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Abstract 22 

A new method is presented to estimate urban OH concentrations using the downwind decay of the TROPOMI derived 23 

NO2/CO ratio combined with Weather Research Forecast (WRF) simulations. Seasonal OH concentrations, NOx and 24 

CO emissions for summer (June to October, 2018) and winter (November, 2018 to March, 2019) are derived for 25 

Riyadh. WRF is able to simulate NO2 and CO urban plumes over Riyadh as observed by TROPOMI. However, WRF 26 

simulated NO2 plumes close to center of the city are overestimated by 25 % in summer and 40 to 50 % in winter 27 

compared to TROPOMI observations. WRF simulated CO plumes differ by 10 % with TROPOMI in both seasons. 28 

The differences between model and TROPOMI are used  to optimize the OH concentration, NOx and CO emissions 29 

iteratively using a least squares method. For summer, both the NO2/CO ratio optimization and the XNO2 optimization 30 

imply that the OH prior from the Copernicus Atmospheric Monitoring Service (CAMS) has to be increased by 31 

32.03±4.0% . The OH estimations from the NO2/CO ratio and the XNO2 optimization differ by 10 % indicating that 32 

the method is quite robust. Summer Emission Database for Global Atmospheric Research v4.3.2  (EDGAR) NOx  and 33 

CO emissions over Riyadh need to be increased by 42.1±8.7 % and 100.8±9.5%. For winter, the optimization method 34 

increases OH by ~52.0±5.3 %, while reducing NOx emission by 15.45± 3.4% and doubling the CO emission. 35 

TROPOMI derived OH concentrations and pre-existing Exponentially Modified Gaussian function fit (EMG) method 36 

differ by 18 % in summer and 7.5 % in winter, confirming that urban OH concentrations can be reliably estimated 37 

using the TROPOMI-observed NO2/CO ratio.     38 

1 Introduction 39 

The rapidly growing urbanization has led to an increase in the number of big cities globally. More than 55 % of the 40 

global population resides in cities and this fraction is projected to increase to 68% in 2050  (United Nations, 2018). 41 

The associated rise in consumption of energy and materials leads to severe air pollution, affecting the health of the 42 

large urban population (Pascal et al., 2013; Sicard et al., 2021). Air pollution control measures and the application of 43 

cleaner technology have reduced the NO2 concentrations in developed cities such Los Angeles and Paris by 1.5 to 3.0 44 

% yr-1 between 1996  to 2017 (Georgoulias et al., 2019). The CO emission is reduced by 28.8 % to 60.7 % in these 45 

cities in the period 2000 to 2008 (Dekker et al., 2017). In developing cities such as Tehran and Baghdad, however, 46 

nitrogen dioxide (NO2) concentrations have increased by 8.6 % yr−1 and 16.9% yr−1 between 1996 to 2017  47 

(Georgoulias et al., 2019). The CO emission increased by 15% in New Delhi in the period 2000 to 2008 (Dekker et 48 

al., 2017). As a consequence, air pollution monitoring and mitigation in developing cities is becoming an increasingly 49 

important priority.  50 

Nowadays, urban air pollution can be studied using a combination of ground-based measurement networks and 51 

satellite observations (Ialongo et al., 2020; Sannigrahi et al., 2021). Satellite observations have helped to investigate 52 

urban air pollution, particularly in cities without a ground-based monitoring network (Beirle et al., 2019a; Borsdorff 53 

et al., 2019). In past decades, improvements in the quality and spatial resolution of satellite instruments have allowed 54 

the detection of trends in air pollutants and the quantification of urban emissions (Lorente et al., 2019; Verstraeten et 55 

al., 2018; Wennberg et al., 2018).  Several studies have focused on NOx, using NO2 observations from the SCanning 56 

Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) , the Ozone Monitoring 57 

Instrument (OMI) and TROPOMI (Ding et al., 2017; Lorente et al., 2019). At the resolution and sensitivity of 58 

TROPOMI, urban NO2 enhancements can be detected readily, even in single satellite overpass, owing in part to the 59 

short NO2 lifetime. OMI derived NO2 data have been used to quantify NOx emissions, as well as the urban lifetime of 60 

NO2, as demonstrated by Beirle et al.  (2011a) using the Exponentially Modified Gaussian function fit (EMG) method. 61 

In the EMG method, the satellite observed exponential decay of NO2 downwind of the city centre is used to quantify 62 

the first order loss of NO2, driven primarily by its reaction with the hydroxyl radical (OH). Liu et al. (2016) modified 63 

the EMG method for application to complex emission patterns. The quantification of CO emissions from cities is more 64 

complicated compared with NO2 because of its longer lifetime, and the related importance of CO sources from the 65 

surroundings of cities. Nevertheless, a few studies have demonstrated the feasibility of  quantifying relative changes 66 

in urban CO emission, using Measurement of Pollution in the Troposphere (MOPPIT), Infrared Atmospheric 67 

Sounding Interferometer (IASI), Atmospheric Infrared Sounder (AIRS), and Tropospheric Monitoring Instrument 68 

(TROPOMI) observations (Borsdorff et al., 2019; Dekker et al., 2017; Pommier et al., 2013).  69 
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In recent years, methods have been developed that combine satellite measurements of different trace gases, for 70 

example the combined use of NO2 and CO, to obtain specific information about pollutant sources (Lama et al., 2020, 71 

Hakkarainen et al., 2015; Miyazaki et al., 2017; Reuter et al., 2019; S. Silva & Arellano, 2017 ). The emission factors 72 

of CO and NOx from fuel combustion are uncertain and vary strongly with the combustion efficiency (Flagan & 73 

Seinfeld, 1988). The satellite observed NO2/CO ratio is particularly sensitive to this fuel burning efficiency, as 74 

demonstrated by Lama et al., (2020) and  can be used to evaluate emission inventories. However, another important 75 

uncertainty arises from the removal of NO2 by OH. In Lama et al. (2020) this OH removal is accounted for by using 76 

OH estimates from Chemical Transport Models (CTM’s), which has an uncertainty of > 50 % (Huijnen et al., 2019). 77 

To reduce this uncertainty using direct measurement of OH is almost impossible due to the short lifetime, limiting the 78 

spatial representativeness of the data (de Gouw et al., 2019). The aim of this study is therefore to estimate the average 79 

