleman and Neuheimer (2008), which tracks445

the first derivative of clearance rates ( dCld[P ] ). Second, the parameterization of the func-446

tional response can influence stability indirectly by applying stronger or weaker grazing447

pressure which in turn drives the size of the phytoplankton population and thus the po-448

sition on the curve at which dCl
d[P ] is considered. For example, if using a type III response449

with a lower K1/2, the functional response will have a more destabilizing influence on450

all phytoplankton populations above K1/2, but faster grazing rates associated with the451

lower K1/2 value make it more difficult for population levels to exceed K1/2, such that452

the overall outcome may be increasing the stabilizing influence of the response. Note,453

in a disk scheme, K1/2 is not parameterized directly and its location varies with both454

parameters.455

4 Parameters of the grazing formulation456

Constrained by computational resources, biogeochemical models are limited in the457

number of zooplankton functional groups they can include, making it difficult to select458

parameters that accurately represent the mean state of natural variability across the di-459

verse zooplankton they are trying to simulate. We combine data from two extensive re-460

views by Hansen et al. (1997); Hirst and Bunker (2003) to show how the values of 119461

empirically estimated sets of grazing parameters vary largely across zooplankton size and462

species (Fig. 2; filled markers; Fig. 3a-c). We then compare them to the values used463

in 40 modelling studies consisting of over 70 unique grazing formulations (Table 2; Fig.464

2; empty markers; Fig. 3d-f). Of the 40 models surveyed, 28 include only one zooplank-465

ton group, meaning they must represent the mean behavior of all global zooplankton with466

a single set of parameters. Those that include multiple zooplankton have the flexibility467

to imply different traits for different functional groups by selecting different parameters.468

However, functional group resolution is still very limited, with only one model includ-469

ing more than three (Stock, Powell, & Levin, 2008). To determine if the values used in470

models are ecologically realistic approximations of the mean state, it is essential to un-471

derstand how empirical estimates vary and how models attempt to either capture or av-472

erage out this variability.473

The most common partitioning of zooplankton functional groups in models is al-474

lometric, or by size. Accordingly, we have binned all observed and modelled zooplank-475

ton as ‘nano-’, ‘micro-’, ‘meso-’, or ‘macrozooplankton’. For the empirical studies, zoo-476

plankton are categorized by their reported body volume, with nanozooplankton defined477

as < 103µm3 (∼ nanoflagellates), microzooplankton defined as 103 − 106µm3 (∼ di-478

noflagellates, rotifers and ciliates), mesozooplankton defined as 106−109µm3 (∼ cope-479

pods, meroplankton larvae and cladocerans) and macrozooplankton as > 109µm3 (none480
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reported). In the models the same size classes are assigned based on the relative prey481

portfolio or other specified descriptions of each zooplankton functional group. For ex-482

ample, in a model with 2 zooplankton functional groups nominally called ‘small’ and ‘large’483

and prescribed to preferentially graze on small phytoplankton and diatoms, we would484

categorize these as ‘micro’ and ‘meso’, respectively. The ‘nano-’ and ‘macro-’ designa-485

tions were only given when more than two zooplankton were included or they were clas-486

sified explicitly as such in the study. Models with one generic, unspecified zooplankton487

were left unclassified.488

For consistent comparison between models and empirical studies, we converted all489

units to mmolC/m3 for prey density and 1/d for rates. In Hirst and Bunker (2003) K1/2490

was reported in chlorophyll units and converted with a C:Chl ratio of 50:1 (Anderson491

et al., 2010). In Hansen et al. (1997) K1/2 was reported in ppm, and converted with a492

carbon density of 0.12 gC/cm3. Note, no explicit conversion factor was given for prey493

carbon density by Hansen et al. (1997); however, 0.12 gC/cm3 was explicitly assumed494

for zooplankton and is consistent with the range of carbon densities in phytoplankton495

(Menden-Deuer & Lessard, 2000). Different conversion factors would shift the absolute496

values of K1/2 reported here, but not the size of their range or strength of their corre-497

lations with size. In modelling studies that used a currency other than carbon, units were498

converted assuming a fixed Redfield ratio of 106:16:1, unless otherwise stated in the study.499

Finally, eqs. 18 & 26 were used to convert between Michaelis-Menten and disk param-500

eters and eq. 21 was used to determine the initial slope (i.e. ε) and half saturation con-501

centration (i.e. K1/2) of Ivlev responses. Note, the maximum clearance rates reported502

in Hansen et al. (1997) are synonymous with ε once units have been converted.503

Predator Vol. (𝜇m3	)		:   Nano (100-103)                  Micro (103-106)                                    Meso (106-109)                        Macro (109-1012)   

Empirical Estimates (solid) :      Nanoflag.        Dinoflag.     Ciliates       Rotifers      Mero. Larvae     Copeods     Cladocerans  

Used in Models (unfilled) :                                      Microzooplankton Mesozooplankton                     MacrozooplantkonUnclassified
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Figure 2. The parameters of the grazing formulation. a) Empirical estimates of parame-

ters for >60 zooplankton species (Hansen et al., 1997; Hirst & Bunker, 2003) are plotted with

filled markers. Parameters for different zooplankton functional groups from 40 modelling studies

(Table 2) are plotted with red empty markers. Light red markers denote formulations with a

multiple-prey response and parameters refer to the implied single-prey response when grazing

exclusively on their most preferred prey. Contours for the corresponding prey capture efficiency

(assuming type-II response) are overlaid.
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Figure 3. Allometric Relationships. a-c) Empirical estimates of all grazing parameters are

plotted against zooplankton size and subdivided into size classes. Marker shapes are consistent

with species in Fig. 2. The interquartile range (IQR) is overlaid for each size class along with

a log-linear regression and 95% confidence intervals. A log-linear regression is shown for the

complete data set as well (black). Statistically significant correlations have thicker line widths

and detailed statistical information is provided in Table 3a. d-f) Distributions for each grazing

parameter within each size class are shown for the model values. Note, marco- and nanozoo-

plankton are not included for empirical and model plots, respectively, because less than two of

each were surveyed. Additionally, εc is not shown for the empirical values because all empirical

estimates were fit to a type II response. Note, similar figures to a-c first appeared in (Hansen et

al., 1997). Ours differ in that they are converted to units more familiar to modellers, addition-

ally include the Hirst and Bunker (2003) data set, and provide statistical information on three

distinct size classes.

4.1 Empirical estimates504

The grazing parameters for a myriad of different zooplankton have be estimated505

empirically via laboratory incubation and dilution experiments. In these studies, spe-506

cific grazing rates were measured at different prey concentrations and then fit to a type507

II response function. Together, reviews by Hansen et al. (1997) and Hirst and Bunker508

(2003) describe 119 empirical estimates of over 20 functional groups, derived from data509

on over 200 species. Looking across all surveyed zooplankton, the values of each graz-510

ing parameter vary by over three orders magnitude, with K1/2 ranging from .08-499 mmolC/m3,511

gmax ranging from 0.02-45.6 d−1, and ε ranging from .003-9.5 m3

mmolCd (Fig. 2). While512

some of this variability can be explained statistically by the large variability in zooplank-513

ton size (10−109µm3), the strength of the allometric relationship differs with both the514

parameter in question and whether you are considering all samples or just a subset within515

a certain size class (Fig. 3; Table 3).516

Consistent with Hansen et al. (1997), when considering the entire, combined data517

set there is a statistically significant allometric relationship between zooplankton size and518

both gmax (Fig. 3b; black regression) and ε (Fig. 3c; black regression). This decrease519

in the parameters that describe consumption and capture rates, respectively, is consis-520
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tent with the conventional wisdom that grazing rates decrease with predator size (Moloney521

& Field, 1989; Peters & Downing, 1984; Saiz & Calbet, 2007; Wirtz, 2013). However,522

as in Hansen et al. (1997), K1/2 values from the combined data set do not exhibit a sta-523

tistically significant allometric relationship (Fig. 3a; black regression), contradicting the524

notion that K1/2 should increase with increasing predator size (Ray et al., 2011). This525

can be explained because K1/2 is not an independent, physiological parameter, but rather526

a mathematical description of the curve, relating the other two parameters that mech-527

anistically describe consumption (i.e. gmax) and capture (i.e. ε) rates (see Section 2).528

While all parameters are estimated here empirically, only ε and gmax reflect independent529

trait-based differences in grazing behaviour. Therefor, if gmax and ε both decrease with530

zooplankton size, grazing rates will decrease at low and high concentrations such that531

the half-saturation concentration may increase, decrease, or remain largely unaltered,532

depending of the relative changes. The net effect when considered across all zooplank-533

ton sizes is a flat and statistically insignificant (Table 3a).534

Similarly, when grouped into discrete size classes, the mean, median and interquar-535

tile range (IQR) of gmax and ε decrease monotonically from nanozooplankton (Fig. 3;536

green) to microzooplankton (red) to mesozooplankton (blue), while those of K1/2 do537

not (Table 3b). Instead the median value of K1/2 decreases from 23 mmolC/m3 in nanozoo-538

plankton to 8.9 mmolC/m3 in microzooplankton but then increases to 18.1 mmolC/m3
539

in mesozooplankton. Of the three parameters, binning by size class does the best job of540

explaining variability in distributions of gmax, which has the smallest coefficient of vari-541

ability (i.e. std/mean) of all parameters in all size classes. Moreover, using a two sam-542

ple t-test at the 95% confidence level, gmax is the only parameter in which the mean value543

in adjoining size classes are statistically different from one another. For ε, only nano- and544

mesozooplankton have statistically different means, although the difference between micro-545

and mesozooplantkon is nearly significant (p=0.1) and may become so if the binning bounds546

were adjusted. For K1/2, the range of values in each size class varies by over two order547

of magnitude and largely overlaps. In turn, there is no statistically significant difference548

between the mean K1/2 value within any two size classes, even nano- and microzooplank-549

ton which differ by ∼ 6 orders of magnitude in volume. Together, empirical estimates550

of gmax appear better constrained by size class than K1/2, or even ε, suggesting that con-551

sumption rates are better correlated than capture rates with zooplankton size class.552

However, these trait-based correlations become more complex when looking at vari-553

ability within a given size class, rather than across them (Fig. 3a-c; Table 3a). Nanozoo-554

plankton are the most poorly constrained by size. When considered in isolation there555

is no statistically significant relationship between any of their empirically derived graz-556

ing parameters and size (Fig. 3a-c; green). Microzooplankton, on the other hand, are557

the best constrained by size. Both gmax (Fig. 3b; red) and ε (Fig. 3c; red) exhibit558

a robust, statistically significant, inverse relationship with size, with a higher coefficient559

of determination (r2) than in any other size class. In turn, the correlation between K1/2560

and size is flat and statistically insignificant (Fig. 3b; red). This is consistent with de-561

creasing capture and consumption rates that combine to lower mean grazing rates but562

not systematically modify K1/2. Mesozooplantkon traits are also fairly well constrained563

by size, but in a qualitatively different way. When exclusively considering mesozooplan-564

tkon (Fig. 3a-c; blue), K1/2 and gmax both exhibit a statistically significant positive565

relationship with size, while the relationship with ε is flatter and statistically insignif-566

icant. This suggests that consumption rates in mesozooplankton actually increase with567

size while capture rates are invariant, leading to an apparent increase in the K1/2 (see568

eq. 18). Critically though, this increase in K1/2 is associated with faster, not slower,569

grazing on average.570

From a modelling perspective, the most common partitioning in models with mul-571

tiple zooplankton is into two micro- and mesozooplankton groups (Table 2). Nanozoo-572

plankton on the other hand only appear in one surveyed (Table 2). When considering573
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exclusively empirical variability in micro- and mesozooplankton, ignoring nanozooplank-574

ton, there is a statistically significant correlation with size for all three parameters. Sim-575

ilar to when considering all zooplankton, gmax and ε both decrease with size; however,576

with nanozooplankton removed, the decline in gmax is flatter and less significant (i.e. lower577

p-value) while the decline in ε is steeper and more significant (Table 3a). In turn, there578

is now also a statistically significant increase in K1/2 with size. Additionally, if only con-579

sidering the IQR of K1/2, there is statistically significant difference in the means value580

in micro- and mesozooplankton.581

Accordingly, in biogeochemical models using two discrete zooplankton state vari-582

ables to simulate the mean state of micro- and mesozooplankton, it appears the meso-583

zooplankton class should have slower consumption (i.e. gmax) and capture rates (i.e. ε)584

than microzooplankton. Further, the empirically observed increase in K1/2 means that585

the decrease in ε should be disproportionately larger than that of gmax. However, in dif-586

ferent model configurations one may wish to vary different parameters in different ways,587

depending on the range and resolution of what you are simulating. For example, a size-588

spectrum model of exclusively microzooplankton may wish to decrease both capture and589

consumption rates with size, whereas a size spectrum model of exclusively mesozooplan-590

tkon may wish to increase consumption rates with size and leave capture rates constant.591

