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Abstract18

For nearly a century, the functional response curves, which describe how predation rates19

vary with prey density, have been a mainstay of ecological modelling. While originally20

derived to mechanistically describe specific, terrestrial interactions on a two dimensional21

plane, they have more recently been adopted to characterize the mean state of three di-22

mensional aquatic systems in marine biogeochemical, size-spectrum, and population mod-23

els. This translation, however, has further abstracted the functional response from first24

principles and led to a large divergence in its formulation across models. Marine ecolog-25

ical modellers disagree over the qualitative shape of the curve (e.g. Type II vs. III), whether26

its parameters should be mechanistically or empirically defined (e.g. disk vs. Michaelis-27

Menten scheme), and the most representative value of those parameters. This leaves mod-28

ellers with little sense of best practice and models liable to bias. As a case study, we fo-29

cus on marine biogeochemical models, providing a comprehensive theoretical, empirical,30

and numerical road-map for interpreting, formulating, and parameterizing the functional31

response when used to prescribe zooplankton specific grazing rates on phytoplankton.32

After providing a detailed derivation of each of the canonical functional response types33

explicitly for aquatic systems, we review the literature describing their parameterization.34

We find that empirical values and those used in models vary hugely, ranging over three35

to four orders of magnitude. Next, we conduct a suite of 0-D NPZ simulations to iso-36

late the sensitivity to phytoplankton population size and stability to the grazing formu-37

lation. We find that the disk parameterizations scheme is much less sensitive to it pa-38

rameterization than the Michaelis-Menten scheme, and confirm that the Type II response39

is susceptible to instabilities and extinction events. Finally, after considering the numer-40

ical sensitivity of the functional response in the context of ecological reality, we recom-41

mend using a type III rather than the type II response, employing a Michaelis-Menten42

rather than disk parameter scheme, and testing a large range of values to parameterize43

the half saturation concentration in optimization search routines. While we focus specif-44

ically on the grazing formulation in marine biogeochemical models, we believe these rec-45

ommendations are robust across a much broader range of ecosystem models when seek-46

ing to represent the mean state of a complex trophic system constrained by limited ob-47

servations.48

1 Introduction49

In the late 1950s, Buzz Holling began studying the predation of sawfly cocoons by50

small mammals (Holling, 1959a) to better understand how predation rates varied with51

prey density, a relationship coined a decade earlier as the functional response (Solomon,52

1949). Holling observed that individual predators consumed more prey at higher prey53

densities, but found that this relationship was not necessarily linear or consistent across54

species. Over the course of three seminal papers, Holling went on to develop a theoret-55

ical framework to describe how different assumptions about the rates at which preda-56

tors captured and consumed their prey could explain observed nonlinearities and vari-57

ability in the shape of functional response curve (Holling, 1959a, 1959b, 1965). Using58

this mechanistic approach, Holling derived three qualitatively distinct response types to59

describe differences in predator-prey interactions and their associated rates. In the en-60

suing decades, these equations have been further generalized (Real, 1977, 1979) and ce-61

mented into the bedrock of ecological modelling (Beardsell et al., 2021; Denny, 2014).62

Although the functional response was originally developed for terrestrial applica-63

tions (Holling, 1959a), the equations are also common in marine ecological modelling (Evans64

& Parslow, 1985; Fasham, 1995; Franks, Wroblewski, & Flierl, 1986). In the ocean, the65

functional response equations are now routinely used to link trophic dynamics in ma-66

rine biogeochemical (Law et al., 2017; Moore, Lindsay, Doney, Long, & Misumi, 2013),67

size spectrum (Heneghan et al., 2020), and population models (Alver, Broch, Melle, Bagøien,68

& Slagstad, 2016). They are used to simulate both the rate at which heterotrophic zoo-69
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plankton graze on autotrophic phytoplankton (Evans & Parslow, 1985; Fasham, Duck-70

low, & McKelvie, 1990; Franks et al., 1986) as well as the transfer of mass and energy71

further up the food chain in ecosystem (Butenschön et al., 2016) and fisheries models72

(Maury, 2010; Tittensor et al., 2018, 2021). However, although Hollling’s canonical equa-73

tions remain fairly ubiquitous across marine applications they have become somewhat74

abstracted from the first principles on which they were founded. Modellers must trans-75

late equations derived to described specific interactions between individual species on76

a two-dimensional, terrestrial plane into a three-dimensional, aqueous medium in which77

observations are sparse and the mean state of diverse communities must be represented78

by a limited number of equations.79

In turn, there remains a great deal of uncertainty surrounding the formulation of80

the functional response. For example, trade offs between the ecological veracity and nu-81

merical stability of different response types (Gismervik, 2005; Morozov, 2010; Morozov,82

Arashkevich, Reigstad, & Falk-Petersen, 2008) have led to disagreement over which is83

best suited for rapidly growing, easily excitable, microbial systems common in marine84

ecology (Fasham, 1995; Flynn & Mitra, 2016; Gentleman & Neuheimer, 2008). Even amongst85

mathematically identical curves, there is not a consensus on how to define their param-86

eters, no less prescribe them. While some modellers opt for a parameter scheme that mir-87

rors the Michaelis–Menten (Johnson & Goody, 2011) and Monod (Monod, 1949) equa-88

tions developed to describe enzyme kinetics and bacterial growth rates (e.g. Aumont and89

Bopp (2006); Dutkiewicz et al. (2015); Moore et al. (2013); Vichi, Pinardi, and Masina90

(2007)), others use a parameter scheme that mirrors the disc equation (Holling, 1959b,91

1965)) developed by Holling to describe specific terrestrial interactions (e.g. Fasham (1995);92

Laws, Falkowski, Smith, Ducklow, and McCarthy (2000); Oke et al. (2013); Schartau and93

Oschlies (2003b)). Disagreement over the chemostat-like, biogeochemical and mechanis-94

tic, ecological flavours of these equations can confuse inter-model comparisons and in-95

fluence the parameter space considered in optimization schemes, especially if there are96

not robust observations to bound them.97

Here, we focus on the formulation of grazing in marine biogeochemical models, which98

are a critical component of coupled climate models (Eyring et al., 2016; Flato et al., 2013;99

Taylor, Stouffer, & Meehl, 2012) and often used to drive fisheries models (Maury, 2010;100

Tittensor et al., 2018, 2021), but are increasingly under constrained and over parame-101

terized (Doney, 1999; Matear, 1995; Schartau et al., 2017; Ward, Friedrichs, Anderson,102

& Oschlies, 2010). Accurately representing grazing is critical to both climate and fish-103

eries models, as it mediates the biological transport of carbon fixed via net primary pro-104

duction (Behrenfeld, Doney, Lima, Boss, & Siegel, 2013; Laufkötter et al., 2015) and trans-105

ported to higher trophic levels via secondary production (Brander, 2007; Scherrer et al.,106

2020). Still, despite the growing recognition that biogeochemical models are highly sen-107

sitive to the grazing formulation (Adjou, Bendtsen, & Richardson, 2012; Anderson, Gen-108

tleman, & Sinha, 2010; Chenillat, Rivière, & Ohman, 2021; Fasham, 1995; Flynn & Mi-109

tra, 2016; Fussmann & Blasius, 2005; Gentleman & Neuheimer, 2008; Gross, Ebenhöh,110

& Feudel, 2004), we lack adequate observations to constrain it (Chen, Laws, Liu, & Huang,111

2014). Parameters inferred empirically vary across zooplankton species and age (Hansen,112

Bjørnsen, & Hansen, 1997; Hirst & Bunker, 2003), lack a robust allometric relationship113

(Hansen et al., 1997), and can not be validated against robust global distributions (Mo-114

riarty, Buitenhuis, Le Quéré, & Gosselin, 2013; Moriarty & O’Brien, 2012).115

Given the uncertainty in the governing dynamics, it is useful to clarify and con-116

solidate a theoretically, mathematically, empirically, and numerically sound understand-117

ing of how the functional response is employed and how it could best be implemented118

in marine ecological models to represent grazing. We begin with a derivation of each func-119

tional response type in an explicitly aquatic context (Section 2), before reviewing their120

mathematical influence on population stability (Section 3). Next, we survey the liter-121

ature to assess the range of parameter values that have been estimated empirically and122
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used prescriptively in models (Section 3). Finally, we conduct a suite of simulations to123

isolate the sensitivity of phytoplankton population size and stability to the parameter-124

ization of the functional response using four different combinations of response type (i.e.125

II vs. III) and parameter scheme (i.e. disk vs. Michaelis-Menten) (Section 4). We con-126

clude with a set recommendations for the formulation of grazing based on the evidence127

presented (Section 5). These recommendations are tailored to the representation of graz-128

ing in marine biogeochemical models, but are broadly applicable to much wider usage129

of the functional response across most marine and many terrestrial applications.130

2 Derivation of the grazing formulation131

In marine biogeochemical modelling, the rate at which phytoplankton are grazed132

by zooplankton is generally expressed as the grazing rate (G) in units of phytoplankton133

concentration lost per unit time (e.g. mmolC
m3d ). This grazing rate is equal to the prod-134

uct of the ambient zooplankton concentration, [Z], and the zooplankton specific graz-135

ing rate (g), often referred to as the ingestion rate (Franks et al., 1986; Gentleman & Neuheimer,136

2008), which describes the concentration of phytoplankton grazed per unit zooplankton137

per unit time, reducing to units of one over time (e.g. 1/d), such that138

G = g[Z] (1)

To account for the intuitive fact that grazing is easier when phytoplankton are more139

abundant, the zooplankton specific grazing rate, g, must vary with the ambient phyto-140

plankton concentration, [P ]. The mathematical formula that describes these relation-141

ships is know as the functional response.142

Buzz Holling originally derived the functional response by assuming there was a143

fixed time interval, T , over which predator and prey were exposed (e.g. same location,144

same time, predator is awake), and that predators were assumed to exclusively be cap-145

turing (e.g. searching, encountering, hunting, attacking) (Tcap) or consuming (e.g. killing,146

handling, processing, eating, digesting) prey (Tcon) during this interval (Holling, 1959a),147

such that148

T = Tcap + Tcon. (2)

The canonical type I, II, and III functional responses (Fig. 1a) were consequently149

derived (Fig. 1b) from different assumptions (Fig. 1c) about the efficiency of the cap-150

ture and consumption processes, the associated total time needed to capture and con-151

sume a given amount of prey, and how those rates and times vary with prey density (see152

Table 1 for a catalogue of terms). However, prey density was originally expressed in dis-153

crete units of prey over a given circular area (or disk). Here, we instead provide a deriva-154

tion of the type I (Section 2.2), II (Section 2.3), and III (Section 2.4) responses ex-155

plicitly for aquatic systems, with example units of mmolC biomass per meter cubed (mmol/m3)156

for phytoplankton and zooplankton concentrations and days (d) for time. Further, we157

show how each functional response can be described by two sets of parameters, an eco-158

logically flavored set, in which the consumption and capture processes are explicitly pre-159

scribed (disk parameter scheme), and a biogeochemically flavored set, in which the sat-160

uration rate and half saturation concentration of the curve are explicitly prescribed (Michaelis-161

Menten scheme).162

For each derivation, consider some concentration of phytoplankton, [PG] (mmol/m3),163

that is grazed (i.e. captured and consumed) by the ambient zooplankton population, [Z] (mmol/m3),164

over the fixed grazing (or exposure) interval, T (d), at a grazing rate of G = [PG]
T and165

a zooplankton specific (i.e. considering the amount of predator present) grazing rate of166
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g = [PG]
[Z]T . To derive each functional response type, g([P ]), we must solve for g (1/d)167

in terms of the ambient phytoplankton population, [P ] (mmol/m3), considering their168

respective assumptions regarding capture and consumption rates.169

2.1 Type 0 response170

A type 0 functional response is described by a straight horizontal line in which a171

zooplankton specific grazing rate is invariant to the ambient phytoplankton population172