OH concentration in the urban plume of large cities (hereafter referred to as urban OH) from the downwind decay of 80 

the TROPOMI observed NO2/CO ratio. The proposed method makes use of the WRF model (Grell et al., 2005) to 81 

simulate atmospheric transport. The TROPOMI instrument (Veefkind et al., 2012), launched on 13 October 2017 on 82 

board the Sentinel-5 Precursor satellite, is particularly well suited for this task, as it measures both compounds with 83 

high sensitivity and spatial resolution.  Our method uses CO, because it has a longer lifetime than NO2 (weeks-months 84 

compared to a few hours). Therefore, CO can be considered as an inert tracer at the time-scale of urban plumes. The 85 

difference in the rate of decay between NO2 and CO provides therefore information about the photochemical oxidation 86 

of NO2, because atmospheric dispersion is expected to have a very similar impact on both tracers and therefore cancels 87 

out in their ratio. The use of the NO2/CO ratio for estimating urban scale OH is further compared to the Exponentially 88 

Modified Gaussian function fit (EMG) method, using only satellite retrieved NO2 (Beirle et al., (2011a).  89 

The city of Riyadh (24.63° N, 46.71°E ) is chosen as a test case. Riyadh is an isolated city and a strong source of CO 90 

and NO2 pollution (Beirle et al., 2019; Lama et al., 2020). The frequent clear sky conditions over Riyadh yield a large 91 

number of valid TROPOMI CO and NO2 data. The signal to noise in TROPOMI is high enough to detect the 92 

enhancement of CO and NO2 over Riyadh in a single overpass (Lama et al., 2020). Model results from the Copernicus 93 

Atmospheric Monitoring Service (CAMS) for Riyadh show a distinct seasonality in OH (see Fig S1), which we 94 

attempt to evaluate using TROPOMI data for summer and winter.  95 

This paper is organized as follows: Section 2 describes the TROPOMI NO2 and CO data, the WRF model setup that 96 

was used, and the optimization method that is used for estimating OH. Optimization results and comparisons between 97 

TROPOMI and WRF are presented in section 3, followed by a summary and conclusion of the main finding in section 98 

4. Additional figures and information about the optimization method are provided in the Supplement.  99 

2.  Data and Method 100 

2.1 TROPOMI NO2 tropospheric column  101 

 102 

We used the offline TROPOMI level 2 tropospheric column NO2 [mole m-2] data from retrieval versions 1.2.x for 103 

2018 and 1.3.x for 2019 available at https://s5phub.copernicus.eu; http://www.tropomi.eu (last access: 21 September, 104 

2020). NO2 data of versions 1.2.x and 1.3.x have minor processing differences such as removal of negative cloud 105 

fraction, better flagging and uncertainty estimation. However, they use the same retrieval algorithm applied to level-106 

1b version 1.0.0 spectra  (Babic et al., 2017) recorded by the TROPOMI UV-Vis module in the 405-465nm spectral 107 

range. The TROPOMI NO2 DOAS software, developed at KNMI, is used for the processing of NO2 slant column 108 

densities  (van Geffen et al., 2019). The improved NO2 DOMINO algorithm of Boersma et al. (2018) has been used 109 

to translate slant columns into tropospheric column densities. In this algorithm, stratospheric contributions are 110 

subtracted from the slant column densities and the residual tropospheric slant column density is converted to 111 

tropospheric vertical column density using the air mass factor (AMF).  The AMF depends on the surface albedo, 112 

terrain height, cloud height and cloud fraction (Eskes et al., 2018; Lorente et al., 2017). The comparison of MAX-113 

DOAS ground based measurements in European cities shows that TROPOMI underestimates of NO2 columns by 7% 114 

to 29.7 % (Lambert et al., 2019). To avoid biases, we re-calculated the AMF by replacing the tropospheric AMF, 115 

which is based on a vertical NO2 column simulated by TM5, with the WRF-chem equivalent (Boersma et al., 2016; 116 
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Lamsal et al., 2010; Visser et al., 2019), using the equation provided in the Appendix A. During summer, the bias 117 

correction increases TROPOMI XNO2 by 5 to 10 % and in winter by 25% to 30 % in the urban plume over Riyadh, 118 

whereas background areas are less affected (see Fig S2 ).  119 

 120 

2.2 TROPOMI CO  121 

 122 

For CO, the offline level 2 CO data product version 1.2.2  has been used, available at  123 

https://cophub.copernicus.eu/s5pexp (last access: 20 September, 2020). The SICOR algorithm is applied to TROPOMI 124 

2.3 μm spectra to retrieve CO total column density [molec cm−2] (Landgraf et al., 2016). The retrieval method is based 125 

on a profile scaling approach, in which TROPOMI-observed spectra are fitted by scaling a reference vertical profile 126 

of CO using the Tikhonov regularization technique (Borsdorff et al., 2014). The reference CO profile is obtained from 127 

the TM5 transport model (Krol et al., 2005). The averaging kernel (A) quantifies the sensitivity of the retrieved total 128 

CO column to variations in the true vertical profile (ρtrue), as follows (Borsdorff et al., 2018a): 129 

Cretrieval = A. ρtrue + ∈CO                                                            (1) 130 

where, Cretrieval is the retrieved column average CO mixing ratio, ∈CO is the retrieval error, statistically represented by 131 

the retrieval uncertainty that is provided for each CO retrieval.  132 

 133 

2.3 Satellite Data Selection and Filtering Criteria  134 

As NO2 and CO are retrieved from different channels of TROPOMI using different retrieval algorithms, the filtering 135 

criteria and spatial resolutions of CO and NO2 are different. The data filtering makes use of the quality assurance value 136 

(qa) and is provided with the CO and NO2 retrievals, ranging from 0 (no data) to 1 (high quality data). We selected 137 

NO2 retrievals with qa ≥ 0.75 (clear sky condition) and CO retrievals with qa ≥ 0.7 (clear sky or low level cloud) as 138 

in Lama et al., (2020). The SICOR algorithm was originally developed for SCIAMACHY to account for the presence 139 

of low elevation clouds, increasing the number of valid measurements (Borsdorff et al., 2018a). In addition, the CO 140 

stripe filtering technique is applied as described by Borsdorff et al. (2018). Using dry air column density derived from 141 

the surface pressure data in CO and NO2 TROPOMI files, the total CO column and tropospheric NO2 column densities 142 

are converted to dry column mixing ratios XCO (ppb) and XNO2 (ppb). The spatial resolution of the NO2 data is finer 143 

compared to the CO data (3.5x7 km2 versus 5.5x7 km2). After the CO and NO2 retrievals pass the filtering criteria, 144 

their co-location is approximated by assigning the centre coordinates of an NO2 retrieval to the CO footprint in which 145 

it is located (Lama et al., 2020).  146 

 147 

2.4 Weather Research Forecast (WRF) 148 

We have used WRF (http://www.wrf-model.org/ ), version 3.9.1.1 to simulate NO2 and CO mixing ratios over Riyadh. 149 