Finally, it is important to note that the way in which these trait-based correlations592

can be prescribed depends on the parameter scheme. For example, to increase consump-593

tion rates without increasing capture rates in a Michaelis-Menten scheme one must in-594

crease gmax and K1/2 or else otherwise increase ε implicitly as well. This would inad-595

vertently overestimate grazing rates at low prey densities. However, to increase consump-596

tion and capture rates in a Michaelis-Menten scheme one must still increase gmax but597

the change in K1/2 depends on the intended relative difference in the two properties. In598

any scenario all parameters should be computed and considered explicitly to confirm the599

correct behavior is being implied at low and high prey densities.600

4.2 Values used in models601

Over 70 independent grazing formulations from 40 modelling studies were surveyed602

(Table 2, Fig. 2; empty markers) to gauge the range of commonly prescribed param-603

eter values and see if they vary in a manner that is consistent with the natural variabil-604

ity measured empirically (Sec. 4.1). A large sampling of prominent modelling studies,605

from canonical 0-dimensional theoretical work (Evans & Parslow, 1985; Franks et al., 1986),606

through slightly more sophisticated NPZD models (Fasham, 1995; Fasham et al., 1990),607

to state-of-the-art CMIP6 climate models (Aumont et al., 2015; Christian et al., 2021;608

Hajima et al., 2020; Law et al., 2017; Long et al., 2021; Stock et al., 2020; Tjiputra et609

al., 2020; Totterdell, 2019; Yool et al., 2021) were included. Surveyed models were as-610

sessed to determine if their selection of parameter values is representative of the mean611

state of empirically estimated values and if variability their-in is consistent with the ob-612

served allometric variability (Fig. 3d-f; Table 3c) or varies with other aspects of the613

grazing formulation (Table 3d).614

Of the 40 models surveyed, 26 include a zooplankton group that grazes with a single-615

prey response, including 5 of 9 IPCC CMIP6 climate models. This amounts to 40 of the616

70 unique grazing formulations. The others graze on multiple prey (Table 2; grey rows617

& Figure 3; light red markers) and use a K1/2 parameter that is fundamentally differ-618

ent from that of the single-prey response Gentleman et al. (2003). In multiple-prey re-619

sponse functions, K1/2 refers to the half saturation ’concentration’ of the total, preference-620

weighted prey pool, which is not a one-to-one function of the prey distribution. In Ta-621

ble 2 we report this value in parenthesis, but focus our analysis on the implied K1/2 for622

the single-prey response for each zooplankton group when grazing exclusively on their623

most preferred prey. Gentleman et al. (2003) describe in detail how this value can be cal-624
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Reference
Dimensions

Location
Zooplankton Grazing Formulation (Single Prey Response)✓

# Z, P
tracers

◆
Functional Resp. Parameter K1/2 gmax

Group Type Scheme (mmolC/m3) (1/d)
Wroblewski (1977) 2 (1P1Z)N coastal upwelling macro II Ivlev 76.18 .52

Evans and Parslow (1985) 0 (1P1Z)N N. Atlantic - IIth M-M 7.28 1
Franks et al. (1986) 0 (1P1Z)N - meso II Ivlev 2.25-45.7 0.16-1.5
Fasham et al. (1990) 0 (1P1Z)N Bermuda meso II M-M 6.6 (6.6) 1

Frost (1993) 1 (1P1Z)C Station P micro IIth M-M 2.23 1.01-1.6
Truscott and Brindley (1994) 0 (1P1Z)N coastal (red tide) meso III M-M 36.6 0.7

Fasham (1995) 0 (1P1Z)N Station P
-
-

II
III

disk
disk

6.6
3.82

1
1

Franks and Chen (1996) 2 (1P1Z)N Georges Bank meso II Ivlev 22.9 .5
Franks and Walstad (1997) 2 (1P1Z)N - meso II Ivlev 22.9 .5
Denman and Peña (1999) 1 (1P1Z)N Station P micro III M-M 2.64 1

Edwards et al. (2000) 2 (1P1Z)N coastal upwelling
micro
macro

II
II

Ivlev
Ivlev

15.3
22.9

4
0.5

Franks and Chen (2001) 3 (1P1Z)N Georges Bank meso II Ivlev 22.9 .5

Denman and Peña (2002) 1 (1P2Z)N Station P
micro
meso

III
III

M-M
M-M

4.96 (4.96)
3.96 (3.96)

1
0.5

Leising et al. (2003) 0 (1P1Z)N
HNLC

equatorial
Pacific

micro
micro
micro
micro

II
IIth

II
III

M-M
M-M
M-M
M-M

0.66
1.45
3.98
1.45

4
4
4
4

Newberger et al. (2003)
Spitz et al. (2003)

0 (1P1Z)N

2 (1P1Z)N coastal upwelling
micro
macro

II
II

Ivlev
Ivlev

76.18
76.18

1.5
0.52

Schartau and Oschlies (2003b) 3 (1P1Z)N N. Atlantic - III disk 6.67 1.58

Aumont and Bopp (2006)
(PISCES)

3 (2P2Z)C global
micro
meso

II
II

M-M
M-M

20 (20)
20 (20)

4
0.7

Gentleman and Neuheimer (2008) 0 (1P1Z)N - -
III, II,
II, IIth

M-M, M-M
Ivlev, M-M

4.68 1.5

Stock et al. (2008) 0 (3P4Z)N Low, Mid, High
Productivity

nano(100µm)
micro(1e4µm)
meso(1e6µm)
macro(1e8µm)

II
II
II
II

M-M
M-M
M-M
M-M

20 (20)
20 (20)
20 (20)
20 (20)

10
3.3
1.1
0.6

Sinha et al. (2010)
(PLANKTOM5.2)

3 (3P2Z)C global
micro
meso

II
II

M-M
M-M

11.6 (15)
0.1 (0.26)

3.5
0.31

T. Anderson et al. (2010) 3 (3P2Z)C global
micro
meso

I, II,
II, III

M-M, M-M,
Ivlev, M-M

1 (1)
3 (3)

4
1

Adjou et al. (2012) 0 (2P1Z)N Station P - II, III M-M, disk 6.6 1
Kriest et al. (2012) 3 (1P1Z)P global - III M-M 9.38 2

Shigemitsu et al. (2012)
(MEM)

1 (2P3Z)N N. Pacific
micro
meso

IIth

IIth
Ivlev
Ivelv

3.38
3.28

.4
0.1, 0.4

Dunne et al. (2013)
(TOPAZ)

3 (1P0Z) global allometric - - - 0.19

Tjiputra et al. (2013)
(NORESM1)

3 (1P1Z)P global - II M-M 4.8 1

Hauck et al. (2013)
(REcoM2)

3 (2P1Z)N global
micro
meso

III
III

M-M
M-M

3.9 (3.9)
7.8 (3.9)

2.4
2.4

Moore et al. (2013)
(BEC)

3 (3P1Z)C global
micro
meso

III
III

M-M
M-M

1.05
1.05

2.05
2.75

Oke et al. (2013)
(WOMBAT)

3 (1P1Z)N global - III disk 9.1 2.1

Dutkiewicz et al. (2015)
(Darwin)

3 (8P2Z)P global
micro
meso

III
III

M-M
M-M

2.86 (2.86)
3.01 (2.86)

1
1

Le Quéré et al. (2016)
(PlanktTOM10)

3 (6P3Z)C global
micro
meso
macro

II
II
II

M-M
M-M
M-M

5 (10)
10 (10)
9 (9)

0.46
0.31
0.03

Law et al. (2017)
(WOMBAT)

3 (1P1Z)N global - III disk 6.57 1.58

Totterdell (2019)
(diat-HadOCC)

3 (2P1Z)N global
micro
meso

II
II

M-M
M-M

3.3 (3.3)
3.3 (3.3)

0.8
0.8

Stock et al. (2020, 2014)
(COBALTv2, COBALT)

3 (3P3Z)N global
micro
meso
macro

II
II
II

M-M
M-M
M-M

8.28 (8.28)
8.28 (8.28)
8.28 (8.28)

1.42
0.57
0.23

Christian et al. (2021)
3 (2P2Z)C global

micro II Ivlev 2.77 1.75
(CANOE) meso II Ivlev 2.77 (2.77) 0.85

Yool et al. (2021, 2013)
(MEDUSA2.0)

3 (2P2Z)N global
micro
meso

III
III

M-M
M-M

7.65 (5.3)
3.36 (1.88)

2
0.5

Long et al. (2021)
(MARBL)

3 (3P1Z)C global
micro
meso

II
II

M-M
M-M

1.2
1.2

3.3
3.15

Hajima et al. (2020)
(MIROC)

3 (2P1Z)N global
micro
meso

II
II

disk
disk

9.36
9.36

2
2

Aumont et al. (2015)
(PISCESv2)

3 (2P2Z)C global
micro
meso

II
II

M-M
M-M

20 (20)
20 (20)

3
0.75

Tjiputra et al. (2020)
(NORESM2)

3 (1P1Z)P global - II M-M 9.76 1.2

Table 2. The parameterization of the grazing formulation in biogeochemical models. The

model currency (C,N,or P) is noted in the superscript in column 1 and units of K1/2 are con-

verted to carbon where required using a Redfield ratio of 106:16:1 (C:N:P) if not noted in the

study. The K1/2 relationship algebraically relates the mathematical half saturation concentration

(g(P ) = gmax/2) to the parameters specified in the model when not parameterized explicitly.

Different zooplankton size classes are given separate rows. Values from a given study separated

by commas indicate different simulations. Models with a multiple prey response are highlighted

in grey and the reported K1/2 values refer to the implied single-prey response when grazing ex-

clusively on their most preferred prey. In parentheses is the K1/2 prescribed for bulk ingestion

on the total preference weighted prey field. Models with one zooplankton tracer that grazes sep-

arately on two phytoplankton groups with two distinct single-prey responses (i.e. specific grazing

rates on one prey group are not effected by the concentration of the other) are considered to

have a single-prey response and two implicit zooplankton groups. Implicit functional groups are

italicized.