(g([P ]) = constant, Fig. 1; magenta). A type 0 response is not ecologically realistic173

for any species, nor does it appear in any models, but for pedagogical purposes assumes174

that the capture process is unaffected by prey scarcity and that the consumption pro-175

cess is negligible.176

2.2 Type I response177

A type I functional response is described by a straight line (Holling, 1959b), in which178

the zooplankton specific grazing rate (g([P ])) increases linearly with the ambient phy-179

toplankton concentration (See Fig. 1; black). Ecologically, a type I response assumes180

that zooplankton capture prey faster when it is more abundant and that the time needed181

to consume it is negligible compared with the time needed to capture it (Tcap >> Tcon).182

Accordingly, zooplankton can spend all of their time capturing prey, such that183

T = Tcap. (3)

The time, Tcap (d), that it takes to capture some concentration of phytoplankton,184

[PCap] (mmol/m3), can be related to the capture rate, C (mmol/m
3

d ), or the concen-185

tration of phytoplankton captured per unit time, by the equation186

Tcap =
[PCap]

C
, (4)

The capture rate can then be decomposed into the product of the ambient zooplank-187

ton concentration, [Z] (mmol/m3), and the zooplankton specific capture rate, E (1/d),188

which describes the concentration of phytoplankton captured per unit zooplankton per189

unit time, such that190

C = E[Z]. (5)

Depending on the zooplankton in question, the zooplankton specific capture rate,191

E (1/d), can represent a passive encounter rate (e.g. filter feeding) or an active search192

and attack rate (e.g. hunting), but does not include the time required to consume phy-193

toplankton once captured. Either way, E (1/d) is assumed to increase linearly with the194

ambient phytoplankton concentration, [P ] (mmol/m3), to account for the fact that zoo-195

plankton are stochastically more likely to encounter and capture phytoplankton at higher196

ambient phytoplankton concentrations. The rate (per unit phytoplankton) at which the197

zooplankton specific capture rate increases with the ambient phytoplankton concentra-198

tion can be considered the prey capture efficiency, ε ( 1
(mmol/m3)d ), such that199

E = ε[P ]. (6)

The prey capture efficiency can be thought of as the fraction of the ambient phytoplank-200

ton concentration captured per unit zooplankton per unit time, in which units of (mmol/m3)
(mmol/m3)2d201
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Figure 1. The functional response of the grazing formulation. a) The zooplankton specific grazing rate (or ingestion rate) as

a function of prey density, known as the the functional response curve is plotted for type 0, I, II, Ivlev and III response types,

along with notes on the associated b) derivation and c) underlying assumptions. Each response type is parameterized such that

the maximum specific grazing rate, gmax, and the half saturation concentration, K1/2 are equal to one. Note, this requires different

parameters for the disk parameter scheme.
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2

Variable Notation
Conceptual

Units
Reduced

Units
Relevant

Relationships
Description

Phytoplankton
concentrations

[P ], [PG ],
[PC ap ], [PCon]

[P ] mmolC
m3

[PG ] =GT = g [Z ]T
[PG ] = [PC ap ] = [PCon]

Concentration of ambient, grazed (i.e.
captured and consumed), captured, and

consumed phytoplankton over
the exposure period, respectively

Zooplankton
concentration

[Z ] [Z ] mmolC
m3 - Concentration of Zooplankton biomass

Functional response g([P]) - -

g ([P ]) = ≤[P ] (I)

= gmax

2K1/2
[P ] (I-Rect)

g ([P ]) = gmax≤[P ]

gmax +≤[P ]
(II)

= gmax [P ]

K1/2 + [P ]

g ([P ]) = gmax (1°e°∏[P ]) (II-Iv)

g ([P ]) = gmax≤c [P ]2

gmax +≤c [P ]2 (III)

= gmax [P ]2

K 2
1/2 + [P ]2

Functional description of how the
zooplankton specific grazing rate varies
with the phytoplankton concentration

Half saturation
concentration

K1/2 [P ] mmolC
m3

K1/2 =
gmax

2≤
(II-R)

K1/2 =
gmax

≤
(II)

K1/2 =
°ln(.5)

∏
(II-Iv)

K1/2 =
r

gmax

≤c
(III)

Phytoplankton concentration where g = gmax
2

Saturation grazing
rate

gmax
[P ]

[Z ]t i me
1
d gmax = 1

h
Rate of phytoplankton consumption per

unit zooplankton when food is replete

Grazing rate G [P ]
t i me

mmolC
m3d

G = [PG ]

T
G = g [Z ]

Rate at which phytoplankton are
grazed by the zooplankton population

Phytoplankton specific
grazing loss rate

l [P ]
[P ]t i me

1
d l = G

[P ]
Phytoplankton specific rate at which

phytoplankton are lost to grazing

Zooplankton specific
grazing rate

(i.e. ingestion rate)
g [P ]

[Z ]t i me
1
d g = G

[Z ]

Zooplankton specific rate at which
phytoplankton are grazed. The way in which
g varies with [P ] is the functional response

Clearance rate C l [P ]
[P ][Z ]t i me

m3

mmolC d

C l = G

[P ][Z ]

C l = g

[P ]

Phytoplankton specific rate at which
phytoplankton are grazed per unit zooplankton

Exposure period T ti me d T = Tcap +Tcon
Fixed period over which zooplankton

and phytoplankton are exposed

Capture period Tcap t i me d TC ap = [PG ]
[Z ]≤[P ] Time spent capturing phytoplankton

Consumption period Tcon ti me d
TCon = 0 (I)

TCon = h[PG ]

[Z ]
(II,III)

Time spent consuming phytoplankton

Capture rate C [P ]
t i me

mmolC
m3d

C = [Pcap ]

TC ap

C = E [Z ] (II)

C = ≤c [Z ]2 (III)

Rate at which phytoplankton are
captured by the zooplankton population

Zooplankton specific
capture rate

E [P ]
[Z ]t i me

1
d

E = C

[Z ]
E = ≤[P ]

Specific rate at which phytoplankton
are captured per unit zooplankton

Prey capture
efficiency

≤ [P ]
[P ][Z ]t i me

m3

mmolC d ≤= ≤c [P ] (III)
Rate at which the zooplankton specific

capture rate increases with the
ambient phytoplankton concentration

Prey capture
efficiency coefficient

≤c
[P ]

[P ]2[Z ]t i me
m6

mmolC 2 d
-

Rate at which the prey capture
efficiency increases with the

ambient phytoplankton concentration

Consumption time h [Z ]t i me
[P ] d -

Time it takes for one unit of zooplankton
to eat one unit of phytoplankton

Consumption rate 1
h

[P ]
[Z ]t i me

1
d -

Rate of phytoplankton consumption
per unit zooplankton

Ivlev parameter ∏ 1
[P ]

m3

mmolC d -
Used to parameterize Ivlev equation

which is qualitatively similar to a type II
4

Table 1. List of terms relevant to the derivation, parameterization and context of the func-

tional response.
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reduce to 1
(mmol/m3)d , and reflects the efficiency with zooplankton can capture the prey202

they are exposed to. Note that the prey capture efficiency is variously referred to as the203

prey capture rate (Schartau & Oschlies, 2003b) or attack rate (Gentleman & Neuheimer,204

2008) and is qualitatively similar to the search area defined by Holling (1959b), but not205

identical for concentration-based rates.206

Substituting eqs. 5 & 6 into eq. 4 yields,207

Tcap =
[PCap]

[Z]ε[P ]
. (7)

Next, we can substitute T for Tcap because of our assumption that no time is needed208

for zooplankton to consume phytoplankton (i.e. Tcon = 0), and substitute [PG] for [PCap]209

because the entire concentration of phytoplankton lost to grazing, [PG], must first be cap-210

tured, [PCap]. Finally, we solve for G as a function of [P ],211

G([P ]) =
[PG]

T
= ε[P ][Z], (8)

and divide by [Z] to yield the zooplankton specific grazing rate, g (1/d), as a function212

of the ambient phytoplankton concentration [P ], such that,213

g([P ]) =
[PG]

T [Z]
= ε[P ]. (9)

With eq. 9 we have arrived at the type I functional response, wherein g([P ]) in-214

creases linearly with the ambient phytoplankton concentration, [P ], at a rate described215

by the prey capture efficiency, ε. This type of response is akin to a food-limited system216

in which it takes much longer to find and capture prey than it takes to consume it, and217

is analogous to the classic Lotka-Voltera equations (Lotka, 1910; Volterra, 1927) used218

to describe simple predator-prey dynamics. Note that here the grazing rate is identical219

to the capture rate (G = C) and the zooplankton specific grazing rate is identical to220

the zooplankton specific capture rate (g = E = ε[P ]). This is because the entire graz-221

ing process is assumed to be described by the capture process; however, this is not the222

case for higher order functional responses, in which zooplankton are assumed to spend223

a non-trivial amount of time consuming phytoplankton in addition to capturing them.224

A standard type I response may be characteristic of passive filter feeders (Jeschke,225

Kopp, & Tollrian, 2004), but can overestimate the zooplankton specific grazing rate of226

mesozooplankton such as copepods (Gentleman & Neuheimer, 2008) by over an order227

of magnitude compared to observations (Frost, 1972; Hansen et al., 1997) because it does228

not account for predator satiation at high prey densities. To account for predator sati-229

ation, the type I response can be extended to a rectilinear response (Chen et al., 2014;230

Frost, 1972; Hansen, Bjørnsen, & Hansen, 2014; Mayzaud, Tirelli, Bernard, & Roche-231

Mayzaud, 1998), in which g([P ]) reaches some maximum rate, gmax (d−1) such that232

g([P ]) = ε[P ] if [P ] <
gmax
ε

g([P ]) = gmax if [P ] >
gmax
ε

,
(10)

where gmax

ε (mmolCm3 ) describes the prey concentration required to reach the saturation233

zooplankton specific grazing rate, gmax, for a given prey capture efficiency, ε.234
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Solving for [P ] when g([P ]) = gmax

2 returns the half saturation concentration, K1/2 =235

gmax

2ε . Note that parameterizing eq. 10 with K1/2 allows one to explicitly define the lo-236

cation of satiation using a single variable (as opposed to gmax

ε )); however, changing K1/2237

for a given gmax implicitly alters assumptions about the prey capture efficiency.238

2.3 Type II response239

A type II functional response assumes a more gradual transition to satiation by em-240

ploying a rectangular hyperbola with downward concavity (Holling, 1959b), in which the241

zooplankton specific grazing rate (g([P ])) saturates towards a maximum asymptote at242

high phytoplankton concentrations (See Fig. 1; blue). Ecologically, a type II response243

assumes that zooplankton capture prey faster when it is more abundant and that a fixed,244

non-trivial, amount of time is needed to consume it (Tcon > 0), allowing for gradual245

predator satiation as the prey density increases and more time is need to consume all246

of it (Jeschke et al., 2004). Note, all assumptions about the capture process and zooplank-247

ton specific capture rate (E = ε[P ]) from the type I response are held.248

The time it takes to consume the captured phytoplankton is parameterized by the249

consumption time, h (d), also commonly referred to as the handling time (Holling, 1959b,250