WRF is a non-hydrostatic model designed by the National Center for Environmental Protection (NCEP) for both 150 

atmospheric research and operational forecasting applications. For this study, we have setup three nested domains in 151 

the model at resolutions of 27 km, 9 km and 3 km, centred at 24.63°N, 46.71°E. The first and second domain cover 152 

Saudi Arabia and provide the boundary conditions for the nested third domain (see Fig. S3). The analysis in this paper 153 

uses the 500 x 500 km2 sub region around Riyadh in the third domain, containing 161 by 161 grid cells. All domains 154 

are extended vertically from the Earth’s surface to 50 hPa, using 31 vertical layers, with 17 layers in the lowermost 155 

1500 m. WRF simulations are performed using a time step of 90 seconds for the period June 2018 to March 2019, 156 

using a spin-up time of 10 days.   157 

We have used the Unified Noah land surface model for surface physics (Ek et al., 2003; Tewari et al., 2004), an 158 

updated version of the Yonsei University (YSU) boundary layer scheme (Hu et al., 2013) for the boundary layer 159 

processes, and the Rapid Radiative Transfer Method (RRTM) for short-wave and long-wave radiation (Mlawer et al., 160 

1997). Cloud physics is solved with the new Tiedtke cumulus parameterization scheme (Zhang & Wang, 2017). The 161 

WRF Single Moment 6-class scheme is used  for microphysics (Hong & Lim, 2006). The WRF coupling with 162 

chemistry (WRF-chem) allows the simulation of tracer transport and the chemical transformation of trace gases and 163 

https://cophub.copernicus.eu/s5pexp
http://www.wrf-model.org/
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aerosols. Here, we used the passive tracer transport function instead of the encoded chemistry in WRF to speed up the 164 

model simulation. In addition, the passive tracer option helps in separating the influences of wind, OH and the rate 165 

constant of the NO2+OH reaction (KNO2.OH) on the NO2/CO ratio in the downwind city plume. The function of 166 

different tracers, their acronym and explanation of different WRF simulations is provided in Table 1. 167 

 168 

Table 1. Summary of WRF simulations and the definition of tracers and acronym used. 169 

WRF Simulation / Tracer WRF input / Tracer definition  

Prior WRF run using NCEP meteorological data, EDGAR CO and NOx emissions, 

CAMS OH, and CAMS CO and NOx as initial and lateral boundary conditions.                                                    

WRFOH*1.1   Prior run with CAMS OH increased by 10 %  

Optimized run1st iter  Optimized state (background, emission, OH) after iteration 1 

Optimized run2nd iter   Optimized state (background, emission, OH) after iteration 2 

CO 

XCOemis The contribution of urban CO emissions to XCO   

XCOBg The contribution of the background to XCO  

XCO WRF  XCO from the Prior run   

XCO WRF,1st iter XCO from Optimized run1st iter 

XCO WRF,opt XCO from Optimized run2nd iter   

NO2 

XNO2 emis The contribution of urban NOx emissions to XNO2, ignoring the OH sink   

XNO2 (emis,OH) As XNO2 (emis,OH) accounting for the OH sink 

XNO2 (emis,OH∗ 1.1) As XNO2(emis,OH) with CAMS OH increased by 10%  

 XNO2 Bg The contribution of the background to XNO2   

XNO2 WRF  XNO2 from the Prior run.  

XNO2 (WRF ,OH∗ 1.1) XNO2 from WRFOH*1.1. 

XNO2 WRF  1st iter XNO2 from Optimized run1st iter 

XNO2 WRF  opt XNO2 from Optimized run2nd iter 

Ratio (NO2/CO) 

Ratiowithout OH  Ratio of  XNO2 emis and  XCOemis  

Ratiowith OH  Ratio of  XNO2 (emis,OH) and  XCOemis  

RatioBg  Ratio of   XNO2 Bg and XCOBg  

WRF Ratio  Ratio of   XNO2 WRF and XCOWRF  

WRF RatioOH∗1.1 Ratio of  XNO2 (WRF,OH∗ 1.1) and XCOWRF 

WRF Ratio1st iter Ratio of  XNO2 WRF ,1st iter and XCO WRF,1st iter 

WRF Ratioopt Ratio of  XNO2 WRF,opt and XCO WRF,opt 

 170 

The meteorological initial and boundary conditions are based on NCEP data at 1°x1° spatial and 6-hr temporal 171 

resolution available at https://rda.ucar.edu/datasets/ds083.2/. Nitrogen Oxides (NOx = NO2 +NO) and CO 172 

anthropogenic emissions have been taken from the Emission Database for Global Atmospheric Research v4.3.2 173 

(EDGAR) 2012 at 0.1°x0.1° spatial resolution (Crippa et al., 2016). Note that recently also EDGAR v5 2015 (Crippa 174 

et al., 2020) has been made available at https://edgar.jrc.ec.europa.eu/index.php/dataset_ghg50, but these new data are 175 

not used in this study. The EDGAR 2012 data has been re-gridded to the resolution of the WRF domains and hourly, 176 

weekly and monthly emission variations are taken into account using the temporal emission factors provided by van 177 

der Gon et al. (2011). The chemical boundary conditions for CO and NOx are based on the CAMS chemical reanalysis 178 

product at 0.75°x0.75° spatial, and 3-hourly temporal resolution (Inness et al., 2019), retrieved from 179 

https://rda.ucar.edu/datasets/ds083.2/
https://edgar.jrc.ec.europa.eu/index.php/dataset_ghg50
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https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form, last access: 1st 180 

November, 2020). XCO and XNO2 boundary condition based on CAMS is assumed to be representative as background 181 

value within the domain. Since we do not explicitly compute the sources and sinks of background NO2 inside the 182 

domain, we decide to transport the boundary conditions as background passive tracers. 183 

The conservative transport in WRF causes the influence of NOx  and CO emissions from Riyadh on their column 184 

average mixing ratios  to be linear. For chemistry, we only consider the first–order loss of NOx by the hydroxyl radical 185 

(OH) converting nitrogen dioxide (NO2) to nitric acid (HNO3). Note that in this study, OH is only applied to the urban 186 

NOx emission tracer (XNOx (emis,OH)).  The CAMS NOx background tracer (XNOx Bg  ) is transported in WRF without 187 

OH decay, since it already represents the balance between regional sources and sinks. CAMS hydroxyl radical (OH) 188 

data at a resolution of 0.75°x0.75° spatial and 3 hourly temporal resolution (Inness et al., 2019) retrieved at 189 

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form, last access: 1st July, 190 