–19–



manuscript submitted to Progress in Oceanography

a) Empirical Estimates: Trait-based Correlation with Size

Size K1/2 gmax ✏
Class p r2 b p r2 b p r2 b

All Sizes
n=119

0.12 0.02 0.04 10�11 0.31 -0.17 10�13 0.37 -0.21

Nano. & Micro.
n = 49

0.06 0.07 -0.10 10�7 0.44 -0.24 0.01 0.12 -0.13

Micro & Meso.
n=94

10�4 0.13 0.17 0.01 0.06 -0.11 10�8 0.29 -0.27

Nanozooplankton
n=19

0.1 0.15 -0.47 0.41 0.04 -0.18 0.35 0.05 0.30

Microzooplankton
n=30

0.68 .008 0.06 10�4 0.33 -0.39 10�3 0.29 -.046

Mesozooplankton
n=64

10�6 0.29 0.47 10�5 0.23 0.34 0.18 0.03 -0.13

b) Empirical Estimates: Sample Statistics by Size Class

Size K1/2 (mmolC/m3) gmax (1/d) ✏ (m3/mmolC/d)
Class mean med. range IQR mean med. range IQR mean med. range IQR

All zooplankton
n=119

40 16
8.3e�2

500
6.4
43

3.7 1.6
2.1e�2

46
0.46
3.8

0.49 8.4e�2 3.4e�3

9.5
2.1e�2

0.27
Nanozooplankton

n=19
37 23

1.7
120

10
62

13 10
1.1
46

7.0
19

1.1 0.40
3.0e�2

9.5
0.22
0.85

Microzooplankton
n=30

25 8.9
0.41
210

4.5
17

3.6 3.0
0.11
12

2.2
4.1

0.71 0.25
9.1e�3

8.8
9.0e�2

0.78
Mesozooplankton

n=64
45 18

8.0e�2

500
5.8
45

1.3 0.77
2.0e�2

8.2
0.29
1.8

0.24 4.0e�2 3.4e�3

9.1
1.0e�2

0.10

c) Values Used in Models: Sample Statistics by Size Class

Size K1/2 (mmolC/m3) gmax (1/d) ✏ (m3/mmolC/d) ⇤ ✏c (m6/mmolC2/d) ⇤⇤

Class mean med. range IQR mean med. range IQR mean med. range IQR mean med. range IQR
All Zoo.

(n=70,47⇤,23⇤⇤)
11 6.6

0.1
76

3.3
11.6

1.7 1.1
3.0e�2

10
0.7
2.4

0.56 0.15
3.3e�3

6.1
3.2e�2

0.32
0.50 0.04

5.0e�4

4
3.3e�2

0.14

Uncat.
(n=14,5⇤,9⇤⇤)

6.3 6.6
3.3
9.4

4.7
7.3

1.5 1.5
1.0
2.4

1.0
2.0

0.19 0.15
0.14
0.32

0.15
0.24

5.6e�2 3.5e�2 2.3e�4

0.16

2.5e�4

7.5
5e�4

4
Nanozoo.

(n=1,1⇤,0⇤⇤)
20 20 - - 10 10 - - 0.51 0.51 - - - - - -

Microzoo.
(n=25,18⇤,7⇤⇤)

9.1 3.3
0.66
76

1.6
9.9

2.4 2.8
0.40
4.0

1.2
4.0

0.96 0.23
1.4e�2

6.1
0.17
1.0

1.2 0.14
3.2e�2

4.0
6.1e�2

2.3
Mesozoo.

(n=24,17⇤,7⇤⇤)
10 6.6

0.10
37

3.1
20

1.0 0.78
0.10
3.2

0.5
1.2

0.44 6.9e�2 1.5e�2

3.1
2.9e�2

0.22
0.31 4.4e�2 5.0e�4

1.9
3.3e�2

0.11
Macrozoo.

(n=6,6⇤,0⇤⇤)
35 21

8.3
76

9
76

0.37 0.43
3.0e�2

0.52
0.23
0.52

1.2e�2 9.9e�3 3.3e�3

2.8e�2
4.7e�3

1.8e�2 - - - -

d) Values Used in Models: Sample Statistics by Grazing Formulation

Grazing K1/2 (mmolC/m3) gmax (1/d) ✏ (m3/mmolC/d) ⇤ ✏c (m6/mmolC2/d) ⇤⇤

Formulation mean med. range IQR mean med. range IQR mean med. range IQR mean med. range IQR
Type III

(n=23,0⇤,23⇤⇤)
6.0 4.0

1.0
37

3.0
6.7

1.7 1.6
0.5
4.0

1
2.1

- - - - 0.50 4.4e�2 5.0e�4

4
3.3e�2

0.14
Type II ( 6=Ivlev)
(n=35,35⇤,0⇤⇤)

8.9 7.3
0.1
20

3.5
11

1.9 1.2
3.0e�2

10
0.8
3.1

0.72 0.20
3.3e�3

6.1
0.10
0.49

- - - -

Ivlev
(n=12,12⇤,0⇤⇤)

29 23
2.7
76

3.3
50

0.97 0.51
0.1
4.0

0.5
1.2

8.5e�2 1.5e�2 4.7e�3

0.44
1.4e�2

0.13
- - - -

Michaelis-Menten
(n=49,32⇤,17⇤⇤)

7.8 5.0
0.10
37

12.8
9.2

1.9 1.2
3.0e�2

10
0.79
3.0

0.77 0.19
3.3e�2

6.1
8.0e�2

0.54
0.66 0.11

5.0e�4

4.0
3.8e�2

0.58
disk

(n=9,3⇤,6⇤⇤)
7.1 6.6

3.2
9.4

6.6
9.2

1.5 1.6
1.0
2.1

1.0
2.0

0.19 0.21
0.15
0.21

0.17
0.21

0.04 3.6e�2 2.3e�2

9.3e�2
2.5e�2

3.6e�2

Single Prey
(n=40,27⇤,13⇤⇤)

13 6.6
0.66
76

2.7
9.8

1.8 1.5
0.1
4.0

1.0
2.4

0.75 0.18
4.7e�3

6.1
1.6e�2

0.55
0.52 3.6e�2 5.0e�4

2.5
2.5e�2

0.57
Multiple Prey

(n=30,20⇤,10⇤⇤)
9.3 7.8

0.1
20

3.3
20

1.6 1.0
3.0e�2

10
0.5
2.4

0.29 0.15
3.3e�3

3.1
3.6e�2

0.23
0.5 7.0e�2 3.3e�2

3.1
3.6e�2

0.23

Table 3. Statistics from empirically estimated and modelled grazing parameters. a) The p-

value (p), coefficient of determination (r2), and slope (b) are displayed for a linear regression fit

between the log10 of zooplankton size (µm3) and the log10 of K1/2, gmax, and ε. Data included

in each model is limited to the size class(es) specified in the left column. Statistically significant

relationship (p<0.05) are highlighted in blue for positive correlations (b>0) and red for negative

correlations (b<0). b,c,d) Sample statistics are shown for b) empirical values sorted by size

classes and c,d) model values sorted by size class and other attributes of the grazing formulation.

The IQR referes to the Inter-quartile range (i.e. middle 50%). Statistics forε do not include any

type III responses and statistics for εc do not include any type II or Ivlev response. εc is not

shown for the empirical data as a type II response was always assumed.
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culated algebraically from the reduced multiple-prey response based on both innate prey625

preferences (i.e. constants) and assumptions about whether preferences can vary with626

the relative distribution of prey (i.e. switching vs. no switches) (Fasham et al., 1990).627

Although the apparent K1/2 for a given prey item will increase in the presence on other628

prey options, we consider the implied K1/2 for the single-prey response as it is informa-629

tive as to how modellers assume zooplankton behave in optimal conditions, grazing on630

exclusively on their preferred prey.631

Overall, the full range of grazing parameters used in models varies largely (Fig.632

2; empty red markers). K1/2 and gmax both vary by over two orders of magnitude,633

from 0.1-76 mmol C/m3 and 0.03-10 1/d, respectively. When converted into a disk pa-634

rameter scheme the range is even larger, with ε in type II (and Ivlev) response functions635

spanning more than 3 orders of magnitude, from 3.3∗10−3-6.1 m3

mmolCd , and εc in type636

III response functions spanning nearly 4 orders of magnitude, from 5.2∗10−4-4 m6

mmol2Cd .637

Considering that these values are used to represent the mean state of many zooplank-638

ton, they might be expected vary substantially less than the empirical estimates, which639

should be expected to span a large range of natural variability. However, the range of640

model values for each parameter exceeds the interquartile range of empirical estimates641

(Table 3b,c), suggesting that some models may be using unreasonably high or low pa-642

rameter values. This is especially true for model values of ε, which exceed the interquar-643

tile range of empirical estimates by an order of magnitude in both directions. Moreover,644

the mean of model and empirical distributions are not statistically similar (p>0.05; 2-645

sample t-test) for any parameter. However, this comparison may be biased by intended646

differences in the zooplankton functional groups being modelled.647

Breaking down the model values by size class gives a better indication of how rep-648

resentative models are of empirically estimated values (Fig. 3d-f ; Table 3b,c). Focus-649

ing on microzooplankton and mesozooplankton, the most commonly simulated size classes,650

the range of K1/2, gmax, and ε for both size classes falls within the range, but beyond651

the interquartile range, of their respective empirical estimates. However, relative differ-652

ences between the two size classes are generally consistent with the observations. Sta-653

tistically, modelled consumption (gmax; Fig. 3e) and capture (ε, εc; Fig. 3f) rates both654

decline with zooplankton size and do so in a manner that increases K1/2 (Fig. 3d).655

In particular, variability in gmax across the two size classes is well aligned with the656

observations (Fig. 3b,e; Table 3b,c). The median value (and interquartile range) of657

gmax decreases from 2.75 (1.2-4) in microzooplankton to 0.78 (0.5-1.15) in mesozooplank-658

ton models, compared to from 3.0 (2.2-4) to 0.77 (0.3-1.8) in the empirically measured659

values. Moreover, there is no statistical difference between the mean of the model and660

empirical distributions of gmax in either simulated size class. Unsurprisingly, both sets661

of model and empirical values reported here are consistent with values of 2-4 1/d and662

1 1/d, respectively, reported elsewhere throughout the literature (C. A. Edwards et al.,663

2000; Gismervik, 2005; Lancelot et al., 2005; Leising, Gentleman, & Frost, 2003; Strom664

& Morello, 1998).665

However, allometric variability in capture rates, either prescribed directly by ε (Fig.666

3c,f) and εc or indirectly by K1/2 (Fig. 3a,d), is less consistent with the observations.667

The median value (and IQR) of ε decreases from 0.27 (.17-1.79) to 0.14 (.04-.37) in mod-668

els, compared to from 0.25 (.09-0.78) to .04 (.01-.09) in the empirically measured val-669

ues. This smaller drop in ε between size classes in the models is consistent with a smaller670

increase in K1/2 than observed. The median value (and IQR) of K1/2 increases from 3.3671

(1.6-9.9) to 6.6 (3-9.9) in models, compared to from 8.9 (4.5-17) to 18 (5.8-45) in the em-672

pirically measured values (Table 3b,c). In turn, the relative decrease mesozooplank-673

ton grazing at low prey concentrations (where capture rates dominate) may be under-674

estimated in the models. This is likely happening because most models which include675

micro- and mesozooplankton use a Michaelis-Menten parameter scheme and vary gmax676

between size classes but not K1/2 (Table 2). While this is consistent with the allomet-677
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ric relationships measured across the full range of zooplankton, it may not be when fo-678

cusing explicitly on difference between micro- and mesozooplankton (Sec 4.1; Table679

3a). In turn, models that vary both gmax and K1/2 (e.g. Anderson et al. (2010)) may680

be more realistic than those that fix K1/2 across size.681

While the clearest source of variability between model values is justifiably allomet-682

ric, we additionally check for differences associated with attributes of the grazing for-683

mulation (Table 3d). The only statistically significant difference related to the grazing684

formulation was between capture rates prescribed in Ivlev response types compared to685

those in Holling type III, or even type II, responses. The mean K1/2 used in zooplank-686

ton simulated with an Ivlev response was nearly 5x larger (29 mmolC/m3) than that687

used in a type III response (6.0), and over 3x larger than that used in a qualitatively sim-688

ilar type II response (8.0). Although a disproportionate number of zooplankton simu-689

lated with a Ivlev response are described as macrozooplantkon (50%), mean K1/2 val-690

ues for micro- (24) and mesozooplantkon (15) simulated with an Ivlev response are also691

much higher than the average value used in non-Ivlev type II response functions (7.8 &692