1965), which is assumed to be equal to the fixed amount of time it takes for one unit of251

zooplankton to eat one unit of phytoplankton. The total time, Tcon (d), needed for con-252

sumption of the entire captured phytoplankton concentration, [PCap] (mmol/m3), by253

the ambient zooplankton concentration, [Z] (mmol/m3), can then be expressed as the254

consumption time, h, multiplied by the ratio of the concentration of phytoplankton cap-255

tured relative to the ambient concentration of zooplankton capturing them (
[PCap]
[Z] ), such256

that257

Tcon =
h[PCap]

[Z]
. (11)

Remembering that all phytoplankton grazed must first be captured (i.e. [PG] = [PCap])258

and substituting Tcap and Tcon into eq. 2 yields259

T = Tcap + Tcon =
[PG]

[Z]ε[P ]
+
h[PG]

[Z]
. (12)

Solving for the concentration of phytoplankton lost to grazing, [PG], yields the aquatic260

analogue to familiar disk equation, originally derived by Holling (1959b) for terrestrial261

predation on a planar disk,262

[PG] =
ε[P ][Z]T

1 + εh[P ]
, (13)

where dividing by T returns the grazing rate,263

G =
[PG]

T
=

ε[P ][Z]

1 + εh[P ]
, (14)

and dividing again by Z returns the zooplankton specific grazing rate, which is equiv-264

alent to the type II functional response,265

g([P ]) =
[PG]

[Z]T
=

ε[P ]

1 + εh[P ]
. (15)
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Note that by factoring out ε[P ] from the denominator and rearranging eq. 15 as266

g([P ]) =
1

1
ε[P ] + h

, (16)

it becomes clear that the type II disk equation reduces to a type I linear Lotka-Voltera267

functional response when food is limiting. If the consumption rate ( 1
h ) is much faster than268

the zooplankton specific capture rate (E = ε[P ]), such that 1
h >> ε[P ] or equivalently269

h << 1
ε[P ] , then eqs. 15 & 16 reduce to g([P ]) = ε[P ] (i.e. eq. 9). This occurs when270

the consumption time, h, is very fast (i.e. type I, Section 2.1.1), or the phytoplank-271

ton concentration, [P ], is very low (i.e. a food-limited system).272

Alternatively, we see that eqs. 15 & 16 saturate towards g([P ]) = 1/h when the273

consumption rate ( 1
h ) is much slower than the zooplankton specific capture rate (E =274

ε[P ]), such that 1
h << ε[P ] or equivalently h >> 1

ε[P ] . This is typical of a food replete275

system (high [P ]), where more food is captured as soon as the previous prey item has276

been consumed. The saturation grazing rate, gmax (1/d), can now be defined by the con-277

sumption rate, or one over the consumption time, such that gmax = 1
h . Accordingly,278

the disk equation (eq. 13) can be simplified by substituting the parameter gmax = 1
h279

into eq. 15 and multiplying by gmax

gmax
to arrive at280

g([P ]) =
gmaxε[P ]

gmax + ε[P ]
(17)

Henceforth, this will be referred to as the disk parameter scheme.281

Finally, eq. 17 can be rewritten as the familiar Michaelis–Menten equation orig-282

inallt derived for enzyme kinetics (Johnson & Goody, 2011) (or Monod equation derived283

for bacterial growth (Monod, 1949)) by defining the half-saturation concentration, K1/2 (mmol/m3),284

in terms of parameters gmax and ε. Setting g([P ]) = gmax

2 and solving for [P ], we find,285

[P ] = K1/2 =
gmax
ε

. (18)

Substituting ε = gmax

K1/2
into eq. 17 and rearranging yields the familiar form,286

g([P ]) =
gmax[P ]

K1/2 + [P ]
. (19)

Henceforth, this will be referred to as the Michaelis–Menten parameter scheme.287

Eq. 19 is mathematically identical to eq. 17. That is, for all parameter sets {gmax, ε},288

there exists a parameter set {gmax,K1/2} that can identically describe g([P ]). As with289

the type I response (eq. 10), the difference is that {gmax, ε} are ecologically indepen-290

dent, while {gmax,K1/2} more directly define the shape of the curve. For example, in-291

creasing gmax in eq. 17 does not affect the prey capture efficiency, ε, but it does increase292

the half-saturation concentration. This makes sense ecologically, as it should require a293

higher phytoplankton concentration for a faster consumption time (i.e. higher gmax) to294

become limiting, given a constant prey capture efficiency. On the other hand, increas-295

ing gmax in eq. 19 does not change the location of K1/2, but implicitly assumes that296

the prey capture efficiency, ε, increases in order to maintain a constant K1/2.297

Note, another common formulation that is qualitatively similar to the type II re-298

sponse is the Ivlev equation (Ivlev, 1961), where299
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g([P ]) = gmax(1− e−λ[P ]) (20)

(Anderson et al., 2010; Edwards, Batchelder, & Powell, 2000; Franks & Chen, 2001; Shigemitsu300

et al., 2012). However, the Ivlev formulation is strictly empirical and cannot be derived301

mechanistically, but is qualitatively similar to the type II response (See Fig. 1a; cyan).302

All else being equal, the Ivlev equation will yield faster grazing rates below the half sat-303

uration concentration and slower grazing rates above the half saturation concentration.304

The half saturation point can be related to the Ivlev parameter, λ ( 1
mmol/m3 ) as305

K1/2 =
−ln(.5)

λ
. (21)

2.4 Type III response306

A type III functional response is described by a sigmoidal curve (Jeschke et al., 2004),307

in which the zooplankton specific grazing rate (g([P ])) increases exponentially at low phy-308

toplankton concentrations (Fig. 1; red). Ecologically, a type III response further assumes309

that the prey capture efficiency, ε ( 1
(mmol/m3)d ), increases with prey density. That is,310

the zooplankton specific capture rate, E = ε[P ], does not just increase due to a stochas-311

tic increase in the likelihood of encountering phytoplankton as the ambient phytoplank-312

ton concentration increases, but zooplankton additionally become more efficient graz-313

ers as well, capturing an increasing fraction of the ambient phytoplankton concentration.314

Mathematically, this change in behavior can be represented by assuming the prey315

capture efficiency, ε ( 1
(mmol/m3)d ), is a function of the ambient phytoplankton concen-316

tration, [P ]. In a type III response this function is assumed to be linearly proportional317

to some prey capture efficiency coefficient, εc ( 1
(mmol/m3)2d ), such that,318

ε = εc[P ], (22)

and319

E = εc[P ]2. (23)

By assuming that the prey capture efficiency, ε, increases linearly with the phyto-320

plankton concentration at a rate described by the prey capture efficiency coefficient, εc,321

we are in turn assuming that the zooplankton specific grazing rate, E, increases quadrat-322

ically with the phytoplankton population (i.e. E = εc[P ]2). Note that higher order func-323

tional responses can be achieved by modifying the relationship between the prey cap-324

ture efficiency and the phytoplankton concentration (e.g. ε = εc[P ]2).325

Replacing eq. 6 with eq. 23, and following the same derivation as Section 2.3326

yields the disk parameterization of the type III functional response,327

g([P ]) =
gmaxεc[P ]2

gmax + εc[P ]2
. (24)

As for the type II response, g([P]) reduces to the zooplankton specific capture rate (E =328

εc[P ]2) at low phytoplankton densities and saturates towards the consumption rate (1/h)329

at high phytoplankton densities. Now, however, because the zooplankton specific cap-330

ture rate, E, is described by a quadratic function of [P ], the functional response, g(P ),331

is sigmoidal in shape (Fig. 1a).332
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The prey capture efficiency, ε, in eq. 17 has been replaced with the prey capture333

efficiency coefficient, εc, in eq. 24, which describes how ε varies with [P ]. Units of εc are334

non-intuitive, but can be considered as the fraction of the phytoplankton population cap-335

tured per unit zooplankton, per unit phytoplankton, per unit time, which reduces to 1
(mmol/m3)2d .336

Finally, following identical logic to the type II response, eq. 24 can be transformed337

to the Michaelis–Menten function by setting g([P ]) equal to gmax

2 , solving for [P ] to find338

K1/2, and substituting the ensuing value of K1/2 into eq. 24. The result is the Michaelis–Menten339

parameterization of the type III functional response,340

g([P ]) =
gmax[P ]2

K2
1/2 + [P ]2

, (25)

where,341

K1/2 =

√
gmax
εc

. (26)

Note that the Michaelis-Menten parameter scheme employs the same parameters in each342

response type (K1,2, gmax), while the disk scheme requires a slightly different parame-343

ter set in a type II (ε, gmax) and III (εc, gmax) response.344

3 Stability of the grazing formulation345

When these theoretical relationships are embedded into numerical models and in-346

tegrated forward in time, the shape of the functional response curve influences the nu-347

merical stability of the solution (Fig. 2), and in turn the propensity for phytoplankton348

extinction (Adjou et al., 2012; Dunn & Hovel, 2020; Steele, 1974) and excitation (i.e. blooms)349

(Hernández-Garćıa & López, 2004; Malchow, Hilker, Sarkar, & Brauer, 2005; Truscott350

& Brindley, 1994; Truscott, Brindley, Brindley, & Gray, 1994). Mathematically, the first351

order stability of the grazing formulation ( dCld[P ] ) is equal to the first derivative of the clear-352

ance rate (Cl), which is equal to the the functional response (g([P ])) normalized by the353

ambient phytoplankton concentration (i.e. Cl = g([P ])/[P ]) (Franks et al., 1986; Gen-354

tleman & Neuheimer, 2008; Oaten & Murdoch, 1975). This is equivalent to the phyto-355

plankton specific loss rate to grazing per unit zooplankton (see Table 1). Ecologically,356

the clearance rate can be thought of as the volume of water completely cleared of phy-357

toplankton per unit time, per unit zooplankton, implying that at higher clearance rates358

individual zooplankton are either spending less time consuming their prey or more ef-359

ficiently capturing it.360

In a type I functional response (Fig. 2a-c, black trace), clearance rates (Fig. 2b)361

are constant because it is assumed that the prey capture efficiency (ε) is constant and362

the consumption time is negligible (thus constant). In a type II response (Fig. 2b, blue363

trace), clearance rates decrease with increasing prey density because the consumption364

rate is no longer assumed negligible, meaning the more zooplankton graze, the more time365

they need to consume their food, leaving less time to capture it. In a type III response366

(Fig. 2b, red trace), clearance rates first increase, then decrease with prey density based367

on the balance between increasing consumption time and increasing prey capture effi-368

ciency.369

First order stability is negative (Fig. 2c) when clearance rates decease with in-370

creasing prey density ( dCld[P ] < 0), meaning that growing (decaying) phytoplankton pop-371

ulations are subject to decreasing (increasing) per capita grazing pressure, creating a desta-372

bilizing positive feedback that amplifies changes in phytoplankton growth (decay). There373

is negative first order stability at all prey densities in type II formulation, but only above374
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Figure 2. The stability of the grazing formulation. a. The zooplankton specific grazing rate

(g([P ])), b. clearance rate (Cl([P ]) = g([P ])
[P ]

), and c. first order stability ( dCl([P ]
d[P ]

) are plotted

against prey density for four (a-c) functional response types and (d-f) fourteen formulation used

in models. Colors corresponds to references in Table 2.