2020) is spatially, temporally and vertically interpolated to the WRF grid. The NOx lifetime is derived as follows: 191 

dNOx

dt
=  

dNO2

dt
  =     KNO2 OH. OH. NO2                                           (2) 192 

 193 

fact =  
NOx

NO2

                                                        (3) 194 

τNOx =  
1

 
KNO2 OH

fact
. OH 

                                    (4) 195 

 196 

where, KNO2 OH is the International Union of Pure and Applied Chemistry (IUPAC) 2nd order rate constant for the 197 

reaction of  NO2 with OH [REF?]. “fact” represents the fractional contribution of NO2 to NOX (NOx/NO2). This NOx 198 

to NO2 conversion factor is derived from the CAMS reanalysis and re-gridded to WRF, to account for its spatial and 199 

temporal variation. τNOx is the lifetime of NOx.  200 

 201 
 202 

In earlier work with satellite NO2 data, the Jet Propulsion Laboratory (JPL) high pressure limit was used as rate 203 

constant to represent the first order loss of NO2 (Beirle et al., 2011; Lama et al., 2020; Lorente et al., 2019).  However, 204 

we found this approximation to be too crude, and therefore apply the full IUPAC recommended pressure dependent 205 

formula for the 2nd order rate constant.  Supplement Figure S4 shows the difference between the three rate constants, 206 

Figure 1. TROPOMI derived XCO (left) and average wind speed and wind direction from the surface to the top of 

boundary layer derived from the CAMS global reanalysis eac4 data at the TROPOMI overpass time over Riyadh 

for August 4th, 2018. The white star represents the centre of Riyadh. The black box (B1) with a dimension of 300 x 

100 km2 is rotated in the average wind direction at 50km radius from the centre of Riyadh at the TROPOMI 

overpass time resulting in the red box. For the calculation of cross-directional averaged NO2 and CO, the red box 

is divided into 29 smaller cells with the width (∆x) ~11km. For this TROPOMI derived XCO is gridded at 

0.1°x0.1°. 

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form
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i.e. JPL high pressure limit, JPL 2nd order and IUPAC 2nd order, confirming the importance of accounting for the 207 

pressure dependence.  208 

WRF output for the third domain is interpolated spatially and temporally to the footprints of TROPOMI. The 209 

interpolated WRF- NOx tracers are converted to NO2 using the conversion factor derived from the CAMS reanalysis 210 

accounting for its spatial and temporal variation (for the names and functions of tracers see Table 1). The averaging 211 

kernel available for each TROPOMI CO and NO2 observation is applied to the WRF output, after interpolation to the 212 

vertical layers of the TROPOMI retrieval. To compare WRF output to TROPOMI,  WRF derived XNO2  (XNO2 WRF ) 213 

is calculated by combining the NO2 emission tracer that accounts for the OH effect (XNO2 (emis,OH)) and the CAMS 214 

NO2 background  ( XNO2 Bg) (see Fig. S5 and S6) . Similarly, the CO emission tracer (XCOemis) is added to the CAMS 215 

CO background (XCOBg) to calculate WRF simulated XCO (XCO WRF ) (see Fig. S7 and S8).  216 

 217 

2.5 NO2/CO ratio calculation using box rotation  218 

The variation of the NO2/CO ratio in the downwind city plume is calculate as a function of distance x from the city 219 

centre in downwind direction.  We select days with an average wind speed (U) in the range of 3.0 m/s (Beirle et al., 220 

2011a) < U < 8.5 m/s (Valin et al., 2013) within a 50 km radius from the centre of Riyadh (24.63° N, 46.71° E). The 221 

horizontal distribution of EDGAR emissions over Riyadh is used within this 50 km radius (Fig S9). Ninety five days 222 

in summer and 70 days in winter meet the wind speed criteria over Riyadh for the ratio calculation. The boundary 223 

layer average wind speed and direction is calculated using the CAMS global reanalysis eac4 (retrieved at 224 

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form , last access : 1st 225 

August, 2020) at a resolution of 0.75°x0.75° spatial and 3 hourly temporal resolution.  For this, the CAMS wind vector 226 

is spatially and temporally interpolated to the central coordinate of TROPOMI pixels.  227 

To compute the NO2/CO ratio as function of the downwind distance x, TROPOMI and WRF data have been re-gridded 228 

at 0.1°x0.1°. A box (B1) is selected with a width of 100 km, from 100 km in upwind to 200 km in downwind direction 229 

of the city centre (see Fig 1a). The dimension of the box is motivated by multiple TROPOMI overpasses over Riyadh 230 

showing NO2 and CO enhancements advected downwind over a ~200 km distance, without other large sources of NO2 231 

and CO within a 100 km radius of the city centre (see Fig. 1a). Figure 1(b) shows the boundary layer averaged wind 232 

speed and wind direction over Riyadh indicating flow towards the northeast on 4th of August, 2018. The box is rotated 233 

for every TROPOMI overpass depending upon the daily average wind direction within a 50 km radius from centre of 234 

Riyadh as shown in Figure 1(a) and Figure S10. The rotated box B1 is divided into N rectangular boxes, orthogonal 235 

to the wind direction with length (∆x) ~11 km (see Fig. 1 and Fig. S10). The XNO2 and XCO grid cells that fall within 236 

the N rectangular boxes are selected  to derive zonally averaged XNO2 and XCO for summer and winter.   237 

Unlike the enhancements over the city, ∆XNO2 and ∆XCO become smaller than retrieval uncertainties at large 238 

distance from the city, where the ratio ∆XNO2/∆XCO becomes ill-defined. Therefore, we decided to use the ratio of 239 

mean XNO2 and XCO instead of enhancements over the background.  To analyse the influence of atmospheric 240 

transport and the OH sink on the WRF derived XNO2/XCO ratio two different ratios are derived: 1. 
XNO2 emis

XCOemis
, named 241 

“Ratiowithout OH”, 2. 
XNO2 (emis,OH)

XCOemis
, named “Ratiowith OH”( see Table 1). The CAMS background accounts for the 242 

balance between regional source and sink in CTMs so it is excluded to analyze the influence of atmospheric transport 243 

on the ratio. For the comparison between TROPOMI and WRF, the CAMS backgrounds are included in  “WRF 244 

RATIO” (
XNO2 WRF

XCOWRF
) (see Table 1). The comparison of WRF RATIO to TROPOMI ratio, and the contribution of its 245 

components,  is presented in  section 3.2.  246 

 247 

2.6 OH estimation: satellite data only  248 

In the EMG method, following Beirle et al. (2011), 2D NO2 column densities maps are assigned to eight equal wind 249 

sectors, spanning 360 degree for summer and winter. 1D column densities per wind sector are computed by averaging 250 

in cross wind direction. This way, average NO2 column density functions of the downwind distance to the city centre 251 