9.6, respectively). This suggests that K1/2 may be systematically overestimated in Ivlev693

responses, perhaps because the Ivlev parameter is further abstracted from any mecha-694

nistically meaningful value or intuitive characteristic of the curve. Finally, there was no695

statistically significant difference between the mean of any parameter value when com-696

paring those used in Michaelis-Menten versus disk parameter schemes or when compar-697

ing single-prey response types with the implied single prey response from multi-prey re-698

sponse types.699

5 Sensitivity of the grazing formulation700

To isolate the sensitivity of phytoplankton population dynamics to the functional701

response and its parameterization, we extend the sensitivity analysis conducted by Gen-702

tleman and Neuheimer (2008). We use an identical, idealized, 0-dimensional Nutrient-703

Phytoplankton-Zooplankton (NPZ) box model to that of Gentleman and Neuheimer (2008),704

and earlier Franks et al. (1986). This model assumes that phytoplankton (P) grow via705

uptake of external inorganic nutrients (N) and are lost to zooplankton (Z) grazing and706

mortality. Nutrients are returned to the inorganic pool via phytoplankton mortality, zoo-707

plankton mortality and sloppy grazing. Phytoplankton growth follows nutrient limited708

Michaelis-Menten kinetics Michaelis and Menten (1913) and both phytoplankton and zoo-709

plankton mortality terms are linear. Mass transfer between N, P and Z pools is described710

by,711

dN

dt
= (1− α)g([P ])Z − µmax

N

KN +N
P +mpP +mzZ,

dP

dt
= µmax

N

KN +N
P − g([P ])Z −mpP,

dZ

dt
= αg([P ])Z −mzZ,

(27)

where α is the grazing efficiency, µmax is the phytoplankton maximum specific growth712

rate, KN is the nutrient uptake half saturation constant, mp is the phytoplankton mor-713

tality rate, mz is the phytoplankton mortality rate, and g([P ]) is the grazing formula-714

tion (i.e. eq. 17, 18, 24, or 25). The model is not forced with seasonality in light, mix-715

ing or other environmental conditions, such that µmax is constant and phytoplankton716

growth is determined only by nutrient availability. Non-grazing parameters and initial717

conditions (Table 4b) are identical to Gentleman and Neuheimer (2008), but converted718

to carbon units using a stoichiometric ratio of C:N = 106:16.719
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a. b.The Grazing Formulation
Other Parameters 

and Initial Conditions
Parameter Value Sensitivity

Range

Æ Grazing efficiency 0.7 0.35, 1.0

µmax
Phytoplankton maximum

specific growth rate
2 d°1 1, 4 d°1

mP
Phytoplankton
mortality rate

0.1 d°1 .05, 0.2 d°1

mZ
Zooplankton
mortality rate

0.2 d°1 0.1, 0.4 d°1

KN
Nutrient uptake

half-saturation constant
6.6 mmolC

m3 3.3, 13.2 mmoC l
m3

N0
Nutrient density
initial condition

10.6 mmolC
m3 5.3, 21.2 mmolC

m3

P0
Phytoplankton density

initial condition
1.3 mmolC

m3 0.65, 2.6 mmolC
m3

Z0
Zooplankton density

initial condition
1.3 mmolC

m3 0.65, 2.6 mmolC
m3

4

Response
Type

Parameter
Scheme Parameters Sensitivity Range

g
([

P
])

II disk
≤

gmax

0.01°10
m3

mmolC d
0.1°45 d°1

III disk
≤c

gmax

0.01°10
m6

mmolC 2d
0.1°45 d°1

II Michaelis-Menten
K1/2

gmax

100°0.1
mmolC

m3

0.1°45 d°1

III Michaelis-Menten
K1/2

gmax

100°0.1
mmolC

m3

0.1°45 d°1

Table 4. List of a. grazing formulations and b. other parameters and initial conditions used

for the NPZ (eq. 27) sensitivity analysis in Section 5.

Gentleman and Neuheimer (2008) used this model to assess the change in dynam-720

ical stability when switching between a type II and III response or doubling/halving K1/2721

and gmax. In addition to testing both response types, we go on to test both parameter722

schemes (disk, Michaelis-Menten) and a much larger range of grazing parameters. This723

allows for the comparison of gradients across the parameter space between four differ-724

ent grazing formulations (i.e. Type II-disk, Type III-disk, Type II-Michaelis-Menten, Type725

III-Michaelis-Menten; see Table 4a). ). Within each grazing formulation we consider726

a range of log-spaced values spanning nearly 3 orders of magnitude for both parameters727

(Table 4a). These ranges are all within the range of what has been estimated empir-728

ically (Fig. 2; Table 3b). Note, corresponding grid cells in each panel of Figs. 5 &729

6 do not correspond to identical functional response curves; identical parameter values730

used in different response types or parameter schemes will yield differently shaped curves731

and thus different dynamics. Instead, when comparing panels, we consider differences732

in gradients across the parameter space.733

All 784 combinations of parameters values for each functional response (i.e. 3136734

total tests) were integrated using a non-stiff ordinary differential equation solver (Mat-735

lab’s ode45) for 5 years, after which the system has either reached steady state, quasi736

state-state (repeating limit cycles), or numerical instability. Integrating any further did737

not meaningfully change our results. We analyse the final year of each integration, which738

was long enough to capture limit cycles which a had a period of anywhere from weeks739

to months. We then assess how the choice of response type, parameter scheme, and pa-740

rameter values influences prescribed grazing rates (Section 5.1) and in turn drives the741

size (Section 5.2) and stability (Section 5.3) of the phytoplankton population. The742

sensitivity of our results to non-grazing parameters and initial conditions is also exam-743

ined (Table 4b; Section 5.4).744

5.1 Sensitivity of grazing rates745

Modellers can prescribe faster grazing rates by increasing ε, εc, and/or gmax in a746

disk parameter scheme, or decreasing K1/2 and/or increasing gmax in a Michaelis-Menten747

parameter scheme. Note that while ε and gmax modify the curve in the same direction748

when using a disk formulation, K1/2 and gmax modify it in opposite directions when us-749

ing a Michaelis-Menten formulation, meaning that modellers must ensure parameter changes750

do not inadvertently cancel out if modifying both in the same direction. Moreover, the751

sensitivity of the shape of the curve and associated grazing rates to these parameters varies752

with the parameter scheme, response type, and the prey density (or location on the curve)753
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in question. To illustrate this, we have provided a schematic showing how proportional754

changes in different parameters modify the curve in different ways at low and high [P ]755

values (Fig. 4). We then quantify these changes by computing the mean grazing rates756

prescribed at low and high [P ] values for all curves defined across the entire parameter757

space (Fig. 5).758

When using a disk scheme (Fig. 4, green), regardless of response type, grazing rates759

are determined almost entirely by prey capture rates when food is scarce (Low [P ]; Fig.760

4, middle row) and by consumption rates when food is replete (High [P ]; Fig. 4, bot-761

tom row). This is self-evident if one understands the underlying theory, but not neces-762

sarily obvious from the terms ‘attack’ or ‘capture rate’ to non-experts. In turn, gmax has763

almost no bearing on the shape of the curve at low [P ] (Fig. 4f, h) and ε (or εc) has764

little influence on the shape of the curve at high [P ]; (Fig. 4i, k). Moving from a type765

II (Fig. 4, left side) to III (Fig. 4, right side) response switches the description of prey766

capture rates from a linear to quadratic function of [P ] (see Section 2), which decreases767

the sensitivity of grazing rates to εc (relative to ε), especially at low [P ] (Fig. e, g).768

When using a Michaelis-Menten parameter scheme (Fig. 4, magenta), grazing rates769

are proportionally, but inversely, affected by changes in K1/2 compared to ε in a disk scheme770

(Fig. 4a, e, i), leading to the dark green overlapping curves in the left-most panel of771

Fig. 4. This occurs because, K1/2 is equal to gmax

ε , or equivalently 1
εh (see Sec. 2.3),772

and gmax (and its reciprocal, h) are held constant. However, in a type III response, graz-773

ing rates are substantially more sensitive to K1/2 than εc, (Fig. 4c, g, k), particularly774

at low prey densities (Fig. 4g). Moreover, in both a type II and III response, the Michaelis-775

Menten scheme is dramatically more sensitive to gmax at low prey densities (Fig. 4f,776

h). This is because faster (slower) prey capture rates (and thus a larger prey capture ef-777

ficiency, ε) are implicitly required for the curve to saturate at a faster (slower) grazing778

rate with the same half saturation concentration.779

Computing the mean grazing rate across low (0−0.5 mmolC
m3 ) and high (10−15 mmolC

m3 )780

phytoplankton concentrations ([P ]) for all grazing formulations considered in our sen-781

sitivity analysis (Table 4) confirms these trends (Fig. 5). In a type II disk formulation,782

grazing rates at low [P ] are almost entirely unaffected by gmax, especially when ε is low783

(Fig. 5a), whereas grazing rates at high [P ] are almost entirely driven by gmax, espe-784

cially when ε is large (Fig. 5b). Introducing the concavity of a Type III response in-785

creases this disparity. In turn, the mean grazing pressure at low [P ] increases with εc but786

is effectively invariant across 3 orders of magnitude change in gmax (Fig. 5c). Alterna-787

tively, mean grazing rates at high [P ] are almost entirely described by gmax unless εc is788

so low that our definition of ‘high [P ]’ no longer falls above the half saturation point of789

the curve (Fig. 5d).790

Using a Michaelis-Menten scheme increases the sensitivity of grazing rates to both791

parameters (Fig. 5e-h), such that gmax has much more influence at low [P ] (Fig. 5e,792

g) and K1/2 has more influence at high [P ] (Fig. 5f, h). However, in a type III response,793

grazing rates are still more sensitive to K1/2 than gmax at low [P ] (Fig. 5g) and more794

sensitive to gmax than K1/2 at high [P ] (Fig. 5h). Increased parameter sensitivity in795

the Michaelis-Menten scheme means that a greater variety of curve shapes and associ-796

ated grazing rates can be described with an equivalent range of parameter values, albeit797

with lower resolution. This means that there should be more variability in model out-798

put derived from equivalent changes in Michaelis-Menten versus disk parameters.799

In other words, in a Michaelis-Menten scheme a smaller range of parameters can800

test the same range of curves, but many intermediate options with be skipped.801
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Figure 4. Schematic of the functional response curve. A type II (a,b) and III (c,d) response

curve is plotted in black with colored windows depicting how the curve varies with proportional

changes to its parameters. Initial parameters were chosen such that the disk and Michaelis-

Menten parameter schemes yield mathematical identical curves (gmax = 1, K1/2 = 6.625).

Colored windows show how the curve varies when its parameters are individually halved (0.5x)

or doubled (2x) within a disk (green) or Michaelis-Menten (magenta) parameter scheme. The

shaded region depicts the range of curves encompassing a 0.5x-2x change in the associated pa-

rameter. Close ups of the same curves are shown below for (e-h) low and (i-l) high phytoplank-

ton concentrations. Annotations in Row 1 show which curves correspond to which parameter

modification. Note, the dark green shading in (a,e & i) indicates a complete overlap in the

variability window for both parameter schemes.
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Figure 5. Sensitivity of specific grazing rates. Variability in the mean zooplankton spe-

cific grazing rate averaged across (a, c, e, g) low ([P ] < 0.5mmolC
m3 ) and (b, d, f, h) high

(10 < [P ] < 15mmolC
m3 ) phytoplankton concentrations ([P ]) is shown as a function of the pa-

rameters of the functional response curve using a (a, b, e, f) Type II and (c, d, g, h) Type III

response type as well as a (a-d) disk and (e-h) Michaelis-Menten parameter scheme. The range

of low and high [P ] correspond to the zoomed in panels of the schematic in Fig. 4. A dashed log

1-1 line is included to assess the relative parameter sensitivity.
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Figure 6. Sensitivity of phytoplankton population dynamics. Variability in the (a, d, g, j)

mean annual phytoplankton concentration, (b, e, h, k) standard deviation, and (c, f, i, l) First

Order Stability of the solution are plotted against the parameterization of the functional response

curve using a (a-c, g-j) Type II and (d-f, j-l) Type III response type as well as a (a-f) disk

and (g-l) Michaelis-Menten parameter scheme. Parameter schemes that yield complete nutrient

utilization or phytoplankton extinction are hatched out with cross or single lines, respectively.