K1/2 in type III formulations (Gentleman & Neuheimer, 2008). First order stability is375

positive (Fig. 2c, red trace) when clearance rates decease with increasing prey density376

( dCld[P ] < 0), meaning that growing (decaying) phytoplankton populations are subject377

to increasing (decreasing) per capita grazing pressure, creating a stabilizing negative feed-378

back that buffers changes in phytoplankton growth (decay). Positive first order stabil-379

ity only occurs below K1/2 in type III formulations (Gentleman & Neuheimer, 2008; Oaten380

& Murdoch, 1975). A type I response, in which clearance rates are constant ( dCld[P ] = 0),381

has no first order influence on stability (Fig. 2c, black trace).382

In a prognostic simulation, the first order stability of the ecosystem depends on the383

grazing formulation, as well as where the time-evolving phytoplankton population stands384

relative to K1/2. Accordingly, the parameterization of the functional response can mod-385

ify first order stability directly, by changing the shape of the curve, and indirectly, by386

driving the size of the phytoplankton population. Increasing gmax or decreasing K1/2387

act to both increase the non-linearity of the response curve, thereby increasing the desta-388

bilizing (stabilizing) influence of a type II (III) response at low [P ], while simultaneously389

increasing grazing pressure and driving phytoplankton concentrations down towards low390

[P ]. At high [P ], above the half saturation concentration, decreasing K1/2 reduces the391

first order influence on stability, but faster grazing rates associated with lower K1/2 val-392

ues make it unlikely high [P ] will be realized. Note, in a disc scheme, K1/2 is not param-393

eterizaed directly and its location varies with both parameters.394
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4 Parameters of the grazing formulation395

4.1 Empirical estimates396

Parameters of the functional response have been empirically described for a myr-397

iad of zooplankton species based on laboratory incubation and dilution experiments. Hansen398

et al. (1997) summarizes the findings from over > 60 zooplankton species, and Hirst and399

Bunker (2003) constitute a global dataset of copepods, which comprise 80% of global meso-400

zooplankton biomass (Kiørboe, 1997). All reviewed empirical studies were fit to a type401

II response and parameterized with a Michaelis-Menten scheme. Combining both data402

sets (Fig. 3; filled markers), it is clear that empirical estimates of K1/2 and gmax vary403

dramatically.404

Empirical estimates of the half saturation concentration (K1/2) vary by nearly four405

orders of magnitudes, ranging from .08− 500 mmolC/m3 across zooplankton species.406

Estimates even vary by two to three orders of magnitude within a given species and do407

not exhibit a consistent allometric relationship. For example, Hansen et al. (1997) and408

Hirst and Bunker (2003) together reported a range of .41 − 75 mmolC/m3 in micro-409

zooplankton (e.g. ciliates and dinoflagellates) and slightly larger (and lower) range of .08−410

74 mmolC/m3 in mesozooplankton (e.g. copepods). These values extend well beyond411

the range of 1 − 7 mmolC/m3 for microzooplankton (Gismervik, 2005; Montagnes &412

Lessard, 1999) and 2.5− 25 mmolC/m3 for mesozooplankton (Anderson et al., 2010)413

that have been reported elsewhere, and are not consistent with work suggesting that K1/2414

should increase with predator size (Ray et al., 2011). Together, it is clear that K1/2, both415

at the species and population level, is very poorly constrained by even laboratory-scale416

observations of specific interaction, which are unlikely to translate directly to the mean417

state of the open ocean or models designed to replicate it (Dutkiewicz et al., 2015).418

Empirical estimates of the saturation grazing rate (gmax), which are mathemat-419

ically easier to fit to a curve, still range by three orders of magnitude, but are slightly420

better constrained than K1/2. Across all species, estimates of gmax range from 0.02 to421

45.6 (d−1) ; however, the middle 50% range from .46 to 3.8 (d−1), consistent with com-422

monly reported values of 1 (d−1)) for mesozooplankton (Hansen et al., 1997; Lancelot423

et al., 2005) and 2− 4 (d−1)) for microzooplankton (Edwards et al., 2000; Gismervik,424

2005; Hansen et al., 1997; Leising, Gentleman, & Frost, 2003; Strom & Morello, 1998).425

Further, at the species level, estimates vary, on average, by half an order of magnitude426

less than the corresponding range of K1/2 values (Hansen et al., 1997; Hirst & Bunker,427

2003), and more importantly, do exhibit an allometric relationship (Hansen et al., 1997)428

consistent with the conventional wisdom that gmax decreases with with predator size (Moloney429

& Field, 1989; Peters & Downing, 1984; Saiz & Calbet, 2007; Wirtz, 2013).430

While the surveyed empirical studies report the parameters gmax and K1/2, K1/2431

alone is not an ecologically meaningful value, but rather a mathematical description of432

the curve, relating the consumption and capture rates of zooplankton (see Section 2).433

It is the prey capture efficiency (ε) that explicitly constrains the physiological bound-434

aries of how fast zooplankton can capture their prey. That is, for a fixed saturation graz-435

ing rate, gmax, K1/2 can only decrease if ε increases, because zooplankton must be able436

to capture prey more efficiently to reach food replete conditions (i.e. saturation) at lower437

prey densities. Assuming a type II response, as explicitly stated by Hansen et al. (1997),438

the reported range of ε values also spans 4 orders of magnitude (Fig. 3; blue contours),439

from as slow as ∼ .003 m3

mmolC d in some large cladocerans (∼ 108 µm3) to as fast as ∼440

10 m3

mmolC d in nanoflagellates (∼ 102 µm3) as well as much larger copepods (∼ 108µm3).441

4.2 Values used in models442

Over 50 independent grazing formulations from 36 modelling studies were surveyed443

(Table 2, Fig. 2d-f, 3; empty markers) to gauge the range of commonly prescribed pa-444
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Figure 3. The parameters of the grazing formulation. Empirical estimates of parameters

for >60 zooplankton species (Hansen et al., 1997; Hirst & Bunker, 2003) are plotted with filled

markers. Parameters used in 36 modelling studies (Table 2) are plotted with empty markers.

Contours for the corresponding prey capture efficiency (assuming type-II response) are overlaid.

Dashed lines bound the paramter space tested in Section 5.

rameter values and see if they systematically vary with other aspects of the grazing for-445

mulation. A large sampling of prominent modelling studies, from canonical 0-dimensional446

theoretical work (Evans & Parslow, 1985; Franks et al., 1986), through slightly more so-447

phisticated NPZD models (Fasham, 1995; Fasham et al., 1990), to state of the art cli-448

mate models (Aumont & Bopp, 2006; Moore et al., 2013; Oke et al., 2013), were included.449

All units were converted to carbon using a standard Redfield ratio of 106:16:1, and K1/2450

was derived algebraically (see Table 1) when not explicitly prescribed. This survey is451

not comprehensive, but is sufficient to demonstrate that there is little consensus in the452

parameterization of prominent biogeochemical models.453

While the range of gmax across the surveyed models is fairly well constrained be-454

tween 0.5-4 (1/d), the range of K1/2 spans over two order of magnitude, from as low as455

0.66 mmol C/m3 (Leising et al., 2003) to above 70 mmol C/m3 (Newberger, Allen, &456

Spitz, 2003; Spitz, Newberger, & Allen, 2003). Values of K1/2 vary with the size of zoo-457

plankton the modellers intended to represent despite no such empirical allometric rela-458

tionship (Hansen et al., 1997), as well as the functional response curve and parameter-459

ization scheme they used to represent it.460

Averaging across modelling studies in Table 2 (and Fig. 3) that describe the size461

of zooplankton as microzooplankton, mesozooplankton (or copepods), or macrozooplank-462

ton, respectively, the value of gmax decreases with predator size from ∼ 3.1 to 1.0 to 0.4463

1/d, while the value of K1/2 increases with size from ∼ 11 to 13 to 46 mmolC/m3. This464

is consistent with empirical observations of gmax in > 60 species of zooplankton, but465
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no such allometric relationship was shown for K1/2 (Hansen et al., 1997). Zooplankton466

tracers without a specified size have, on average, a gmax of 1.4 and a K1/2 of 7.9, lower467

than any specified size class. Unsurprisingly, most simulations that prescribe multiple468

size classes of zooplankton decrease gmax with predator, but lack consensus on how they469

treat K1/2. Many simulation do not vary K1/2 at all (Moore et al., 2013; Newberger et470

al., 2003; Spitz et al., 2003; Stock, Dunne, & John, 2014), while others vary both param-471

eters (Anderson et al., 2010; Denman & Peña, 2002; Le Quéré et al., 2016) or even just472

K1/2 alone (Edwards et al., 2000).473

Averaging across models that employ different functional response choices, the value474

of K1/2 is, on average, three times as high in non-sigmoidal (i.e. type II or Ivlev) response475

types (17.5 mmolC/m3) as those with a type III response (6.2 mmolC/m3). This may476

be necessary to compensate for faster grazing rates at low prey concentrations without477

the downward concavity of the type III response. For example, the zooplankton specific478

grazing rate at phytoplankton concentrations of ∼ 1 mmolC/m3 is roughly the same479

in the type II formulation of Stock, Powell, and Levin (2008) and the type III formula-480

tion of Hauck et al. (2013), despite the former employing K1/2 value 2.5 times as large481

(Table 2, Fig 2d). The difference is exacerbated when considering only models with482

an Ivlev response which, on average, employ a K1/2 of 42 mmolC/m3, likely because the483

Ivlev parameter is further abstracted from an mechanistically meaningful value or in-484

tuitive characteristic of the curve (Gentleman & Neuheimer, 2008).485

Averaging across models that use different parameterization schemes, but a math-486

ematically identical type III response, those with a disk parameter scheme have K1/2 val-487

ues twice as large (∼ 12 mmolC/m3) as those that have a Michaelis–Menten param-488

eterization scheme (∼ 6 mmolC/m3). One explanation for this is in a disk scheme, K1/2489

is dependent on two parameters (εc, gmax) that modify K1/2 in opposite directions, such490

that low K1/2 values are only considered with (often unrealistically) low gmax values. For491

example, in their parameter optimization routine, Schartau and Oschlies (2003a) implic-492

itly use a range of K1/2 = 0.825−52 (mmolC/m3), but K1/2 = 0.825 was only tested493

with gmax = 0.025 yet selected the lowest possible value of K1/2 (6.625 (mmolC/m3))494

given the selected value of gmax (1.575 1/d).495
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a. b.The Grazing Formulation Other Parameters

Response
Type

Parameter
Scheme Parameters Sensitivity Range

g
([

P
])

II Disk
≤

gmax

100°0.1 (
m3

mmolC d
)

0.1°100 (d°1)

III Disk
≤c

gmax

100°0.1 (
m6

mmolC 2d
)

0.1°100 (d°1)

II Michaelis-Menton
K1/2

gmax

100°0.1 (
mmolC

m3 )

0.1°100 (d°1)

III Michaelis-Menton
K1/2

gmax

100°0.1 (
mmolC

m3 )

0.1°100 (d°1)

2

Parameter Value Sensitivity
Range

Æ Grazing efficiency 0.7 0.35, 1.0

µmax
Phytoplankton maximum

specific growth rate
2 d°1 1, 4 d°1

mP
Phytoplankton
mortality rate

0.1 d°1 .05, 0.2 d°1

mZ
Zooplankton
mortality rate

0.2 d°1 0.1, 0.4 d°1

KN
Nutrient uptake

half-saturation constant
1 mmol

m3 0.5, 2 mmol
m3

N0
Nutrient density
initial condition

1.6 mmol
m3 .8, 3.2, 9.6 mmol

m3

P0
Phytoplankton density

initial condition
0.2 mmol

m3 0.1, 0.4 mmol
m3

Z0
Zooplankton density

initial condition
0.2 mmol

m3 0.1, 0.4 mmol
m3

3

disk

disk

Michaelis-
Menten

Michaelis-
Menten

Table 3. List of a. grazing formulations and b. other parameters used in NPZ (eq. 27) sensi-

tivity analysis Section 5.