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form
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have been constructed for summer and winter (see Fig. S11). Using the EMG method as in Beirle et al., (2011), the e-252 

folding distance x0 and NO2 emissions have been estimated. The NO2 lifetime is derived by dividing x0 by the average 253 

wind speed (5.46 m/s and 5.24 m/s for winter and summer, respectively) and is provided in Table 2. The OH 254 

concentration is derived from the inferred NO2 lifetime using the IUPAC second order rate constant (for details see 255 

section S2 and S3). Using equation 4, the NOx life time is derived. EMG derived NO2 emissions are also converted 256 

to NOx emissions using the CAMS-derived conversion factor. Summer and winter averaged CAMS derived 257 

conversion factors for the box of 300km x 100km are 1.28 and 1.31, respectively.   258 

2.7 OH estimation: WRF optimization   259 

To jointly estimate the NOx and CO emissions as well as the OH concentration from the TROPOMI data, a least 260 

squares optimization method is used. This method fits the model to the data by minizing a cost function (J) (see S1 261 

for details). The reaction of NO2 with OH introduces a non-linearity in the OH optimization. To account for this non-262 

linearity, we linearize the problem around the a priori starting point, using small perturbations (10%) ∆background, 263 

∆emission, ∆OH. The non-linear model is fitted to the observations, by optimizing scaling factors fBg, femis , fOH to the 264 

perturbation functions ∆background, ∆emission and  ∆OH, respectively. This process is repeated iteratively, updating 265 

the linearization point and re-computing the perturbation functions.   266 

We estimate OH by optimizing WRF with TROPOMI in two ways 1) optimizing the simulated NO2/CO ratio using 267 

TROPOMI-derived ratios, named as “Ratio optimization” and 2) optimizing NO2 and CO separately using TROPOMI 268 

derived XCO and XNO2 named as “Component wise optimization”. First the ratio optimization is described followed 269 

by the component wise optimization. Optimized ratios are derived as follows: 270 

FTROPOMI =  F +
∆F

∆emis
∗

femis 

10
+  

∆F

∆OH
∗

fOH

10
+

∆F

∆Bg
∗

fBg

10
                         (5)   271 

F                        =  
XNO2 WRF

XCOWRF
   272 

XNO2 WRF     =  XNO2 (emis,OH) +  XNO2 Bg                                              (6) 273 

XCO WRF         =  XCOemis +  XCOBg                                                            (7) 274 

∆F

∆emis
             =   

XNO2 (emis,OH) ∗ 1.05 + XNO2 Bg

XCOemis ∗ 0.95 + XCOBg
 − F                       (8) 275 

∆F

∆OH
                =  

XNO2 (emis,OH∗1.1)+XNO2 Bg

XCOemis+XCOBg
 −  F                                           (9)  276 

∆F

∆Bg
            =  

XNO2 (emis,OH ) + XNO2 Bg ∗ 1.05

XCOemis + XCOBg ∗ 0.95
 −  F                             (10) 277 

Here, FTROPOMI is the TROPOMI derived NO2/CO ratio, F is the WRF Ratio , 
∆F

∆emis
 is the change in F due to an 278 

increase in the NO2 emission by 5 % and a decrease in the CO emission by 5 %  (1.05/0.95 = ~10 %), 
∆F

∆OH
  is the 279 

change in F due to an increase in OH by 10 % and 
∆F

∆Bg
 is the change in F due to an increase in the XNO2 background 280 

by 5 % and a decrease in the CO background by 5 %. XNO2 (emis,OH) is the contribution of city NOx emissions to 281 

XNO2 accounting for the OH sink, XNO2 Bg is the NO2 background. XCOemis is the contribution of the EDGAR city 282 

CO emissions to XCO and XCOBg is the CO background derived from CAMS.  XNO2 WRF  and XCOWRF  is the WRF 283 
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derived XNO2 and XCO respectively.  XNO2 (emis,OH∗ 1.1) is the contribution of city NOx emissions to XNO2 after 284 

increasing CAMS OH by 10 %.  285 

Although the ratio optimization is sensitive to the emission ratio and the OH sink of NO2, it is not sensitive to the 286 

absolute emissions of CO and NO2. Therefore, we performed component-wise optimizations for XCO and XNO2  to 287 

optimize absolute emissions. We also compare the OH factor obtained from the ratio optimization and component-288 

wise optimization to test the robustness of the method.  The optimized XNO2 is derived using equation 11. XCO is 289 

optimized using the same equation but without considering the OH sink (see Appendix B).  290 

XNO2 TROPOMI =  XNO2 WRF +  ∆XNO2 emis ∗
femis 

10
+ ∆XNO2 OH ∗

fOH 

10
+  ∆XNO2 Bg ∗

fBg 

10
        (11) 291 

∆XNO2 emis = XNO2 (emis,OH) ∗ 1.10 − XNO2 (emis,OH)                                          (12) 292 

∆XNO2 OH = XNO2 (emis,OH∗ 1.1) −  XNO2 (emis,OH)                                                  (13) 293 

∆XNO2 Bg = XNO2 Bg ∗ 1.10 −  XNO 2 Bg                                                                    (14) 294 

Here, XNO2 TROPOMI is the TROPOMI derived XNO2, XNO2 WRF is the WRF XNO2. ∆XNO2 emis is the change in 295 

XNO2 due to an increase in emission by 10 %, ∆XNO2 OH is change in XNO2 due to an increase in CAMS OH by 10 296 

% and ∆XNO2 Bg  is a change in the background XNO2 by 10 %.  297 

Figure 2. Comparison between XNO2 (left) and XCO (right) from TROPOMI and WRF over Riyadh averaged over  June 

to October, 2018. Top panels show TROPOMI data and bottom panels the corresponding co-located WRF results. 