Dynamically unstable regions are bounded with a red contour while dynamically stable solutions

have a near-zero standard deviation and appear blue in b, e, h, k. Numerically unstable regions

are plotted in white. Note, the dynamics and stability of the disk and Michaelis-Menten parame-

ter schemes are identical when their parameters overlap (i.e. ε = gmax/K1/2 or εc = gmax/K
2
1/2)
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5.2 Sensitivity of phytoplankton population size802

The mean size of the phytoplankton population, [P ], (Fig. 6, left column) is largely803

driven by the shape of the functional response at low phytoplankton concentrations and804

unaffected by what the curve looks like once it begins to saturate at high phytoplank-805

ton concentrations. For example, [P ] is 14% lower in type II than analogously param-806

eterized type III responses (i.e. same K1/2 and gmax), despite the fact that a type II re-807

sponse takes much longer to reach maximum grazing rates (i.e. saturation), and prescribes808

slower grazing at all prey concentrations above K1/2. This disparity increases to 58%809

when only considering stable solutions that have neither gone extinct nor reached com-810

plete nutrient limitation (see Section 5.3). This occurs because [P ] dynamics are more811

sensitive to grazing when prey [P ] is low and a type II response imposes faster grazing812

than its type III analogue below K1/2.813

The out-sized importance of the grazing rates at low [P ] is even more noticeable814

in the type III response. Considering all dynamically stable, [P ] has a much stronger cor-815

relation with mean grazing rates at low [P ] (r2 = 0.97) than high [P ] (r2 = −0.53).816

Accordingly, the sensitivity of [P ] to the grazing formulation qualitatively mirrors the817

sensitivity of mean grazing rates at low [P ] to the grazing formulation (Fig. 5, 6, left818

columns). Ecologically, this implies that the size of phytoplankton populations is lim-819

ited by zooplankton capture rates, which dominate when prey is scarce, not consump-820

tion rates, which dominate when prey is replete and the zooplankton population is more821

likely to be larger and capable of exerting strong grazing pressure, regardless of the speed822

of zooplankton specific grazing rates.823

In turn, [P ] is most sensitive to the parameterization of the response curve when824

the response type and parameter scheme allow for those parameters to most efficiently825

describe the bottom of the response curve. This means [P ] is less sensitive to the param-826

eterization of the functional response in a disk than Michaelis-Menten parameter scheme.827

For example, phytoplankton in a type III disk scheme only experienced extinction or com-828

plete nutrient utilization in 20% of the tested parameter space (Fig. 6d), compared to829

40% when using a type III Michaelis-Menten scheme (Fig. 6j). The size of the inter-830

mediate solution space will vary with other parameter choices and the size of the nutri-831

ent pool; however, the fact remains that a smaller range of parameters is needed to span832

from extinction to complete nutrient utilization in a Michaelis-Menten than disk scheme.833

Similarly, when using a type III response, [P ] is more sensitive to K1/2 and εc than gmax834

in both parameter schemes because they more directly define the shape of the response835

curve when prey is scarce (Fig. 4g, h). Together, the value gmax has almost no influ-836

ence on the size of the phytoplankton population in a type III disk scheme.837

5.3 Sensitivity of phytoplankton population stability838

In the simplified NPZ model, with no seasonal forcing, phytoplankton populations839

tend to quickly reach a seasonally invariant steady state. However, if the destabilizing840

influence of the functional response is large enough, dynamically unstable oscillations (i.e.841

limit cycles) in the phytoplankton population can emerge. The magnitude of the desta-842

bilizing (or stabilizing) influence of the grazing formulation is determined by both the843

curvature the functional response as well as the prognostic feedback of grazing on the844

phytoplankton population, which determines it’s the position on the curve. We approx-845

imate the magnitude of this stabilizing influence with the First Order Stability (Fig. 6c,846

f, i, l), defined as the first derivative of clearance rates (see Sec. 3) calculated at the847

mean phytoplankton concentration in year 5 of the solution. Larger negative values, for848

example, mean that the grazing formulation has a more destabilizing influence on the849

mean phytoplankton population, but does not necessarily determine if the system is dy-850

namically unstable, as other stabilizing processes could dominate. To determine if the851

system is dynamically unstable, we look to see if oscillations emerge. The strength of these852
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oscillations is approximated by the standard deviation of the phytoplankton population853

(Fig. 6b, e, h, k). The system is deemed stable if it reached roughly steady state by854

year five of the integration and exhibits a near-0 standard deviation (plotted in blue).855

The system is deemed dynamically unstable if the standard deviation in year 5 is greater856

than 0.5% of the total nutrient pool. The system is further deemed numerically unsta-857

ble if the solution cannot be reached using a non-stiff integration technique.858

The phytoplankton population remains dynamically stable, with a near zero stan-859

dard deviation (Fig. 6b, e, h, k, blue shading), when First Order Stability is positive860

or slightly negative (Fig. 6c, f, i, l). However, the phytoplankton population begins to861

oscillate, exhibiting much larger standard deviations, once First Order Stability becomes862

sufficiently negative. It is possible for a dynamically stable solution with negative First863

Order Stability to emerge if other stabilizing factors dominate the destabilizing influenc-864

ing of the grazing formulation. First Order Stability, as defined here, is only a measure865

of the stabilizing (or destabilizing) influence of the grazing formulation and other fac-866

tors can provide a stabilizing feedback on the phytoplankton population. In this model,867

these factors include nutrient limitation and the size of the zooplankton population, which868

both increasingly dampen phytoplankton population growth as phytoplankton biomass869

accumulates, even if specific grazing rates decline. In more complicated NPZ models other870

factors, including more complex closure schemes such as quadratic zooplankton mortal-871

ity, can provide stability as well (A. M. Edwards & Yool, 2000; J. H. Steele & Hender-872

son, 1992). Conversely, in this simple model oscillations never occur when First Order873

Stability is positive, even when initial conditions are varied by 0.5-2x (Table 4b. How-874

ever, it is possible that in longer simulations of more complex models with other desta-875

bilizing factors, they may.876

When using a type II response (Fig. 6; rows 1 & 3), First Order Stability is al-877

ways negative and the phytoplankton population in 53% of tested solutions was either878

dynamically unstable (37.5%, red contour), numerically unstable (5.5%, white), or ex-879

tinct (10%, diagonal hash). Increasing gmax and decreasing K1/2 both decrease stabil-880

ity; however, when using a Michaelis-Menten parameter scheme, the First Order Stabil-881

ity is, on average, ∼ 5 times more sensitive to changes in K1/2 than gmax due to its greater882

influence on the curvature of the functional response. In a disk scheme, however, First883

Order Stability is only 0.25 times more sensitive to ε than gmax, because both param-884

eters influence the location of K1/2. Because the stability of the population is much more885

sensitive to gmax than the size of the population, relatively small changes in gmax could886

trigger sudden instabilities with little warning.887

When using a type III response (Fig. 6; rows 2 & 4), First Order Stability is rarely888

negative. Only 5.5% of tested solutions were dynamically (1.7%) or numerically (3.8%)889

unstable and less than 4% led to phytoplankton extinction. First Order Stability becomes890

increasingly stable with increasing gmax and decreasing K1/2 because increasing graz-891

ing pressure drives [P ] below K1/2 where the upward concavity of the response curve pro-892

vides stability and protects against extinction. This holds even though decreasing K1/2893

simultaneously lowers the threshold for instability. There is only negative First Order894

Stability and oscillations in the phytoplankton population when both K1/2 and gmax are895

very low. This occurs because as the gmax approaches the zooplankton mortality rate,896

zooplankton net population growth slows, decoupling [P ] and [Z] and allowing [P ] to es-897

cape grazing pressure and exceed a low K1/2 value.898

5.4 Influence of other parameters899

The sensitivity of phytoplankton population size to the grazing formulation does900

not appear to be qualitatively influenced by the selection of other non-grazing param-901

eters or initial conditions (see Table 4b); however, these choices do influence the size902

of the stable solution space. Nutrient limitation is described by a type II Michaelis-Menten903
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curve and thus has similar, but qualitatively opposite, stabilizing properties to the graz-904

ing formulation. The difference is that the saturation of nutrient uptake provides a neg-905

ative, rather than positive, feedback on phytoplankton population growth. In turn, in-906

creasing the maximum phytoplankton specific division rates (µmax) or decreasing the907

half saturation concentration for nutrient uptake (KN ) both increase the stability of the908

system and reduce the number of unstable solutions. On the other hand, our results agree909

with previous work that limiting zooplankton population growth by either increasing zoo-910

plankton mortality (mZ) or reducing grazing efficiency (α) can increase the destabiliz-911

ing influence of a type II (or Ivlev) response (Edwards et al., 2000a, b, GN08) (C. Ed-912

wards, Powell, & Batchelder, 2000; C. A. Edwards et al., 2000; Gentleman & Neuheimer,913

2008). We go on to show that this can even occur in a type III response if mZ > αgmax914

(Fig. 6e,k), thereby decoupling specific grazing rates from bulk grazing pressure (i.e.915

g[Z]). Reallocating the initial distribution of nutrients between the [N ], [P ], and [Z] pools916

had little influence on stability. However, as similiarly shown by Franks and Chen (1996,917

2001) increasing the total nutrient pool increases the number of unstable solutions by918

diminishing the stabilizing influence of nutrient limitation.919

6 Sensitivity to sub-grid scale heterogeneity920

Mechanistic derivations (Sec. 2) and empirical approximations (Sec. 4) of the func-921

tional response are based on well-mixed solutions. Therefor, the shape and sensitivity922

of the functional response is predicated on the assumption that a homogeneously dis-923

tributed zooplankton population is grazing on a homogeneously distributed phytoplank-924

ton population. However, the ocean is notoriously patchy, with global plankton distri-925

butions highly heterogeneous at scales well below the typical resolution of even eddy-926

resolving ocean models (Ohman, 1990; Raymont, 2014). Phytoplankton and zooplank-927

ton populations are often log-normally distributed (J. Campbell, 1995; Druon et al., 2019),928

such that an increase in the mean plankton concentration is associated with a dispro-929

portionate increase in smaller areas of high productivity, surrounded by large swaths of930

lower productivity. In turn, the functional response used in global, or even coarse regional931

models, is likely implicitly being averaged over a great deal of sub-grid scale heterogene-932

ity.933

Ideally, coarse models should strive to prescribe how mean specific grazing rates,934

g, averaged across the a grid-cell, vary with the grid-cell mean phytoplankton popula-935

tion, [P ]. However, this apparent mean functional response (g([P ])) can differ substan-936

tially from the local response of individual zooplankton (g([P ]) when averaged across suf-937

ficient sub-grid scale heterogeneity. For example, A. Y. Morozov and Arashkevich (2010)938

have shown the emergence of upward concavity in g([P ]) when averaged across a 1-D wa-939

ter column model, even though g([P ] was prescribed with a type II response. We fur-940

ther generalize these results by examining a simple non-dimensional system (or grid cell)941

composed of just two regimes: one fraction of high productivity water, and one fraction942

with low productivity water. Our results show how in the simplest case, averaging over943

the two regimes fundamentally changes the shape of the apparent mean functional re-944

sponse. We show how averaging across the two patches can increase apparent mean cap-945

ture rates, induce upward concavity at low [P ], and increase the sensitivity of mean spe-946

cific grazing rates to local consumption rates.947

We assume a generic model grid cell is divided into two regimes, one fraction with948

high productivity eutrophic water (feu) and one fraction with low productivity oligotrophic949

water, fol (feu+fol = 1). All zooplankton are assumed to graze according to the same950

local functional response, g([P ]), but the sub-grid scale distributions of phytoplankton951