5 Sensitivity of the grazing formulation496

To isolate the sensitivity of phytoplankton population dynamics to the functional497

response and its parameterization, we extend the sensitivity analysis conducted by Gen-498

tleman and Neuheimer (2008), who accessed the change in numerical stability when switch-499

ing between a type II and III response or doubling/halving K1/2 and gmax. In addition500

to the both response types, we test both parameter schemes (disk, Michaelis-Menten)501

and a much larger range of grazing parameters in an identical, idealized, 0-dimensional502

Nutrient-Phytoplankton-Zooplantkon (NPZ) box model. Nutrient transfer between N,503

P and Z pools is described by504

dN

dT
= (1− α)g([P ])Z − µmax

N

KN +N
P +mpP +mzZ,

dP

dT
= µmax

N

KN +N
P − g([P ])Z −mpP,

dZ

dT
= αg([P ])Z −mzZ,

(27)

where α is the grazing efficeincy, µmax is the phytoplankton maximum specific growth505

rate, KN is the nutrient uptake half saturation constant, mp is the phytoplankton mor-506

tality rate, mz is the phytoplankton mortality rate, and g([P ]) is the grazing formula-507

tion (i.e. eq. 17, 18, 24, or 25). Sampled grazing parameters are log-spaced, span 3508

orders of magnitude (Table. 3a) and are representative of those that have been esti-509

mated empirically and used in previous models (Fig. 3). Non-grazing parameters are510

identical to Gentleman and Neuheimer (2008) (Table. 3b). We integrated each solu-511

tion for 5 years and examine the final year to explain how the choice of response type,512

parameter scheme, and parameter values influences prescribed grazing rates (Section513

5.1) and in turn drives the size (Section 5.2) and stability (Section 5.3) of the phy-514

toplankton population. The sensitivity of our results to non-grazing parameters and ini-515

tial conditions is also examined (Table 3b; Section 5.4).516

5.1 Sensitivity of grazing rates517

Modellers can prescribe faster grazing rates by increasing ε, εc, and/or gmax in a518

disk parameter scheme, or decreasing K1/2 and/or increasing gmax in a Michaelis-Menten519

parameter scheme. However, the sensitivity of the shape of the curve (Fig. 4) and as-520

–18–
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sociated grazing rates (Fig. 5) to these parameters varies with the parameter scheme,521

response type, and the prey density (or location on the curve) in question.522

When using a disk scheme (Fig. 4, green), regardless of response type, grazing rates523

are determined almost entirely by prey capture rates when food is scarce (Low [P ]; Fig.524

4, middle row) and by consumption rates when food is replete (High [P ]; Fig. 4, bot-525

tom row). This means that gmax has almost no bearing on the shape of the curve at low526

[P ] (Fig. 4f, h) and ε (or εc) has little influence on the shape of the curve at high [P ];527

(Fig. 4i, k). Moving from a type II (Fig. 4, left side) to III (Fig. 4, right side) response528

switches the description of prey capture rates from a linear to quadratic function of [P ]529

(see Section 2), which decreases the sensitivity of grazing rates to εc (relative to ε), es-530

pecially at low [P ] (Fig. e, g).531

When using a Michaelis-Menten parameter scheme (Fig. 4, magenta), grazing rates532

are substantially more sensitive to the parameterization of the response curve, partic-533

ularly in a type III response. In a type II response (Fig. 4a, b), grazing rates are pro-534

portionally, but inversely, affected by changes in K1/2 compared to ε in a disk scheme535

(Fig. 4a, e, i); however, in a type III response, grazing rates are substantially more sen-536

sitive to K1/2 than εc, (Fig. 4c, g, k), particularly at low prey densities (Fig. 4g). More-537

over, in both a type II and III response, the Michaelis-Menten scheme is dramatically538

more sensitive to gmax at low prey densities (Fig. 4f, h). This is because faster (slower)539

prey capture rates (and thus a larger prey capture efficiency, ε) are implicitly required540

for the curve to saturate at a faster (slower) grazing rate with the same half saturation541

concentration.542

Computing the mean grazing rate across low (0−0.1 mmolC
m3 ) and high (2−4 mmolC

m3 )543

phytoplankton concentrations ([P ]) for all grazing formulations considered in our sen-544

sitivity analysis (Table 3) confirms these trends (Fig. 5). In a type II disk formulation,545

grazing rates at low [P ] are almost entirely unaffected by gmax, especially when ε is low546

(Fig. 5a), whereas grazing rates at high [P ] are almost entirely driven by gmax, espe-547

cially when ε is large (Fig. 5b). Introducing the concavity of a Type III response in-548

creases this disparity. In turn, the mean grazing pressure at low [P ] increases with εc but549

is effectively invariant across 3 orders of magnitude change in gmax (Fig. 5c). Alterna-550

tively, mean grazing rates at high [P ] are almost entirely described by gmax unless εc is551

so low that our definition of ‘high [P ]’ no longer falls above the half saturation point of552

the curve (Fig. 5d).553

Using a Michaelis-Menten scheme increases the sensitivity of grazing rates to both554

parameters (Fig. 5e-h), such that gmax has much more influence at low [P ] (Fig. 5e,555

g) and K1/2 has more influence at high [P ] (Fig. 5f, h). However, in a type III response,556

grazing rates are still more sensitive to K1/2 than gmax at low [P ] (Fig. 5g) and more557

sensitive to gmax than K1/2 at high [P ] (Fig. 5h). Increased parameter sensitivity in558

the Michaelis-Menten scheme means that a greater variety of curve shapes and associ-559

ated grazing rates can be described with an equivalent range of parameter values, albeit560

with lower resolution.561

5.2 Sensitivity of phytoplankton population size562

The mean size of the phytoplankton population ([P ]) is largely driven by the shape563

of the curve at low phytoplankton concentrations and unaffected by what the curve looks564

like once it begins to saturate at high phytoplankton concentrations, particularly in a565

type III response (Fig. 6, left column). Considering all stable (see Section 5.3) solu-566

tions to the type III response (Fig. 6d, j), [P ] has a much stronger correlation with mean567

grazing rates at low [P ] (r2 = 0.79) than high [P ] (r2 = −0.20). Accordingly, the sen-568

sitivity of [P ] to the grazing formulation qualitatively mirrors the sensitivity of mean graz-569

ing rates at low [P ] to the grazing formulation (Fig. 5, 6, left columns). Ecologically,570

this implies that the size of phytoplankton populations is limited by zooplankton cap-571
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Figure 4. Sensitivity of the functional response curve to its parameters. A type II (a,b)

and III (c,d) response curve is plotted in black with colored windows depicting how the curve

varies with proportional changes to its parameters. Initial parameters were chosen such that the

disk and Michaelis-Menten parameter schemes yield mathematical identical curves (gmax = 1,

K1/2 = 1, ε = 1, εc = 1). Colored windows show how the curve varies when its parameters are

individually halved or doubled within a disk (green) or Michaelis-Menten (magenta) parameter

scheme. Close ups of the same curves are shown below for (e-h) low and (i-l) high phytoplankton

concentrations. Note, the dark green shading in (a,e & f) indicates a complete overlap in the

variability window for both parameter schemes.
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Figure 5. Sensitivity of specific grazing rates. Variability in the mean zooplankton spe-

cific grazing rate averaged across (a, c, e, g) low ([P ] < 0.1mmolC
m3 ) and (b, d, f, h) high

(2 < [P ] < 4mmolC
m3 ) phytoplankton concentrations ([P ]) is shown as a function of the parameters

of the functional response curve using a (a, b, e, f) Type II and (c, d, g, h) Type III response

type as well as a (a-d) disk and (e-h) Michaelis-Menten parameter scheme. A dashed 1-1 line is

included to assess the relative parameter sensitivity.
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order stability of the mean annual phytoplankton concentration is plotted against the parameteri-

zation of the functional response curve using a (a-c, g-j) Type II and (d-f, j-l) Type III response

type as well as a (a-f) disk and (g-l) Michaelis-Menten parameter scheme. Parameter schemes

that yield complete nutrient utilization or phytoplankton extinction are hatched out with cross or

single lines, respectively. Numerically unstable regions are bounded with a red contour. Highly

unstable regions, which yield a stiff solution, are plotted in white.
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ture rates, which dominate when prey is scarce and the zooplankton population is small,572

not consumption rates, which dominate when phytoplankton is replete and the zooplank-573

ton population is large and therefore able to exert strong grazing pressure, regardless of574

the speed of zooplankton specific grazing rates.575

In turn, [P ] is most sensitive to the parameterization of the response curve when576

the response type and parameter scheme allow for those parameters to most efficiently577

describe the bottom of the response curve. This means [P ] is less sensitive to the param-578

eterization of the functional response in a disk than Michaelis-Menten parameter scheme.579

For example, phytoplankton in a type III disk scheme only experienced extinction or com-580

plete nutrient utilization in 20% of the tested parameter space (Fig. 6d), compared to581

50% when using a type III Michaelis-Menten scheme (Fig. 6j). The size of the inter-582

mediate solution space will vary with other parameter choices and the size of the nutri-583

ent pool; however, the fact remains that a smaller range of parameters is needed to span584

from extinction to complete nutrient utilization in a Michaelis-Menten than disk scheme.585

Similarly, when using a type III response, [P ] is more sensitive to K1/2 and εc than gmax586

in both parameter schemes because they more directly define the shape of the response587

curve when prey is scarce (Fig. 4g, h). Together, the value gmax has almost no influ-588

ence on the size of the phytoplankton population in a type III disk scheme.589

5.3 Sensitivity of phytoplankton population stability590

In the simplified NPZ model, which is not forced with seasonality in light, mixing591

or other growth conditions, phytoplankton populations tend to quickly reach a season-592

ally invariant steady state. However, when a type II response is used, instabilities in the593

functional response often trigger sub-annual oscillations in the phytoplankton popula-594

tion, leading to dozens of blooms per year, and in some cases intractably stiff solutions.595

The strength of these oscillations can be approximated by the standard deviation of the596

phytoplankton population (Fig. 6b, e, h, k) and the stabilizing (or destabilizing) in-597

fluence of the function response can be approximated by first order stability of the mean598

phytoplankton population (Fig. 6c, f, i, l; see Section 3).599

The phytoplankton population remains stable, with a near zero standard deviation600

(Fig. 6b, e, h, k, blue shading), when the first order stability of the mean phytoplank-601

ton concentration is positive or slightly negative (Fig. 6c, f, i, l). However, the phy-602

toplankton population begins to oscillate, exhibiting much larger standard deviations once603

the first order stability becomes sufficiently negative. Oscillations never occur when the604

first order stability is positive. However, it is possible for negative first order stability605

to produce a stable solution if other factors that can dominate the destabilizing feedback606

associated with grazing provide a stabilizing feedback on the phytoplankton population.607

These factors include nutrient limitation and the size of the zooplankton population, which608

both dampen phytoplankton population growth as phytoplankton biomass accumulates,609

even as specific grazing rates decline.610

When using a type II response, first order stability is always negative and 30% of611

tested solutions exhibited a standard deviation greater than 0.5% of the total nutrient612

pool and were deemed unstable (Fig. 6; rows 1 & 3, red contour). This fraction increased613

to 40% when including solutions that were nominally stable but the phytoplankton pop-614

ulation went extinct (Fig. 6; single hatching). Increasing gmax and decreasing K1/2 both615

decrease stability; however, when using a Michaelis-Menten parameter scheme, the first616

order stability is, on average, ∼ 5 times more sensitive to changes in K1/2 than gmax617

due to its greater influence on the curvature of the functional response. In a disk scheme,618

however, first order stability is only 25% more sensitive to ε than gmax, because both pa-619

rameters influence the location of K1/2. Because the stability of the population is much620

more sensitive to gmax than the size of the population, relatively small changes in gmax621

can trigger sudden instabilities with little warning.622
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When using a type III response, first order stability is rarely negative. Only 2%623

of tested solutions were deemed unstable (Fig. 6; rows 2 & 4, red contour) and less than624