XNO2 WRF is derived by adding  XNO2 (emis,OH) and XNO2 Bg  . XCO WRF  is derived by adding  XCOemis  and XCOBg. The 

white star represents the centre of city. TROPOMI and WRF results are gridded at 0.1˚x0.1˚. 
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3. Results and Discussion 298 

3.1.  XNO2 and XCO over Riyadh   299 

In this subsection, we compare WRF-derived XCOWRF  and   XNO2 WRF  with TROPOMI for summer (see Fig.  2) and 300 

winter (see Fig. S6) over Riyadh. TROPOMI and WRF derived XCO and XNO2 are averaged from June to October 301 

2018 for summer and November 2018 to March 2019 for winter in a domain of 500 x 500 km2 centered around Riyadh.  302 

The comparison for summer in Figure 2 shows bias-corrected TROPOMI NO2 after replacing the TM5-based 303 

tropospheric AMF with WRF profiles as described in Visser et al. (2019). The enhancement of XNO2 and XCO over 304 

Riyadh due to urban emissions is clearly separated from the background for TROPOMI and WRF, showing that the 305 

city of Riyadh is well suited to investigate the use of the NO2/CO ratio to quantify OH in urban plumes. Due to the 306 

longer life-time of CO, the TROPOMI-observed XCO plume extends further in the southeast direction compared to 307 

XNO2.  Figure 2 shows that our WRF simulations are able to reproduce the TROPOMI retrieved XNO2 (r2 = 0.96) 308 

and XCO (r2 =0.78) plumes, confirming that WRF-derived 
XNO2 WRF 

XCOWRF
 is suitable for the optimization of CTM-derived 309 

OH concentrations using TROPOMI data.  XNO2 WRF is higher by 25 % compared to TROPOMI in the city centre. In 310 

the background, XCOWRF shows a similar spatial distribution as TROPOMI XCO, but the values are higher by 5 to 10 311 

% (see Fig 2.).  Close to the city centre, XCOWRF is ~5.7 % higher than TROPOMI XCO. In EDGAR 2011, emission 312 

sources are located in the centre of Riyadh (see Fig. S9). However, as noted by Beirle et al. (2019) they extend to a 313 

larger part of the city in reality. This difference in spatial distribution leads to higher XNO2 WRF  and XCOWRF close to 314 

centre of Riyadh compared to TROPOMI.  315 

In winter, the wind direction is predominantly from the south easterly sector in WRF and TROPOMI (see Fig S12). 316 

The spatial distribution of XCOWRF  (r2 = 0.73) and XNO2 WRF (r2 = 0.88 ) matches quite well with TROPOMI. 317 

Therefore, the difference between summer and winter should offer the opportunity to quantify the seasonality in 318 

emissions and OH concentrations over Riyadh. In winter, XCOWRF is ~5 to 10 % higher than TROPOMI, while 319 

XNO2 WRF is higher by  40 % to 50 %. The difference could either point to uncertainties in the emission NO2/CO 320 

emission ratio, uncertainties in the NO2 lifetime, or inaccuracies in the background. By quantifying OH, we can 321 

evaluate these explanations (see section 3.3). XNO2 WRF is higher by 20 % in winter than in summer. Contrary, 322 

TROPOMI NO2 is lower by ~30 % in winter (Fig S12.) compared to summer (Fig. 2). Again, to disentangle the role 323 

of changing sources and sinks, we need an independent estimates of OH.  324 
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 325 

3.2. The XNO2/XCO ratio and OH 326 

Before comparing TROPOMI and WRF-derived XNO2/XCO ratios, we first analyse the influence of atmospheric 327 

transport and the OH sink on the WRF derived XNO2/XCO ratio. To do this three ratios are used 1. Ratiowithout OH  328 

2. Ratiowith OH  3. WRF RATIO  (see Table 1). As seen in Figure 3, S13 and S14,  WRF is able to reproduce the 329 

TROPOMI-observed downwind evolution of XNO2 and XCO in summer and winter. The peak of the XNO2 and XCO 330 

plumes is shifted away from the city centre due to the balance between the accumulation of urban emissions in the 331 

atmospheric column and atmospheric transport (Lorente et al., 2019).  332 

As expected, Ratiowithout OH  shows an approximately straight line when the background is removed, because 333 

transport influences NO2 and CO in the same way and therefore cancels out in the ratio (see Fig. 3b).  The Ratiowith OH  334 

however, shows an approximately Gaussian relation with distance due to the influence of the sink on NO2. This 335 

comparison demonstrates the sensitivity of the relation between XNO2/XCO ratio and downwind distance to the NO2 336 

lifetime, which we want to exploit to quantify OH.  When including the background, the shapes of the functions  in 337 

Figure 3c change (not shown), because the relative weights of the background and city contributions to the ratio vary 338 

with distance of the city centre. In summer, the WRF RATIO is higher by ~15 % close to centre of city TROPOMI 339 

due to the overestimation of XNO2 WRF  in WRF (see Fig. 3d). However in the downwind plume, at a distance of 100 340 

km WRF RATIO is higher by 20 to 50 % compared to TROPOMI.  341 

In winter, Ratiowithout OH and Ratiowith OH  show relations with downwind distance that are similar to summer, 342 

confirming that an OH sink leads to a Gaussian structure of the ratio (see Fig. S14). The winter WRF RATIO  is 49 343 

% higher than TROPOMI due to the overestimation of XNO2 by 40 to 50 %. The WRF RATIO close to the centre of 344 

Figure 3. Comparison of WRF and TROPOMI  zonally averaged a) XNO2, b) XCO and c) WRF Ratio (XNO2/ 

XCO) without CAMS background d) TROPOMI and WRF Ratio (XNO2/ XCO) with  background as a function of 

distance to the centre of Riyadh  for summer ( June, 2018  to October, 2019).  
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city is also 20% higher in winter than in summer, due to higher winter XNO2 WRF  than in summer (see Fig S12 and 345 

S15).  In contrast, TROPOMI shows a higher ratio in summer compared to winter (see Fig S15). These differences 346 

between TROPOMI and WRF-derived ratios offer an opportunity to address uncertainties in CTM computed urban 347 

OH and emission inventories, which will be explored next. 348 

  349 

Figure 4. Comparison between TROPOMI and WRF, before and after optimization for Summer (averaged over June 

to October, 2018).  a) XNO2/XCO ratio, b) XNO2 and c) XCO in comparison to TROPOMI. fOH, femis and fBg  are 

optimized scaling factors obtained iteratively for OH, emissions and background by least square optimization 

method. femis , fOH and fBg are derived by accounting the total change in emission, OH and background  using the 

corresponding scaling factors obtained from 1st and 2nd iterative step. The unit of scaling factor is in percent (%). 
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3.3 WRF optimization 350 

To translate the discrepancies between TROPOMI and WRF derived ratios of section 3.2 into implied differences in 351 

emissions and OH, the least squares optimization method has been used as described in section 2.6. Before optimizing 352 

WRF using TROPOMI, pseudo data experiments in WRF have been carried out to test if the optimization method is 353 

capable of recovering true emissions and OH levels. To this end, changes in OH concentrations, emissions and 354 

background by known scaling factors have been applied to the WRF prior simulation to create a synthetic dataset. 355 

This process is repeated multiple times to create thousands of synthetic datasets. Subsequently, the scaling factors are 356 

obtained in the inversion procedure. These tests reveal that the estimation errors for femis , fOH and fBg are less than 2.5 357 