([P ]eu, [P ]ol) and zooplankton ([Z]eu, [Z]ol) biomass are assumed to be heterogeneous952

and allowed to vary in time. The phytoplankton population is assumed to grow expo-953

nentially with a different growth rate in each region (µol, µeu). Following A. Y. Moro-954

zov and Arashkevich (2010), the concentration of zooplankton biomass in either region955
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is assumed to be proportional to the distribution of phytoplankton. The concentration956

of phytoplankton and zooplankton in either fraction of the grid cell (R = eu, ol) can957

then be computed at a given time as958

[P ]R = [P ]R,t=0(1 + µR)t (28)

[Z]R = θ
[P ]R

[P ]
, (29)

where [P ]R,t=0 is the initial concentration and θ is the proportionality constant for zoo-959

plankton biomass. Finally, the apparent grid cell mean specific grazing rate, g, and phy-960

toplankton concentration, [P ] can be calculated as,961

[P ] = (feu[P ]eu + fol[P ]ol)/1 (30)

g = g([P ]eu)
[Z]eufeu
Ztot

+ g([P ]ol)
[Z]olfol
Ztot

, (31)

where 1 is the area of the grid cell in nominal units and Ztot is the sum of all zooplank-962

ton in the grid cell (i.e. Ztot = [Z]eu∗[f ]eu+[Z]ol∗fol). Note that θ cancels out in eq.963

31. The spatially-averaged, apparent mean functional response, g([P ]), can then be ex-964

amined by plotting all values of [P ] against g (Fig. 7).965

We consider two scenarios. In the first scenario (Fig. 7a, b), all biology is assumed966

to be consolidated in the eutrophic fraction of the grid cell (i.e. [P ]ol,t=0, µol, [P ]ol and967

[Z]ol all equal 0). In this scenario it does not matter what the initial concentration or968

growth rate of phytoplankton in the euphotic region is because the relative distribution969

is constant (i.e. [P ]eufeu/[P ]Tot = 1) and the grid-cell mean specific grazing rate, g,970

reduces to the local response, g([P ]eu). However, [P ] is less than [P ]eu as it is diluted971

by the oligotrophic fraction. We consider a local type II (Fig. 7a) and type III (Fig.972

7b) response. In both cases, the qualitative shape of g([P ]) is consistent with the local973

response; however, there is a decrease the half saturation concentration of g([P ]) which974

is proportional to the size of euphotic fraction of the grid cell, such that K1/2 = feuK1/2.975

This occurs because all zooplankton are actually grazing on a phytoplankton concentra-976

tion ([P ]eu) that is 1/feu larger than the grid cell mean. In turn, as biological produc-977

tivity is consolidated into a smaller fraction of the grid cell the apparent capture rate978

appears to increase (i.e. the initial slope of the curve steepens). However, this occurs not979

because local capture rates increase, but because zooplankton are grazing at saturation980

in a smaller area.981

In the second scenario (Fig. 7c-f) we assume that all water contains at least some982

biomass, but that phytoplankton population growth is faster in the eutrophic fraction.983

Here, phytoplankton biomass begins uniformly distributed with an initial concentration984

of 0.01 mmolC/m3, then grows exponentially at a rate of 2 d−1 in the eutrophic frac-985

tion and 1 d−1 in the oligotrophic fraction. Zooplankton biomass is still assumed pro-986

portional to phytoplankton. The eutrophic fraction of the grid cell is now assumed to987

be 5% and the local grazing response is a Type II disk response with K1/2 = 10 and988

gmax = 2. We find that even though all zooplankton graze locally with a type II re-989

sponse (Fig. 7c; thin black line), g([P ]) exhibits upward concavity at low [P ] (Fig.990

7c; solid black line), akin to a type III response. This is even clearer when looking at991

mean clearance rates (g/[P ]). Unlike local clearance rates (Fig. 7d; thin black line)992

which decreases monotonically, mean clearance rates (Fig. 7d; solid black line) ini-993

tially increase, providing the same stabilizing influence as the type III response (Sec.994
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Scenario 1: All Biology in Eutrophic Fraction of Grid Cell

Scenario 2: Some Biology in Oligotrophic Fraction of Grid Cell

Heterogeneity: feu= 5%;  𝜇eu = 2 d-1;   𝜇ol = 1 d-1
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Figure 7. Influence of sub-grid scale heterogeneity. The spatially-averaged, apparent mean

functional response is plotted for several simple examples of sub-grid scale heterogeneity. a,b)

shows what happens if a a) type II or b) III local functional response is used but biological activ-

ity is consolidated in some fraction (see colorbar) of the grid cell, with nothing in the remaining

fraction. Note, the darkest red line (feu=1) is equivalent to the local response. c-f) show what

happens to c,e) the mean functional response and d,f) mean clearance rates (solid black lines)

when the same local type II response is used but some phyto- and zooplankton growth is per-

mitted in the oligotrophic fraction of the grid cell, but at a slower rate. Red and blue lines show

the sensitivity of the mean functional response to changes in c,d) the local response parameters

and e,f) degree of sub-grid scale heterogeneity. The sensitivity of the local response is shaded in

the background of c & d.Above each subplot the location of the mean response’s half saturation

concentration and inflection point is noted with the corresponding line style.
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3). Note, however, g([P ]) is a fundamentally different mathematical curve than the stan-995

dard type III response. Its apparent mean half saturation constant (K1/2 = 1.7) is sub-996

stantially lower than that of the local response (K1/2 = 10) and unlike the standard type997

III response, K1/2 is no longer the location of the inflection point of the curve (i.e. tran-998

sition from upward to downward concavity) which occurs before K1/2 in g([P ]) (Fig. 7b,c)999

Still, it is significant that the mean of many individual type II responses can yield1000

the upward concavity associated with a type III response when averaged across hetero-1001

geneously distributed plankton populations. The reason for this is that phytoplankton1002

growth is associated with a shift in the relative distribution of zooplankton into the eu-1003

trophic region where they can graze faster. Therefor as the mean grid cell phytoplank-1004

ton concentration increases, the mean specific grazing rate will increase multiplicatively1005

with an increasing proportion of zooplankton grazing at increasingly fast specific rates,1006

leading to an exponential increase at low [P ]. Note, that there was no upward concav-1007

ity in Scenario 1, despite sub-grid scale heterogeneity. This is because the proportion of1008

zooplankton grazing in the eutrophic region did not increase with [P ]. Therefor, for up-1009

ward concavity to exist in the mean state, we must assume that zooplankton are more1010

likely to aggregate where there is more prey, either because they are growing faster lo-1011

cally or because they are actively migrating. This is ecologically and numerically impor-1012

tant because it can provide dynamical stability and refuge for low phytoplankton con-1013

centrations without invoking any associated change in the assumptions about the for-1014

aging behavior of individual zooplankton.1015

The exact shape of g([P ]) is a function the local response (Fig. 7c,d) and the evo-1016

lution of sub-grid scale plankton distributions (Fig. 7e,f). Alterations to the local cap-1017

ture rate (Fig. 7c,d; blue lines) and consumption time (red lines) show how modifica-1018

tions to the local response (thin lines; shaded area) do not directly translate to the mean1019

response (thick lines). As with the local response, increasing (decreasing) capture rates1020

(ε) or decreasing consumption times (h) both decrease the half saturation concentration,1021

K1/2, of the mean response. However, g([P ]) is much more sensitive to changes in the1022

consumption time compared to the local response. For the most part, g is more sensi-1023

tive to changes in h (thick red lines) than ε (thick blue lines) at low [P ], despite hardly1024

any change to g at low [P ] (thin, shaded lines). This is possible because even at low [P ],1025

heterogeneously distributed zooplankton are predominately grazing at or near satura-1026

tion in small patches, where consumption, not capture, rates drive grazing.1027

Altering the distribution of plankton (Fig. 7e,f), either by increasing population1028

growth rates in the eutrophic fraction (blue lines) or by changing the size of the eutrophic1029

fraction (red lines) also has a pronounced effect on the shape of g([P ]). Increasing (de-1030

creasing) µeu has a qualitatively similar effect to decreasing (increasing) K1/2 because1031

it increases the disparity between eutrophic and oligotrophic plankton populations. Re-1032

ducing sub-grid scale heterogeneity by increasing (decreasing) the size of feu lowers the1033

inflection point and decreases (increases) the extent of upward concavity. At feu = 50%,1034

g([P ]) begins to qualitatively resemble g([P ]), but K1/2 is still 45% lower than K1/2. Even1035

when we reduced heterogeneity to 20% of the grid cell growing just 10% faster, g([P ])1036

still exhibited increase clearance rates at very low [P ]. Together, it is clear that the shape1037

of g([P ]) is can dramatically diverge from g([P ]) but the degree to which is does is very1038

sensitive to the degree of sub-grid scale heterogeneity.1039

Considering that the evolution of natural plankton distributions is much more com-1040

plex than modelled here, a more sophisticated analysis is required to understand which1041

curve best begin approaches representing their mean state. However, provided there is1042

sufficient heterogeneity, when compared to the local response, it appears that g([P ]) should1043

have faster capture rates, be more sensitive to consumption rates at low [P ], and exhibit1044

a larger degree of upward concavity at low [P ].1045
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7 Recommendations for modellers1046

7.1 Functional Response Choice for Single-Prey Grazing1047

Biogeochemical models are largely split in their use of a type II (or Ivlev) or type1048

III functional response (Table 3). Of all 70 surveyed grazing formulations, 23 use a type1049

III and 35 use a type II (12 used an Ivlev). Of those that graze with a single-prey re-1050

sponse the split is 13, 16, and 14 for type III, II and Ivlev, respectively. Mathematically,1051

when parameterized with analogous parameters (i.e. the same K1/2 and gmax), a type1052

II response is more likely to exert stronger grazing pressure (Sec. 5.2) and produce dy-1053

namically unstable solutions (Sec. 3, 5.3) due to its downward concavity at low prey1054

concentrations. Ecologically, the most realistic option likely depends on the model con-1055

figuration and the system being simulated.1056

Models that use a type III response typically benefit from its stabilizing proper-1057

ties (Gentleman & Neuheimer, 2008). For example, many models require a type III re-1058

sponse to produce realistic blooms rather than unstable oscillations (Hernández-Garćıa1059

& López, 2004; Malchow et al., 2005; A. Morozov, 2010; Truscott & Brindley, 1994; Tr-1060

uscott et al., 1994). This is because the stabilizing properties of a type III response pre-1061

vent the extinction of a very small wintertime phytoplankton seed population, while starv-1062

ing the zooplankton population, subsequently permitting a bloom at the onset of rapid1063

changes in bottom-up growth conditions during spring stratification (Behrenfeld et al.,1064

2013; Evans & Parslow, 1985).1065

However, stability in it’s own right is not a sufficient justification to use a type III1066

response. Natural systems have been observed to exhibit dynamical instabilities (Mc-1067

Cauley & Murdoch, 1987) and even when they do not, there are many plausible stabi-1068

lizing factors that could dominate unstable predator-prey dynamics to dampen limit cy-1069

cles and stabilize the system (C. A. Edwards et al., 2000; Gentleman & Neuheimer, 2008).1070