1% led to phytoplankton extinction (compared to 10% with a type II). First order sta-625

bility becomes increasingly stable with increasing gmax and decreasing K1/2 because in-626

creasing grazing pressure drives [P ] below K1/2 where the downward concavity of the627

response curve provides stability and protects against extinction. This holds even though628

decreasing K1/2 simultaneously lowers the threshold for instability. There is only neg-629

ative first order stability and oscillations in the phytoplankton population when both K1/2630

and gmax are very low. This occurs because as the gmax approaches the zooplankton mor-631

tality rate, zooplankton net population growth slows, decoupling [P ] and [Z] and allow-632

ing [P ] to escape grazing pressure and exceed a low K1/2 value.633

5.4 Influence of other parameters634

The sensitivity of phytoplankton population size to the grazing formulation does635

not appear to be qualitatively influenced by the selection of other non-grazing param-636

eters or initial conditions (see Table 3b); however, these choices do influence the size637

of the stable solution space. Nutrient limitation is described by a type II Michaelis-Menten638

curve and thus has similar, but qualitatively opposite, stabilizing properties to the graz-639

ing formulation. The difference is that the saturation of nutrient uptake provides a neg-640

ative, rather than positive, feedback on phytoplankton population growth. In turn, in-641

creasing the maximum phytoplankton specific division rates (µmax) or decreasing the642

half saturation concentration for nutrient uptake (KN ) both increase the stability of the643

system and reduce the number of unstable solutions. On the other hand, limiting zoo-644

plankton population growth by either increasing zooplankton mortality (mZ) or reduc-645

ing grazing efficiency (α) can destabilize a type III response if mZ > αgmax, thereby646

decoupling specific grazing rates from bulk grazing pressure (i.e. g[Z]). Reallocating the647

initial distribution of nutrients between the [N ], [P ], and [Z] pools has little effect, how-648

ever, increasing the total nutrient pool increases the number of unstable solutions by di-649

minishing the stabilizing effect of nutrient limitation.650

6 Recommendations for modellers651

6.1 Functional Response Choice652

Use a type III rather than a type II functional response653

Numerically, there is little reason to employ a type II over III response, as the type654

II response is more likely to trigger phytoplankton extinction or instability (Section 5.3).655

While these dynamics are not necessarily ecologically impossible for specific, regional in-656

teractions (McCauley & Murdoch, 1987), they are unlikely to characterize the mean state657

of many interactions in coarse, global, models, which are trained to match the mean chloro-658

phyll concentration observed over large areas from space. To avoid complete ecosystem659

collapse or unnatural oscillations when a type II response is used, parameter optimiza-660

tion schemes are likely to favor other stabilizing processes (Edwards et al., 2000; Gen-661

tleman & Neuheimer, 2008) or large, less destabilizing K1/2 values (Fig. 6). In turn,662

optimization schemes may also favor slower photosynthetic phytoplankton growth pa-663

rameters to compensate for slower grazing, yielding a system with the correct NPP but664

unrealistically slow turnover, which could bias estimations of carbon transport (Henson,665

Le Moigne, & Giering, 2019).666

Additionally, some models require a type III response to produce realistic blooms667

(rather than unstable oscillations) (Hernández-Garćıa & López, 2004; Malchow et al.,668

2005; Morozov, 2010; Truscott & Brindley, 1994; Truscott et al., 1994). This is because669

bloom initiation must be preceded by slow rates of wintertime net primary production670

to starve zooplankton and decrease their biomass (Evans & Parslow, 1985), allowing sub-671
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sequent springtime changes in phytoplankton growth rates to outpace increasing graz-672

ing pressure from a growing zooplankton population as the bloom develops (Behrenfeld673

et al., 2013). The stabilizing properties of a type III response prevent the extinction of674

a very small phytoplankton seed population, while starving the zooplankton population,675

subsequently permitting a bloom at the onset of rapid changes in bottom-up growth con-676

ditions.677

Ecologically, there is disagreement on whether a type II (Hansen et al., 1997; Hirst678

& Bunker, 2003; Jeschke et al., 2004) or type III (Chow-Fraser & Sprules, 1992; Frost,679

1975; Gismervik & Andersen, 1997; Sarnelle & Wilson, 2008) response is more appro-680

priate. Individual interactions in laboratory dilution experiments are often better fit em-681

pirically by a type II response (Hansen et al., 1997; Hirst & Bunker, 2003), while a type682

III response is typically justified by more complex behavior, such as changes in prey refuge,683

(Wang, Morrison, Singh, & Weiss, 2009), predator learning (Holling, 1965; van Leeuwen,684

Jansen, & Bright, 2007), predator effort, (Gismervik, 2005), or prey switching (Gentle-685

man, Leising, Frost, Strom, & Murray, 2003; Oaten & Murdoch, 1975; Uye, 1986). Un-686

fortunately, this behavior is difficult to replicate in a lab (Leising et al., 2003) and large-687

scale field experiments are challenging and rare, meaning it is difficult to say definitively688

if zooplankton are more likely to exhibit type II or III behavior in their natural environ-689

ment. Moreover, dilution experiments are tailored to particular interactions in a partic-690

ular environment, making them less tractable to explain the statistical relationship be-691

tween the mean state of a limited number of zooplankton and phytoplankton functional692

groups represented in most marine ecosystem models.693

There is, however, a strong mathematical justification for the use of a type III func-694

tional response to represent the mean state of grazing dynamics in marine biogeochem-695

ical models (Englund & Leonardsson, 2008; Morozov, 2010; Morozov et al., 2008; Nach-696

man, 2006). Global phytoplankton distributions are highly heterogeneous at scales well697

below the typical resolution of even eddy-resolving ocean models (Ohman, 1990; Ray-698

mont, 2014). Moreover, phytoplankton and zooplankton populations are typically log-699

normally distributed (??), such that an increase in the mean plankton concentration is700

likely associated with a disproportionate increase in smaller areas of high productivity,701

surrounded by large oligotrophic swaths. As the relative proportion of phytoplankton702

in highly productive subgrid-scale patches increases, so will that of the zooplankton feed-703

ing in them (either via local growth or migration). This means that as the mean grid704

cell phytoplankton concentration increases, the mean specific grazing rate will increase705

multiplicatively with an increasing proportion of zooplankton grazing at increasingly fast706

specific rates, leading to an exponential increase at low [P ]. Therefore, even if individ-707

uals are assumed to exhibit a sub grid-scale type II response, their spatially-averaged dy-708

namics are better described by a type III response without invoking any associated change709

in foraging behavior (Morozov, 2010). This is particularly relevant in the vertical direc-710

tion when implicitly representing diurnal vertical migration (Morozov, 2010), which zoo-711

plankton may use to look for better feeding opportunites (?), but applies to horizontal712

distributions as well. In this way, a type III response is an ecologically justifiable way713

to account for coarse model resolution.714

of the zooplankton population feeding in highly productive subgrid-scale patches715

is likely to increase with the productivity of those patches, either via local growth or mi-716

gration, the717

Although models are largely split in their use of a type II (or Ivlev) (Aumont &718

Bopp, 2006; Dunne et al., 2013; Le Quéré et al., 2016; Shigemitsu et al., 2012; Stock et719

al., 2014; Totterdell, 2019; Vichi et al., 2007) or type III functional response (Dutkiewicz720

et al., 2015; Hauck et al., 2013; Law et al., 2017; Moore et al., 2013; Oke et al., 2013),721

there appears to ample reason to prefer a type III response. The numerical benefits of722

a type III response do not appear to be undermined by sufficient ecologically uncertainty,723

as there is in-situ and theoretical evidence that a type III functional response can do a724
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better job of replicating the mean state of a complex, patchy ocean, even if individual725

interactions are better represented by a type II response (Morozov, 2010; Morozov et al.,726

2008; Nachman, 2006). Note that this argument does not extend to type II response func-727

tions with an imposed feeding threshold, which behave more like a type III response (Leis-728

ing et al., 2003) and were not considered explicitly here.729

6.2 Parameter Scheme730

Use a Michaelis–Menten rather than a disk parameter scheme731

Throughout the literature, the type II and type III functional response appear in732

two distinct, but mathematically equivalent, forms (Table 2): the disk parameter scheme733

(eq. 17, 24) (e.g. Fasham (1995); Adjou et al. (2012); Fasham (1995); Law et al. (2017);734

Oke et al. (2013); Schartau and Oschlies (2003b)) and the Michaelis–Menten parame-735

ter scheme eq. 19, 25 (e.g. Aumont and Bopp (2006); Le Quéré et al. (2016); Stock et736

al. (2014); Totterdell (2019); Vichi et al. (2007); Dutkiewicz et al. (2015); Hauck et al.737

(2013); Moore et al. (2013)). Both parameter schemes can describe identical response738

curves given the right parameterization, but use different information to do so. This dis-739

tinction would be irrelevant if we had robust knowledge of the real parameters or infi-740

nite computational power to sample them all in multivariate parameter optimization schemes.741

Unfortunately, observations span several orders of magnitude (Section 4; Hansen et al.742

(1997)) and computational limitations exist (Matear, 1995; Neelin, Bracco, Luo, McWilliams,743

& Meyerson, 2010), meaning that modellers must pick a limited subset of parameters744

without confidence that it is inclusive of the actual values. The parameter scheme they745

use influences this choice.746

When considered as two orthogonal bases, the disk parameter scheme rotates the747

axes to load more variance in phytoplankton population size on a single parameter, εc,748

than the Michaelis-Menten scheme, which favors K1/2, but not as dramatically. This is749

because phytoplankton population dynamics are primarily driven by the speed of graz-750

ing rates at low concentrations (Section 5.2), where phytoplankton predominately oc-751

cur (Anderson et al., 2010) and must pass through to reach higher ones. In the mech-752

anistically defined type III disk scheme, consumption rates (prescribed by gmax) have753

essentially no bearing on grazing rates at low [P ], when food is scarce; where as, in the754

empirically defined type III Michaelis-Menten scheme, gmax and K1/2 both influence graz-755

ing rates at low [P ], because both implicitly modify εc (Section 2.4), although K1/2 does756

so more efficiently (Section 5.1). Given the over parameterized and under constrained757

nature of marine biogeochemical models (Doney, 1999; Matear, 1995; Schartau et al.,758

2017; Ward et al., 2010), there is an initial appeal to the disk scheme, which consolidates759

variance on one of two parameters. However, there are strong mathematical and ecolog-760

ical arguments in favor of a Michaelis-Menten scheme.761

Mathematically, εc, and thus phytoplankton accumulation, is actually more sen-762

sitive to proportional changes to K1/2 in a Michaelis-Menten scheme than direct changes763

in a disk scheme (Section 5.3). This is because εc implicitly varies with the square of764