% (see Fig. S16). This confirms that the least square optimization method works, with two iterations leading to a 358 

sufficient accuracy, and can be used to estimate emissions and OH from TROPOMI data. Using TROPOMI data, 359 

estimation errors for femis , fOH and fBg are expected to be higher due to atmospheric transport errors, simplified  360 

chemistry, and XCO and XNO2 retrieval uncertainties . These errors did not play a role in the pseudo-data experiments, 361 

in which perfect transport and sampling was assumed. The results for summer are summarized in Figure 4, showing 362 

the optimized fit to the TROPOMI data as well as the corresponding scaling factors femis , fOH and fBg that are estimated. 363 

The optimized emission, OH and Bg obtained from 2nd iteration is divided by Prior to derive the femis , fOH and fBg. The 364 

results of iterative step for summer and winter is shown in Fig S17 and S18.   365 

 366 

Figure 5. As Figure 4, for Winter (averaged over November, 2018 to March, 2019) 
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Figure 4a shows WRF ratios for summer in comparison to TROPOMI, before and after optimizing the OH 367 

concentration. The optimized WRF ratios fit the TROPOMI ratios well with Χ2 = 0.1 (for the derivation of Χ2 see 368 

section S4) . The estimated uncertainties for the scaling factors femis, fOH and fB are derived by summing the 369 

contribution of wind speed, length and width of box and NO2 bias correction in quadrature as provided in Tables S1 370 

and S2.  For summer and winter,  the uncertainties of the optimized OH concentrations range from 11 % to 15 %. For 371 

NOx and CO emissions, these uncertainty ranges are ~25 % and ~10 to 15 %, respectively.  According to the ratio 372 

optimization, the CAMS OH and the emission ratio are underestimated by 32.03±4.0 % and 155.1±14.9 % 373 

respectively. The CAMS background ratio is overestimated by 70.1± 6.2%. It should be realized here that the ratio 374 

optimization does not estimate the absolute emission of NO2 and CO, but only their ratio.  375 

To investigate the implication of this, we performed component-wise optimizations of WRF-derived XCOWRF  and 376 

XNO2 WRF. Optimized XCOWRF  and XNO2 WRF fit well to the TROPOMI data (see Fig. 4b and 4c). In the XNO2 377 

optimization, the EDGAR NOx emission is increased by 42.1±9.5 % and the CAMs background is reduced by 75.92± 378 

10.0 %. OH is increased by 28.3± 3.7%, close to the results obtained from the ratio optimization. In the XCO 379 

optimization, EDGAR CO emissions are roughly doubled and the background is reduced by 4.55± 0.5% compared to 380 

CAMS . The ratio optimization suggests to increase the prior emission ratio 0.68 by 155.1%. The summer optimized 381 

NOx/CO emission ratio derived from the component wise optimization is 0.38. The optimized emission ratio from 382 

ratio optimization is larger by factor 4.7  compared to component wise optimization. The difference between two 383 

estimates can be explained by different constraints on the solution in the two methods. In particular, the ratio inversion 384 

allows emission adjustment in a fixed relation between NO2 and CO emissions whereas the component wise has the 385 

full flexibility to adjust CO and NO2 emission. The difference between the two estimates is larger than expected but 386 

does not affect the OH estimation. Lama et al., (2020) calculated TROPOMI derived summer emission (NO2/CO) 387 

ratio for 2018  over Riyadh and mentioned that Monitoring Atmospheric Chemistry and Climate and 388 

CityZen (MACCity) emission ratio is more consistent with the TROPOMI derived ratio than EDGAR. The optimized 389 

emission ratio obtained from component wise optimization is consistent to Lama et al., (2020) and MACCity summer 390 

emissions. This shows that for the accurate estimation of the emission and emission ratio, the component wise 391 

optimization method is  preferable. 392 

Figure 5  presents optimization results for winter, where optimized WRF is in similar good agreement with  TROPOMI 393 

as for summer with Χ2 = 0.11 . For winter, the ratio optimization increases OH by 52.0±5.3  % and the emission ratio 394 

by 58.8± 30.2%. The ratio and component-wise optimizations again show similar OH adjustments, demonstrating the 395 

robustness of our method.  The background ratio is reduced by 66.80±5.8 %. The component-wise optimization for 396 

XNO2 reduces the EDGAR NOx emission by 15.45±3.4%  and the CAMS background by 70.23±6.1 %. For XCO, 397 

the WRF XCOBg  is reduced by 1.73±0.1 % in combination with a doubling of the EDGAR CO emission.  The 398 

optimized emission ratio (NOx/CO) derived from component wise optimization is 0.33 which is lower by 3.5 times 399 

than optimized emission ratio obtained from ratio optimization.    400 
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Table 2. Overview of WRF optimized OH and NOx emissions for Riyadh and comparison to the EMG method.  The 401 

estimated uncertainty for EMG and WRF derived NOx emission and OH concentration is the sum of the contribution 402 

of wind speed, length and width of box and NO2 bias correction provided in Table S1, S2 and S3.  403 

 404 

To investigate the consistency between our method and the EMG method, the derived NOx lifetimes, emissions and 405 

OH concentrations using both methods are listed in Table 2 for winter and summer. Our optimization  and the EMG 406 

method agree well on the seasonal change in NOx emission and OH concentration. Both methods result in higher NOx 407 

emissions and shorter lifetimes in summer; lower NOx emissions and longer lifetimes in winter. Riyadh has a dry and 408 

warm summer days and the increase in power consumption due to the use of air conditioning contributes to the higher 409 

emission in summer than in winter  (Lange et al., 2021). During the summer, EMG and the WRF optimization method 410 

both increase the NOx emission and OH concentration compared with the prior. The size of the NOx emission and OH 411 

concentration increase, obtained using the WRF optimization method is higher than the EMG method by 15%  to 29 412 

%. However, the difference between the EMG method and the component optimization method are smaller compare 413 

to the uncertainty of the emission and OH concentration derived for the optimization method. For winter, the 414 

dissimilarity between the EMG method and the prior reduces after optimization. The NOx emission after optimization 415 

differs from the EMG method by 33 %. Optimized OH concentration and NOx lifetime differs by <10 % compared 416 

to EMG method. In general, the difference between the EMG and optimization results is within the uncertainty range 417 

of 20 to 30 %, confirming their consistency and strengthening the confidence in the estimates that are obtained from 418 