For example, only half the parameter combinations tested here actually produced a dy-1071

namically unstable solution when using a type II response (Fig. 6a,g). This was because1072

the destabilizing influence of the predator-prey dynamics (i.e. the First Order Stability;1073

Fig. 6c,i) was weak enough to be dominated by the stabilizing influence of nutrient lim-1074

itation, which buffers changes in the phytoplankton population by decreasing (increas-1075

ing) division rates when the population is large (small). Similarly, other factors such as1076

quadratic zooplankton mortality can create a negative feedback loop which stabilizes pop-1077

ulation dynamics despite the destabilizing influence of the grazing formulation. Select-1078

ing a response type that does not represent the true destabilizing (or stabilizing) influ-1079

ence of natural predator-prey dynamics could lead parameter optimization schemes to1080

underestimating (or overestimating) the influence other stabilizing processes. Thus, the1081

stabilizing influence of a type III response is only preferable if it is ecologically represen-1082

tative of the predator-prey dynamics it seeks to represent.1083

Ecologically, there is disagreement on whether a type II (Hansen et al., 1997; Hirst1084

& Bunker, 2003; Jeschke et al., 2004) or type III (Chow-Fraser & Sprules, 1992; Frost,1085

1975; Gismervik & Andersen, 1997; Sarnelle & Wilson, 2008) response is more appro-1086

priate to represent the grazing behavior of individual zooplankton. Laboratory dilution1087

experiments are often better fit empirically by a type II response (Hansen et al., 1997;1088

Hirst & Bunker, 2003), while a type III response is typically justified by more complex1089

behavior, such as changes in prey refuge, (Wang, Morrison, Singh, & Weiss, 2009), preda-1090

tor learning (Holling, 1965; van Leeuwen, Jansen, & Bright, 2007), predator effort, (Gis-1091

mervik, 2005), or prey switching (Gentleman et al., 2003; Oaten & Murdoch, 1975; Uye,1092

1986). Unfortunately, this behavior is difficult to replicate in a lab (Leising et al., 2003)1093

and large-scale field experiments are challenging and rare.1094

However, despite uncertainty in the true behavior of individual zooplankton in their1095

natural environment, it is possible that a type III response is more representative of their1096
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mean state, even if individuals are assumed to exhibit a sub-grid scale type II response1097

(Sec. 6). If plankton are assumed to be heterogeneously distributed and the relative dis-1098

tribution of the zooplankton population is assumed to co-vary with the phytoplankton1099

population, then the mean grazing rate should generally exhibit some degree of upward1100

concavity (Fig. 6c,e) and exert an associated stabilizing influence on mean population1101

dynamics (Fig. 6d, f). A. Morozov (2010) found similar upward concavity in the mean1102

dynamics of vertically distributed plankton and argued for the emergence a Holling type1103

III response. However, it should be clarified that while the mean behavior of heteroge-1104

neous systems likely does exhibit some upward concavity, the function is not exactly sig-1105

moidal in shape and is mathematically distinct from a type III disk response. Importantly,1106

the mean response becomes destabilizing (i.e. downwardly concave) well before the half-1107

saturation concentration of the local response (Fig. 6a,b) and varies with the degree1108

of sub-grid scale heterogeneity (Fig. 6c,d) .1109

In turn, the most ecologically justifiable response type may depend on the resolu-1110

tion of the model in question. For high resolution, small scale models, or those repre-1111

senting system known to be well-mixed, a type II response is likely the most appropri-1112

ate. Even though laboratory incubations are unlikely to translate directly to zooplank-1113

ton feeding behavior in the open ocean (Dutkiewicz et al., 2015), there are not sufficient1114

observations individual zooplankton grazing with type III dynamics to justify ignoring1115

the many empirical estimates of a type II response (Hansen et al., 1997; Hirst & Bunker,1116

2003). However, a type III response may be a more ecologically realistic representation1117

of the mean state of many zooplankton grazing locally with a type II response on a highly1118

heterogeneous phytoplankton population. Therefor, for coarse resolution, large scale mod-1119

els (e.g. global earth systems models) a type III response may be more appropriate.1120

7.2 Parameter Scheme for Single-Prey Grazing1121

Throughout the literature, the type II and type III functional response appear in1122

two distinct, but mathematically equivalent, forms (Table 2): the disk parameter scheme1123

(eq. 17, 24) (Adjou et al., 2012; Fasham, 1995; Law et al., 2017; Oke et al., 2013; Schar-1124

tau & Oschlies, 2003b) and the Michaelis–Menten parameter scheme (eq. 19, 25) (Au-1125

mont & Bopp, 2006; Dutkiewicz et al., 2015; Hauck et al., 2013; Le Quéré et al., 2016;1126

Moore et al., 2013; Stock, Dunne, & John, 2014; Totterdell, 2019; Vichi et al., 2007). Both1127

parameter schemes can describe identical response curves given the right parameteriza-1128

tion, but use different information to do so. The disk scheme uses ecologically signifi-1129

cant quantities to mechanistically determine how grazing rates vary in well-mixed sys-1130

tems. On the other hand, the Michaelis–Menten scheme is an empirical description of1131

the shape of the curve, with no theoretical basis, per say. This distinction would be ir-1132

relevant if we had robust knowledge of the real parameters or infinite computational power1133

to sample them all in multivariate parameter optimization schemes. Unfortunately, ob-1134

servations span several orders of magnitude (Section 4) and computational limitations1135

exist (Matear, 1995; Neelin, Bracco, Luo, McWilliams, & Meyerson, 2010), meaning that1136

modellers must pick a limited subset of parameters to test and the parameter scheme1137

they choose may use influences this choice.1138

The disk scheme has a strong theoretical basis and allows modellers to directly pre-1139

scribe biologically meaningful quantities. In general, this is the simplest way to reduced1140

confusion amongst biologist and modellers and ensure that trait-based relationships are1141

correctly parameterized between functional groups (see Sec. 4). However, the theoret-1142

ical integrity of the disk response is limited to well-mixed systems and does not neces-1143

sarily represent the mean state of a patchy ocean, which coarse global models must im-1144

plicitly average over. In Section 6, we demonstrated how the apparent mean functional1145

response, g([P ]), can differ significantly from the local response, g([P ]) (Fig. 7). When1146

g([P ]) is plotted empirically by explicitly averaging across sub-grid scale heterogeneity,1147

it is clear that the characteristics of the mean response diverge from the theoretical ba-1148
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sis of the disk parameters, even as they describe how zooplankton graze locally. For ex-1149

ample, decreasing local zooplankton consumption times (h = 1/gmax) can substantially1150

increase the grid cell mean grazing rate at low [P ], without meaningfully influencing how1151

zooplankton graze locally on low [P ], where grazing rates remain dominated by capture1152

rates (Fig. 7c). This is possible because a disproportionate amount of zooplankton are1153

grazing at a prey density closer to saturation than the mean phytoplankton concentra-1154

tion, which is diluted by large swaths of oligotrophic water, would suggest. Therefor, when1155

modelling the mean state of a sufficiently heterogeneous region the most ecologically jus-1156

tifiable functional response is necessarily empirical, as it must capture the local grazing1157

dynamics as governed by the disk parameters as well as the evolving sub-grid scale dis-1158

tribution of zooplankton and phytoplankton.1159

This distinction is important to allow parameter search algorithms to best select1160

for the most ecologically representative parameter values. For example, if running a ge-1161

netic parameter optimization algorithm in a low mean biomass biome, then a mutation1162

to the gmax gene (i.e. parameter) will not significantly influence the fitness of the solu-1163

tion (and thus not be selected for or against) when using a disk scheme. This is the de-1164

sired, theoretically correct, outcome if the system you are modelling is believed to be well-1165

mixed, because grazing rates (and thus phytoplankton dynamics) should be limited by1166

capture rates, not consumption times, when food is scarce. However, if the system is as-1167

sumed to have a sufficient degree of sub-grid scale heterogeneity, with zooplankton dis-1168

proportionately consolidated in small patches where they can graze closer to saturation,1169

then gmax should influence population dynamics and thus the fitness of the solution. There-1170

for, the parameters of g([P ]) should reflect not just assumptions regarding local consump-1171

tion and capture rates, but also assumptions about the sub-grid scale distribution of biomass.1172

In this way, the Michaelis–Menten parameter scheme may offer an advantage, as it is al-1173

ready empirical in nature. For instance, changes to gmax in a Michaelis–Menten scheme1174

have a significantly heightened influence on grazing rates (relative to a disk scheme) at1175

low prey concentrations. This would allow for a genetic search algorithm to better se-1176

lect for the true gmax which best describes g([P ]). Critically though, this gmax param-1177

eter should not be understood as the reciprocal of the consumption time (as in a disk1178

scheme) but as an empirical reflection of the combined effect of the local disk parame-1179

ters and sub-grid scale heterogeneity.1180

Another advantage of the Michaelis–Menten scheme is that population dynamics1181

are more sensitive to proportional changes in its parameters, compared to the disk pa-1182

rameters, particualrly for a type III response (Section 5.2). This is predominately be-1183

cause εc implicitly varies with the square of K1/2 in a Michaelis-Menten scheme (εc =1184

gmax

K2
1/2

). In turn, the disk scheme is less sensitive to its parameterization, meaning it re-1185

quires a larger range of parameters to be tested to cover the same range of solutions. For1186

example, a conservative range of observed εc values, from .0001-1 m6

mmolC2d , can be span1187

with K1/2
mmolC
m3 values from 1-100 at a fixed gmax (see contours on Fig. 2). The trade1188

off is increased precision in the disk scheme; however, the overwhelming lack of consen-1189

sus on what these parameters actually are (Section 4), especially for the mean state of1190

the entire ocean (Moriarty et al., 2013; Moriarty & O’Brien, 2012), suggests that it is1191

more valuable to consider a wider, but lower resolution, set of parameters to avoid in-1192

advertently constraining the parameter space, rather than trying to narrow in on an im-1193

possibly exact value. For example, the parameter search used by Schartau and Oschlies1194

(2003a), who use a disk scheme to represent the mean state of relatively coarse grid cells,1195

chose both parameter values at the boundary of their search space, suggesting a wider1196

range might have found a better solution. Practically speaking, this problem could be1197

addressed by careful conversion. Modellers using a disk scheme could sub sample a wider1198

set of coarser resolution εc values in optimization search schemes; however, modellers must1199

select a search range for dozens, if not hundreds, of parameters, and are less likely to mis-1200

takenly constrain the parameter space if using a Michaelis-Menten scheme, which has1201

a narrower range of realistic parameters and much more intuitive units.1202
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Together, the mechanistic and empirical nature of the disk and Michaelis-Menten1203

parameter schemes should be used intentionally to modeller’s advantage, depending on1204

whether they are trying to mechanistically represent the behavior of zooplankton in a1205

well-mixed system or empirically represent the mean state of grazing at the mean phy-1206

toplankton concentration of a patchy grid cell. Thus a disk scheme should be used in smaller1207

scale, higher resolution models, in which the biological attributes of zooplankton are rel-1208

atively well understood. This allows know, measured values, of ε and h to be directly1209

prescribed and reduces the chance of inadvertently mis-parameterizing their relationship1210

in a Michaelis–Menten scheme. However, a Michaelis–Menten scheme may be more ap-1211

propriate to represent the mean state of a patchy ocean in lower resolution, larger scale1212

models, in which the true parameter values are not well know. This affords the empir-1213

ical flexibility to account for differences in the system as a whole, not just the local dy-1214

namics, which may allow parameter search algorithms to better select for the true ap-1215

parent mean response, which is a necessarily empirical relationship averaging over the1216

effects of many distinct processes, including consumption rates, capture rates, zooplank-1217

ton migration, sub-mesoscale nutrient enhancement, and more.1218

7.3 Parameter Search Range for Single-Prey Grazing1219

Given the uncertainty in empirically estimated parameter values, it is necessary to1220

select what range of parameters to test in optimization routines. Although there is a high1221

degree of variability in both all parameter values (Fig. 3; Table 3), there is more un-1222

certainty in the correct value of K1/2, or associated attack rates in a disk scheme. Com-1223

pared to K1/2, the value of gmax is better constrained by size (Sec. 4.1), more consis-1224

tent between models and observations (Sec. 4.2), and less influential on driving phy-1225

toplankton population dynamics (Section 5.2). In turn, parameter search schemes should1226

favor testing on a larger range of K1/2 values than gmax values when resource limited.1227