K1/2 in a Michaelis-Menten scheme (εc = gmax

K2
1/2

). In turn, the disk scheme is less sen-765

sitive to its parameterization, meaning it requires a larger range of parameters to be tested766

to cover the same range of solutions. For example, a conservative range of observed εc767

values, from .0001-1 m6

mmolC2d , can be span with K1/2
mmolC
m3 values from 1-100 at a fixed768

gmax (Fig. 3). The trade off is increased precision in the disk scheme; however, the over-769

whelming lack of consensus on what these parameters actually are (Section 4), espe-770

cially for the mean state of the entire ocean (Moriarty et al., 2013; Moriarty & O’Brien,771

2012), suggests that it is more valuable to consider a wider, but lower resolution, set of772

parameters to avoid inadvertently constraining the parameter space, rather than trying773

to narrow in on an impossibly exact value. For example, the parameter search used by774

Schartau and Oschlies (2003a), who use a disk scheme, chose both parameter values at775
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the boundary of their search space, suggesting a wider range might have found a bet-776

ter solution. Practically speaking, this problem could be addressed by careful conver-777

sion. Modellers using a disk scheme could sub sample a wider set of coarser resolution778

εc values in optimization search schemes; however, modellers must select a search range779

for dozens, if not hundreds, of parameters, and are less likely to mistakenly constrain the780

parameter space if using a Michaelis-Menten scheme, which has a narrower range of re-781

alistic parameters and much more intuitive units.782

More importantly though, the Michaelis-Menten scheme is a more ecologically de-783

fensible way to the describe the mean state of subgrid-scale heterogeneity. Ostensibly,784

the primary advantage of using a disk scheme is that it maintains the mechanistic in-785

tegrity of two ecologically independent rate parameters (Section 2). This may be valid786

when using a type II response to represent a specific interaction between homogeneously787

distributed populations, but is not when using a type III response to represent the mean788

state of large swath of open ocean (per Section 6.1), for several reasons. First, unlike789

the prey capture efficiency (ε) used to parameterize a type II disk response, the prey cap-790

ture efficiency coefficient (εc) used to parameterize a type III disk response is not derived791

mechanistically (Section 2), but rather is an empirical estimate of the net influence of792

various possible behaviours (Gismervik, 2005; Oaten & Murdoch, 1975; van Leeuwen et793

al., 2007; Wang et al., 2009). Second, even in well mixed, laboratory studies, observa-794

tional estimates of both ε and εc are typically inferred empirically and fit to a Michaelis-795

Menten parameter scheme, not measured directly (Hansen et al., 1997; Hirst & Bunker,796

2003). Last, even if εc did mechanistically describe specific interactions at the species797

level and could be measured directly, any representation of the mean state of many het-798

erogeneously distributed interactions is necessarily empirical. This is important because799

the mechanistic assumptions underpinning the disk scheme preclude gmax form influenc-800

ing grazing rates at low [P ] (Section 5.1), where they are most important (Section 5.2).801

This makes sense in a well-mixed, mechanistic framework, because consumption rates802

should not influence grazing rates when capture rates are much lower (see eq. 16), as803

there is nothing to consume if it cannot first be caught. However, in a more realistic rep-804

resentation of the open ocean, many zooplankton are likely concentrated in small patches805

of high biological activity where they can graze at saturation, even when the mean grid806

cell phytoplankton concentration is driven down by large surrounding swaths of oligotrophic807

water. In turn, when representing subgrid-scale heterogeneity in an ecologically realis-808

tic way, changes in gmax should influence the mean state of grazing rates at low grid cell809

[P ], even if they don’t for individual interactions. This is only possible in a Michaelis-810

Menten scheme.811

Moving forward, it makes sense to converge on a best practice parameter scheme812

to avoid confusion in inter-model comparisons. The Michaelis-Menten scheme requires813

a smaller search range, uses more intuitive units, is more directly comparable to empir-814

ical observations, and more realistically represents the mean state of patchy biology in815

the open ocean.816

6.3 Parameter Search Range817

Consider a wide range of K1/2 values.818

Given the uncertainty in empirically estimated parameter values, it is necessary to819

choose a range of parameters to test in optimization routines. While population dynam-820

ics are less sensitive to the value of gmax (Section 5.2) and it has been better constrained821

by observations between ∼ 0.5−2 (1/d) (Section 3), it is is necessary to test a much822

wider range of K1/2 values, which are far less constrained by observations (Section 3),823

yet more important in driving ecosystem dynamics (Section 5.2). Yet, when using a824

Michaelis–Menten parameterization, it is reasonable to ask how large a range is appro-825

priate, lest implicitly imposing ecologically unrealistic prey capture rates. However, there826
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are insufficient empirical, ecological, and mathematical arguments to heavily restrict the827

range of grazing parameters, and K1/2 values as low as 0.1 (mmolCm3 ) and as high as 100828

(mmolCm3 ) should be considered.829

Empirically, reported estimates of K1/2 and gmax fit to a type II response function830

by Hansen et al. (1997); Hirst and Bunker (2003) combine to yield a range of ε that spans831

4 orders of magnitude, from .003 to 10 m3

mmolC d (Section 3.1; Fig. 3). Moreover, if a832

type III response had been assumed, K1/2 estimates would remain similar while the range833

of εc would increase to nearly 7 orders of magnitude, from .00001 to 21 m6

mmolC2 d , or roughly834

1 order of magnitude slower and 3 orders of magnitude faster than the range tested in835

the parameter optimization search of Schartau and Oschlies (2003a) (0.00056 < εc <836

.0364). At the species level, the range of plausible K1/2 values appears largely uncon-837

strained by empirical estimates of εc.838

Ecologically, we simply do not have a firm understanding of how myriad complex839

interactions combine across innumerable zooplankton species and evolve over time to yield840

a reasonable approximation of the mean state. For instance, juvenile zooplankton have841

different metabolic rates (Clerc, Aumont, & Bopp, 2021) and graze with K1/2 an order842

of magnitude smaller than adults (Hirst & Bunker, 2003; Richardson & Verheye, 1998),843

suggesting the apparent K1/2 of the community could be substantially lower during spawn-844

ing events. On the other hand, filter feeders, such as salps and larvaceans, that are typ-845

ically common in low chlorophyll waters, have a much smaller K1/2 than euphausiids and846

copepods that graze in high chlorophyll waters (Hansen et al., 1997; Hirst & Bunker, 2003).847

If species with slower K1/2 values dominate in more productive ecosystems, such that848

K1/2 increases with chlorophyll (Chen et al., 2014), that would effectively raise the ap-849

parent global mean K1/2 value. In turn, the community-wide K1/2 value probably varies850

spatially and temporally depending on the zooplankton community present and whether851

it is dominated by juveniles or adults, such that the mean state of a population with shift-852

ing age and species distributions could have an apparent K1/2 value much different than853

any individual within.854

Mathematically, it is not just the ecosystem complexity that is poorly resolved in855

models, but also its spatial heterogeneity. The ocean is notoriously patchy (Ohman, 1990;856

Raymont, 2014), meaning that the phytoplankton concentration in many of the areas857

within a grid cell is likely to be much lower than the most productive regions within it.858

This means that the phytoplankton density the average zooplankton experiences is larger859

than the grid cell mean, which is averaged across many square kilometers of implicitly860

less productive water (??). In turn, the mean grazing rate is largely responding to the861

activity in small but productive regions, while the mean phytoplankton concentration862

is diluted by large, less productive regions, effectively decreasing the spatially averaged863

K1/2 value well below what might be expected for any individual. This further increases864

the range of possible K1/2 values below even the fastest prey capture rates inferred from865

dilution experiments with homogeneous phytoplankton concentrations.866

Together, there appears to be little empirical, ecological, or mathematical evidence867

to constrain the parameterization of K1/2 on the basis of implied unrealistic εc values.868

We thus recommend testing a broad range of K1/2 values, particularly lower end, in pa-869

rameter optimization routines.870

6.4 Implications for other models871

We focus on grazing in marine biogeochemical models, but these recommendations872

apply to a much broader range of marine and terrestrial ecological models. Most mod-873

els in marine and terrestrial systems that involve predator-prey interactions use type I,874

type II or type III functional responses. We found that when trying to implicitly rep-875

resent subgrid-scale heterogeneity, a type III (Section 6.1) Michaelis-Menten response876
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(Section 6.2) parameterized with a lower than-expected K1/2 value (Section 6.3) is877

the most ecologically defensible way to describe the mean state of patchy predator and878

prey populations, even if individual interactions are best described by a type II disk re-879

sponse, parameterized with higher K1/2 values. In the ocean, this would apply to most880

higher trophic levels simulated in size spectrum (Heneghan et al., 2020; ?), population881

(Alver et al., 2016), ecosystem (Butenschön et al., 2016; ?) and fisheries models (Maury,882

2010; Tittensor et al., 2018, 2021). Fish, for instance aggregate in schools and feed on883

sparse, but consolidated, patches of prey. These distribution are in turn reflected in global884

fishing effort (Kroodsma et al., 2018). On land, plants and animals are also patchy in885

time and space, with high prey concentration rare. Most abundance data for marine and886

terrestrial species are overdispersed and/or have an excess of zeros, implying there is a887

long tail to the right of low abundances (?). The mean state of any of these systems, is888

likely best represented by a low-K1/2, type III, Michael-Menten response; however, the889

range of possible K1/2 considered should increase with the number of unique species, in-890

teractions, and stages of life history being averaged into individual pools.891

On the other hand, specific, well understood interactions in local, well mixed sys-892

tems, may be better represented by a type II disk response, provided there is a low amount893

of implicit averaging at the species and spatial level. At the species level, this may in-894

clude models of simple systems with fewer species, such as lakes or polar regions rather895

than rain forests or coral reefs, or models of more complex systems, but with many ex-896

plicitly resolved predator groups. At the spatial level, this may include the oligotrophic897

gyres in the ocean and grasslands or boreal forests on the land. Still, modellers should898

consider how much implicit averaging is baked into their model and consider if it war-899

rants a more empirical approach before choosing a mechanistic framework (disk) or re-900

sponse type (II) better suited for specific interaction.901

7 Conclusions902

In marine biogeochemical and ecological modelling, the transfer of carbon and nu-903

trients between trophic groups, particularly from phytoplankton to zooplankton via graz-904

ing, is typically represented with one of two functional response curves, originally derived905

to described terrestrial predatory-prey interactions. However, we find that there is lit-906

tle consensus across biogeochemical models regarding: I) which response type to use (II907

vs. III); II) whether to describe that curve with mechanistic (disk scheme) or empiri-908

cal parameters (Michaelis-Menten scheme); and III) what parameter values to use.909

To converge on a set of best practices with theoretical clarity, we derived the func-910

tional response equations explicitly for a 3-dimensional marine system. Next, we surveyed911

the literature and found little convergence in the formulation or parameterization of these912

equations, both when estimated empirically in experiments and when employed prescrip-913

tively in models, with values ranging over 3 to 4 order of magnitude. To address the ex-914

tensive uncertainties in the formulation of the functional response, we ran a suite of sen-915

sitivity experiments in an idealized, NPZ, box-model to illustrate how the sensitivity of916

population dynamics to the parameterization of the functional response varies with the917

response type and parameter schemes that is used.918

Collectively, we conclude that I) there is no ecological basis to prefer a type II re-919

sponse if you want to represent the mean state of multiple interaction across a diverse920

ecosystem distributed across a patchy ocean. Moreover, a type II response is numerically921

unstable when prescribed with strong grazing pressure and apt to introduce unnatural,922

sub-seasonal oscillations in population dynamics. Avoiding such solutions likely biases923

parameter optimization schemes towards slower grazing and photosynthetic division rates.924

II) Using a disk parameter scheme provides more precision, but requires a greater range925

of parameterizations to describe the same breadth of curves compared to the Michaelis-926

Menten scheme. Considering the large uncertainty in parameter values it is probably bet-927
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ter to use a coarser brush, rather than risk constraining the solution space. Moreover,928

it probably does not make sense to be beholden to the mechanistically defined param-929

eters in a disk scheme when describing the mean state of myriad interactions, which even930

at an individual level, are almost exclusively understood empirically. III) In a type III931

Michaelis-Menten response, phytoplankton population size and stability is more sensi-932

tive to the parameterization of K1/2 than gmax, which is also better constrained empir-933

ically than K1/2. While there is too much uncertainty in the observed parameter space934

to make specific parameter recommendations, parameter optimization search schemes935

could focus on the value of K1/2, rather than gmax. Further, we recommend testing a936

large range of K1/2 values without fear of invoking invoking unrealistic prey rapture rates,937

noting that spatial heterogeneity will lower the apparent value of the grid cell mean.938

Together we recommend using Type III response with Michaelis-Menten param-939

eter scheme, and testing a large range of K1/2 values, particularly low ones. These rec-940

ommendations apply specifically to the formulation of grazing in marine biogeochem-941

ical models, but also apply to any effort to describe the mean state of multiple interac-942

tions across a large grid cell with populations assumed to have heterogeneous sub-grid943

cell distributions.944
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Bêty, J. (2021). Derivation of Predator Functional Responses Using a Mech-964

anistic Approach in a Natural System. Frontiers in Ecology and Evolution, 9 ,965

115. Retrieved 2021-09-23, from https://www.frontiersin.org/article/966

10.3389/fevo.2021.630944 doi: 10.3389/fevo.2021.630944967

Behrenfeld, M. J., Doney, S. C., Lima, I. D., Boss, E. S., & Siegel, D. A. (2013,968

June). Annual Cycles of Ecological Disturbance and Recovery Underlying the969

Subarctic Atlantic Spring Plankton Bloom.970

doi: 10.1002/gbc.20050971

Brander, K. M. (2007, December). Global fish production and climate change.972

Proceedings of the National Academy of Sciences, 104 (50), 19709–19714.973

(Publisher: National Academy of Sciences Section: Research Articles974

tex.copyright: © 2007 by The National Academy of Sciences of the USA)975

doi: 10.1073/pnas.0702059104976

Butenschön, M., Clark, J., Aldridge, J. N., Allen, J. I., Artioli, Y., Blackford, J.,977

. . . Torres, R. (2016, April). ERSEM 15.06: a generic model for marine978

–30–



manuscript submitted to Progress in Oceanography

biogeochemistry and the ecosystem dynamics of the lower trophic levels. Geo-979

scientific Model Development , 9 (4), 1293–1339. Retrieved 2021-08-10, from980

https://gmd.copernicus.org/articles/9/1293/2016/ (Publisher: Coper-981

nicus GmbH) doi: 10.5194/gmd-9-1293-2016982

Chen, B., Laws, E. A., Liu, H., & Huang, B. (2014). Estimating microzooplankton983

grazing half-saturation constants from dilution experiments with nonlinear984

feeding kinetics. Limnology and Oceanography , 59 (3), 639–644. (tex.copyright:985

© 2014, by the Association for the Sciences of Limnology and Oceanography,986

Inc.) doi: 10.4319/lo.2014.59.3.0639987

Chenillat, F., Rivière, P., & Ohman, M. D. (2021, May). On the sensitivity of plank-988

ton ecosystem models to the formulation of zooplankton grazing. PLOS ONE ,989

16 (5), e0252033. Retrieved 2021-05-27, from https://journals.plos.org/990

plosone/article?id=10.1371/journal.pone.0252033 (Publisher: Public991

Library of Science) doi: 10.1371/journal.pone.0252033992

Chow-Fraser, P., & Sprules, W. G. (1992, April). Type-3 functional response in lim-993

netic suspension-feeders, as demonstrated by in situ grazing rates. Hydrobiolo-994

gia, 232 (3), 175–191. doi: 10.1007/BF00013703995

Clerc, C., Aumont, O., & Bopp, L. (2021, July). Should we account for mesozoo-996

plankton reproduction and ontogenetic growth in biogeochemical modeling?997

Theoretical Ecology . Retrieved 2021-07-20, from https://doi.org/10.1007/998

s12080-021-00519-5 doi: 10.1007/s12080-021-00519-5999

Denman, K. L., & Peña, M. A. (2002, January). The response of two coupled one-1000

dimensional mixed Layer/Planktonic ecosystem models to climate change in1001

the NE subarctic Pacific Ocean. Deep Sea Research Part II: Topical Studies in1002

Oceanography , 49 (24), 5739–5757. doi: 10.1016/S0967-0645(02)00212-61003

Denny, M. (2014). Buzz Holling and the Functional Response. The Bulletin of the1004

Ecological Society of America, 95 (3), 200–203. Retrieved 2021-09-23, from1005

https://onlinelibrary.wiley.com/doi/abs/10.1890/0012-9623-95.3.2001006

( eprint: https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/0012-1007

9623-95.3.200) doi: 10.1890/0012-9623-95.3.2001008

Doney, S. C. (1999). Major challenges confronting marine biogeochemical modeling.1009

Global Biogeochemical Cycles, 13 (3), 705–714. doi: 10.1029/1999GB9000391010

Dunn, R. P., & Hovel, K. A. (2020, January). Predator type influences the fre-1011

quency of functional responses to prey in marine habitats. Biology Letters,1012

16 (1), 20190758. (Publisher: Royal Society) doi: 10.1098/rsbl.2019.07581013

Dunne, J. P., John, J. G., Shevliakova, E., Stouffer, R. J., Krasting, J. P., Maly-1014

shev, S. L., . . . Zadeh, N. (2013, April). GFDL’s ESM2 Global Cou-1015

pled Climate–Carbon Earth System Models. Part II: Carbon System For-1016

mulation and Baseline Simulation Characteristics. Journal of Climate,1017

26 (7), 2247–2267. (Publisher: American Meteorological Society) doi:1018

10.1175/JCLI-D-12-00150.11019

Dutkiewicz, S., Hickman, A. E., Jahn, O., Gregg, W. W., Mouw, C. B., & Follows,1020

M. J. (2015, July). Capturing optically important constituents and properties1021

in a marine biogeochemical and ecosystem model. Biogeosciences, 12 (14),1022

4447–4481. (Publisher: Copernicus GmbH) doi: 10.5194/bg-12-4447-20151023

Edwards, C. A., Batchelder, H. P., & Powell, T. M. (2000, September). Modeling1024

microzooplankton and macrozooplankton dynamics within a coastal upwelling1025

system. Journal of Plankton Research, 22 (9), 1619–1648. (Publisher: Oxford1026

Academic) doi: 10.1093/plankt/22.9.16191027

Englund, G., & Leonardsson, K. (2008). Scaling up the functional response for spa-1028

tially heterogeneous systems. Ecology Letters, 11 (5), 440–449. (tex.copyright:1029

© 2008 Blackwell Publishing Ltd/CNRS) doi: 10.1111/j.1461-0248.2008.011591030

.x1031

Evans, G. T., & Parslow, J. S. (1985, January). A Model of Annual Plankton Cy-1032

cles. Biological Oceanography , 3 (3), 327–347. (Publisher: Taylor & Francis)1033

–31–



manuscript submitted to Progress in Oceanography

doi: 10.1080/01965581.1985.107494781034

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., &1035

Taylor, K. E. (2016, May). Overview of the Coupled Model Intercomparison1036

Project Phase 6 (CMIP6) experimental design and organization. Geoscientific1037

Model Development , 9 (5), 1937–1958. (Publisher: Copernicus GmbH) doi:1038

10.5194/gmd-9-1937-20161039

Fasham, M. J. R. (1995, July). Variations in the seasonal cycle of biological pro-1040

duction in subarctic oceans: A model sensitivity analysis. Deep Sea Research1041

Part I: Oceanographic Research Papers, 42 (7), 1111–1149. doi: 10.1016/09671042

-0637(95)00054-A1043

Fasham, M. J. R., Ducklow, H. W., & McKelvie, S. M. (1990, August). A nitrogen-1044

based model of plankton dynamics in the oceanic mixed layer. Journal of Ma-1045

rine Research, 48 (3), 591–639. doi: 10.1357/0022240907849846781046

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., . . .1047

Rummukainen, M. (2013). Evaluation of climate models. Cambridge University1048

Press. (Pages: 741) doi: 10.1017/CBO9781107415324.0201049

Flynn, K. J., & Mitra, A. (2016). Why Plankton Modelers Should Reconsider Using1050

Rectangular Hyperbolic (Michaelis-Menten, Monod) Descriptions of Predator-1051

Prey Interactions. Frontiers in Marine Science, 3 . (Publisher: Frontiers) doi:1052

10.3389/fmars.2016.001651053

Franks, P. J. S., & Chen, C. (2001, January). A 3-D prognostic numerical model1054

study of the Georges bank ecosystem. Part II: Biological–Physical model. Deep1055

Sea Research Part II: Topical Studies in Oceanography , 48 (1), 457–482. doi:1056

10.1016/S0967-0645(00)00125-91057

Franks, P. J. S., Wroblewski, J. S., & Flierl, G. R. (1986, April). Behavior of a sim-1058

ple plankton model with food-level acclimation by herbivores. Marine Biology ,1059

91 (1), 121–129. doi: 10.1007/BF003975771060

Frost, B. W. (1972). Effects of Size and Concentration of Food Particles on the1061

Feeding Behavior of the Marine Planktonic Copepod Calanus Pacificus1. Lim-1062

nology and Oceanography , 17 (6), 805–815. (tex.copyright: © 1972, by the As-1063

sociation for the Sciences of Limnology and Oceanography, Inc.) doi: 10.4319/1064

lo.1972.17.6.08051065

Frost, B. W. (1975). A threshold feeding behavior in Calanus pacificus1. Limnology1066

and Oceanography , 20 (2), 263–266. (tex.copyright: © 1975, by the Association1067

for the Sciences of Limnology and Oceanography, Inc.) doi: 10.4319/lo.1975.201068

.2.02631069

Fussmann, G. F., & Blasius, B. (2005, March). Community response to enrichment1070

is highly sensitive to model structure. Biology Letters, 1 (1), 9–12. (Publisher:1071

Royal Society) doi: 10.1098/rsbl.2004.02461072

Gentleman, W. C., Leising, A., Frost, B., Strom, S., & Murray, J. (2003, November).1073

Functional responses for zooplankton feeding on multiple resources: A review1074

of assumptions and biological dynamics. Deep Sea Research Part II: Topical1075

Studies in Oceanography , 50 (22), 2847–2875. doi: 10.1016/j.dsr2.2003.07.0011076

Gentleman, W. C., & Neuheimer, A. B. (2008, November). Functional responses1077

and ecosystem dynamics: How clearance rates explain the influence of satia-1078

tion, food-limitation and acclimation. Journal of Plankton Research, 30 (11),1079

1215–1231. (Publisher: Oxford Academic) doi: 10.1093/plankt/fbn0781080

Gismervik, I. (2005, September). Numerical and functional responses of choreo- and1081

oligotrich planktonic ciliates. Aquatic Microbial Ecology , 40 (2), 163–173. doi:1082

10.3354/ame0401631083

Gismervik, I., & Andersen, T. (1997, October). Prey switching by Acartia1084

clausi: Experimental evidence and implications of intraguild predation as-1085

sessed by a model. Marine Ecology Progress Series, 157 , 247–259. doi:1086

10.3354/meps1572471087

–32–



manuscript submitted to Progress in Oceanography
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