However, it is reasonable to ask how large a range is appropriate, lest implicitly impos-1228

ing ecologically unrealistic prey capture rates or selecting values of fringe functional groups1229

to represent the mean state. However, there are insufficient empirical, ecological, and math-1230

ematical arguments to heavily restrict the range of grazing parameters, and K1/2 val-1231

ues as low as 0.1 (mmolCm3 ) and as high as 100 (mmolCm3 ) should be considered.1232

Empirically, reported estimates of K1/2 and gmax fit to a type II response function1233

by Hansen et al. (1997); Hirst and Bunker (2003) combine to yield a range of ε that spans1234

4 orders of magnitude, from .003 to 10 m3

mmolC d (Section 3.1; Fig. 2). Moreover, if a1235

type III response had been assumed, K1/2 estimates would remain similar while the range1236

of εc would increase to nearly 7 orders of magnitude, from .00001 to 21 m6

mmolC2 d , or roughly1237

1 order of magnitude slower and 3 orders of magnitude faster than the range tested in1238

the parameter optimization search of Schartau and Oschlies (2003a) (0.00056 < εc <1239

.0364). At the species level, the range of plausible K1/2 values appears largely uncon-1240

strained by empirical estimates of εc.1241

Ecologically, we simply do not have a firm understanding of how myriad complex1242

interactions combine across innumerable zooplankton species and evolve over time to yield1243

a reasonable approximation of the mean state. For instance, juvenile zooplankton have1244

different metabolic rates (Clerc, Aumont, & Bopp, 2021) and graze with K1/2 an order1245

of magnitude smaller than adults (Hirst & Bunker, 2003; Richardson & Verheye, 1998),1246

suggesting the apparent K1/2 of the community could be substantially lower during spawn-1247

ing events. On the other hand, filter feeders, such as salps and larvaceans, that are typ-1248

ically common in low chlorophyll waters, have a much smaller K1/2 than euphausiids and1249

copepods that graze in high chlorophyll waters (Hansen et al., 1997; Hirst & Bunker, 2003).1250

If species with slower K1/2 values dominate in more productive ecosystems, such that1251

K1/2 increases with chlorophyll (Chen et al., 2014), that would effectively raise the ap-1252

parent global mean K1/2 value. In turn, the community-wide K1/2 value probably varies1253

spatially and temporally depending on the zooplankton community present and whether1254
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it is dominated by juveniles or adults, such that the mean state of a population with shift-1255

ing age and species distributions could have an apparent K1/2 value much different than1256

any individual within.1257

Mathematically, it is not just the ecosystem complexity that is poorly resolved in1258

models, but also its spatial heterogeneity. If the phytoplankton density the average zoo-1259

plankton experiences is larger than the grid cell mean, which is averaged across many1260

square kilometers of implicitly less productive water (J. Campbell, 1995; Druon et al.,1261

2019) then the K1/2 value of the mean response will appear much lower than that which1262

the zooplankton are actually grazing at (Fig. 7a, b). This further increases the range1263

of possible K1/2 values below even the fastest prey capture rates inferred from dilution1264

experiments with homogeneous phytoplankton concentrations.1265

Although the full range of empirically observed K1/2 values (0.1-71 mmolC/m3)1266

is likely larger the the range of plausible values to represent the mean state, this only1267

applies to the mean value of individuals in well-mixed incubation experiments. Uncer-1268

tain ecological complexities and spatial heterogeneity both work to expand the range of1269

K1/2 values that plausibly could represent the mean state of myriad dynamics across a1270

patchy ocean. We thus recommend testing a broad range of K1/2 values, particularly on1271

the lower end, in parameter optimization routines.1272

7.4 Recommendations for future models1273

Biogeochemical models are evolving to include a increasingly complex representa-1274

tion of phytoplankton, including dozens of functional groups (Follows & Dutkiewicz, 2011),1275

variable composition Smith et al. (2015), and the flexibility to adapt to changing envi-1276

ronments (Anugerahanti, Kerimoglu, & Smith, 2021). With these changes must come1277

similar advances in the representation of zooplankton and zooplankton grazing. Notably,1278

it is essential that the mean parameterization of the zooplankton field be able to respond1279

to the evolving phytoplankton field to reflect that different zooplankton eat different things1280

and do so at different rates. Already, many modern models include multiple zooplank-1281

ton functional groups (Le Quéré et al., 2016; Stock et al., 2020) and multiple-prey graz-1282

ing response (Aumont et al., 2015; Yool et al., 2021). Moving forward, it is important1283

to consider how insights into the single-prey response extend to more complex grazing1284

schemes.1285

One concern is that the Michaelis-Menten form of the multi-prey response is over1286

parameterized, requiring an extra parameter to describe the same equation as the cor-1287

responding disk form (Gentleman et al., 2003). In turn, the parameterization of the im-1288

plied single-prey response cannot be prescribed directly, but becomes a function of prey1289

preference and the preference weighted K1/2 used for bulk ingestion. If not careful, this1290

could confuse the interpretation of parameter values and lead modellers to prescribe un-1291

intended single-prey dynamics that may imply inappropriate relationships between func-1292

tional groups. Despite recommendations to parameterize the attributes of the multi-prey1293

response directly with a disk scheme (Gentleman et al., 2003), 29 of 30 multi-prey graz-1294

ing formulations surveyed here used a Michaelis-Menten scheme, and none used a disk1295

(Table 2). To help assess if this has influenced their parameterization, we compared the1296

implied single-prey response of micro- and meso-zooplankton grazing on their most pre-1297

ferred prey and compared them to those directly parameterized in single-prey formula-1298

tions. In multi-prey formulations the median implied single-prey K1/2 value decreases1299

from 7.7 in microzooplankton to 4.0 in mesozooplankton. This is qualitatively inconsis-1300

tent with the observed relationship (Table 3) as well as single-prey formulations in which1301

the median K1/2 value increases from 2.4 in microzooplankton to 9.1 in mesozooplank-1302

ton. This suggests the models using a Michaelis-Menten multi-prey response may be im-1303

plying unintended allometric relationships between functional groups grazing in their op-1304
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timal conditions and highlights that modeller’s who select a Michaelis-Menten multi-prey1305

response must carefully consider the implied relationships between parameter values.1306

Finally, future work is needed to better assess the shape of the apparent mean func-1307

tional response, both in-situ and in models. Higher resolution general circulation mod-1308

els are known to modify local biogeochemical distribution via their representation of nu-1309

trient transport (Harrison, Long, Lovenduski, & Moore, 2018). While it is intractable1310

to estimate the apparent mean functional response exactly, it would be useful to better1311

understand its attributes with deliberate experiments designed to empirically average1312

across high resolution biogeochemical models into coarser grid-cells representative of stan-1313

dard global earth systems models. This may help constrain the functional response curve1314

and range of parameter values beyond what has been observed for individual well-mixed1315

zooplankton towards a better understanding of how to represent unresolved process across1316

the entire system which could influence sub-grid scale heterogeneity.1317

7.5 Implications for other models1318

We focus on grazing in marine biogeochemical models, but these recommendations1319

apply to a much broader range of marine and terrestrial ecological models. Most mod-1320

els in marine and terrestrial systems that involve predator-prey interactions use type I,1321

type II or type III functional responses. We found that when trying to implicitly rep-1322

resent sub-grid scale heterogeneity, a type III (Section 6.1) Michaelis-Menten response1323

(Section 6.2) parameterized with a lower than-expected K1/2 value (Section 6.3) may1324

be a more ecologically realistic way to describe the mean state of patchy predator and1325

prey populations, even if individual interactions are best described by a type II disk re-1326

sponse, parameterized with higher K1/2 values. In the ocean, this would apply to most1327

higher trophic levels simulated in size spectrum (Blanchard, Heneghan, Everett, Trebilco,1328

& Richardson, 2017; Heneghan et al., 2020), population (Alver et al., 2016), ecosystem1329

(Audzijonyte et al., 2019; Butenschön et al., 2016) and fisheries models (Maury, 2010;1330

Tittensor et al., 2018, 2021). Fish, for instance aggregate in schools and feed on sparse,1331

but consolidated, patches of prey. These distribution are in turn reflected in global fish-1332

ing effort (Kroodsma et al., 2018). On land, plants and animals are also patchy in time1333

and space, with high prey concentration rare. Most abundance data for marine and ter-1334

restrial species are overdispersed and/or have an excess of zeros, implying there is a long1335

tail to the right of low abundances (H. Campbell, 2021). The mean state of any of these1336

systems, is likely best represented by a low-K1/2, type III, Michael-Menten response; how-1337

ever, the range of possible K1/2 considered should increase with the number of unique1338

species, interactions, and stages of life history being averaged into individual pools.1339

On the other hand, well understood interactions in well mixed systems, may be bet-1340

ter represented by a type II disk response, provided there is a low amount of implicit av-1341

eraging at the species and spatial level. At the species level, this may include models of1342

simple systems with fewer species, such as lakes or polar regions rather than rain forests1343

or coral reefs, or models of more complex systems, but with many explicitly resolved preda-1344

tor groups. At the spatial level, this may include the oligotrophic gyres in the ocean and1345

grasslands or boreal forests on the land. Still, modellers should consider how much im-1346

plicit averaging is baked into their model and consider if it warrants a more empirical1347

approach before choosing a mechanistic framework (disk) or response type (II) better1348

suited for homogeneously distributed systems.1349

8 Conclusions1350

In marine biogeochemical and ecological modelling, the transfer of carbon and nu-1351

trients between trophic groups, particularly from phytoplankton to zooplankton via graz-1352

ing, is typically represented with one of two functional response curves. However, we find1353

that there is little consensus across biogeochemical models regarding: I) which response1354
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type to use (II vs. III); II) whether to describe that curve with mechanistic (disk scheme)1355

or empirical parameters (Michaelis-Menten scheme); and III) what parameter values to1356

use.1357

We examine the single-prey formulation of the functional response in systematic1358

detail to provide theoretical clarity, assess the agreement between observed parameters1359

and those used in models, examine the sensitivity of the response to its parameteriza-1360

tion, and explore how the shape of the curve changes when averaged explicitly over sub-1361

grid scale heterogeneity. Collectively, we recommend using a type II disk response in mod-1362

els with smaller scales, finer resolution, and or well understood ecological interactions.1363

However, we suggest that a type III Michaelis-Menten response may be more appropri-1364

ate for models with larger scales, coarser resolution, and more complex ecological and1365

physical processes implicitly being averaged across. In both scenarios, a large range of1366

parameter values should be tested in parameter optimization schemes as the interquar-1367

tile range of empirically observed values spans roughly an order of magnitude for all pa-1368

rameters, and the full range spans 3-4. Moreover, averaging across sub-grid scale het-1369

erogeneity could lead to K1/2 values well below the mean of empirically estimated val-1370

ues obtained from experiments in well-mixed solutions. These recommendations are specif-1371

ically tailored to the single-prey grazing formulation in marine biogeochemical models,1372

but also apply to any effort to describe the mean state of multiple interactions across1373

a large grid cell with populations assumed to have heterogeneous sub-grid cell distribu-1374

tions.1375

Data Access1376
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