TROPOMI data.  419 

 420 

In contrast to EMG method, the optimization method can be used for a single TROPOMI overpass and does not require 421 

yearly averaged NO2 data. Segregation and averaging of NO2 urban plume by wind sector is not required in the 422 

optimization method. The effect of transport cancels out in taking the NO2 / CO ratio and loss of NO2 is mostly 423 

governed by OH. In this study, NOx emission and OH concentration is estimated iteratively whereas the EMG method 424 

arrives it the solution in a single step.  However, since our optimization method requires a WRF model simulation it 425 

is computationally more expensive.  Uncertainties in transport may create mismatches with the satellite observations, 426 

leading to errors in the optimized fit. This influences the quality of derived emission estimates (Dekker et al., 2017). 427 

Therefore, finding a simplified approach using satellite data to derive the emission ratio and to estimate OH 428 

concentration in urban plumes will be our focus in the future.  429 

 430 

It should be realized that the a priori EDGAR emissions and TROPOMI optimized estimates represent different years 431 

(2012 and 2018, respectively). To check whether the emission differences that are found may be explained by trends 432 

in emissions, we compare EDGAR 2012 NOx and CO emissions with 2018 accounting for seasonal and diurnal 433 

emission variations using temporal emission factors by van der Gon et al., (2011). EDGAR 2018 NOx and CO 434 

emissions are derived by linear extrapolation using emission from 2000 to 2015 (see Figure S19). For summer mid-435 

day NOx emissions, the EDGAR emissions increased by 17.7 % from 2012 to 2018, which is lower than our 436 

optimization results. For winter, mid-day NOx emissions increase in EDGAR by 13 % from 2012 to 2018, whereas 437 

the WRF optimization yield reductions by 15.6%. In EDGAR, summer and winter CO emissions increased from 2012 438 

 

Parameter  

Summer  

WRF Optimization 

Summer 

EMG 

Winter 

WRF Optimization 

Winter  

EMG  

Prior After Prior  After  

NOx emission 

(kg/second) 

8.2 11.6±2.4 8.6±1.2 9.4 7.9±1.8 5.3±1.5 

OH  

(1e7, molecules/cm3) 

1.3 1.7 ± 0.2 1.4 ± 0.2 0.86 1.3 ±0.14 1.2 ± 0.1 

NOx lifetime 

(hr) 

3.1  2.4 ± 0.4 2.9 ± 0.3 4.9 3.3 ± 0.3 3.6 ± 0.3 
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to 2018 by 25.5  % and 20.0 %, respectively. However, the WRF optimization suggests that the EDGAR CO emissions 439 

for summer and winter need to be doubled (see Table S4). Borsdorff et al., (2018) mentioned that EDGAR CO 440 

emissions has to be increased significantly to match with TROPOMI CO observations over middle eastern cities such 441 

as Tehran, Yerevan, Tabriz and Urmia. Overall , this points to a significant uncertainty in the EDGAR emission 442 

inventory at the city scale.  443 

To test the accuracy of the linear extrapolation of EDGAR data, we compare the relative change in NOx and CO 444 

emission in 2012 to 2018 using CAMS Global (CAMS–GLOB) anthropogenic v4.2 emission datasets 445 

(https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-inventories?tab=overview).  CAMS –446 

GLOB shows that for summer and winter NOx emission increases by 26 % from 2012 to 2018, which is higher by a 447 

factor 2 than EDGAR. CAMS-GLOB based  summer and winter CO emission increases by 20 % from 2012 to 2018 448 

which differs by ~20 % compared to EDGAR. In general, the relative increase in CO and NOx emission from EDGAR 449 

and CAMS-GLOB is much smaller compared to the difference with our optimization method.  450 

We realise that our method only considers the first order loss of NO2 by OH forming HNO3. In reality, the NO2 lifetime 451 

is influenced by more spatially and temporally varying factors such as temperature, ozone, and radiation (Lang et al., 452 

2015; Romer et al., 2018). In cities, the loss of NO2 via the formation of alkyl and multifunctional nitrates (RONO2) 453 

are also important reactions influencing the lifetime of NO2 (Browne et al., 2013; Sobanski et al., 2017). For CO, 454 

secondary production from short-lived volatile organic compounds can also play an important role in urban pollution 455 

plumes. The application of full chemistry that includes all the sources and losses of NO2 and CO could therefore 456 

further improve the accuracy of OH estimates.  457 

Another complicating factor is the strong variation in chemical regime that is expected in city air pollution plumes. 458 

Close to high NOx sources, OH tends to be titrated away by the NO2 (Valin et al., 2011). Further from the source, 459 

chemical conditions may be favorable for OH formation and recycling, reducing the NO2 lifetime. To investigate this 460 

in order to refine the OH estimates presented in this paper, again a full chemistry framework would be required. 461 

Figure S20 shows that power plants and manufacturing industries are the largest pollutant emitter over Riyadh  (Beirle 462 

et al., 2019). In this study, NOx and CO anthropogenic emissions are introduced at the surface, whereas the emission 463 

height of different sources is expected to vary in reality. The different emission heights for NOx and CO emission 464 

sources can also influence the result. In the future, realistic emission heights should also be incorporated in WRF for 465 

accurate estimation of OH. Moreover, the temporal emission factors that have been used by van der Gon et al., (2011) 466 

are based on European countries. The comparison of  van der Gon et al., (2011) with the Copernicus Atmosphere 467 

Monitoring Service TEMPOral profiles (CAMS-TEMPO) suggests that temporal emission factors for weekend road 468 

transport and monthly residential combustion are different in Riyadh compared to European countries. Road transport, 469 

CO emission has the largest contribution ~75 % to the total emission over Riyadh, whereas NOx emission from road 470 

contributes by 24% to the total NOx emission. Residential combustion has the smallest contribution of ~0.3 to 0.4 % 471 

to total NOx and CO emissions (see Fig S20 ).  In the future, the application of accurate diurnal emission factors for 472 

road transport can further improve the accuracy of urban OH concentrations estimated using TROPOMI derived 473 

XNO2/CO ratios. In addition, the seasonality for NOx and CO emissions is different in Riyadh than in Europe, which 474 

should be accounted for in future studies also.  475 

5 Conclusions 476 

In this study, a new method is presented for estimating OH concentrations in urban plumes using TROPOMI observed 477 

XNO2/XCO ratios in combination with WRF simulations of the downwind pollution plume of large cities. Our new 478 

method has been tested for the city of Riyadh using synthetic as well as real TROPOMI data.  Seasonal emissions and 479 

OH concentrations have been estimated for summer (June to October, 2018) and winter (Nov, 2018 to March, 2019).  480 

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-inventories?tab=overview
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WRF is well able to reproduce the spatial distribution of TROPOMI retrieved XNO2 and XCO plumes over Riyadh 481 

during the summer and winter seasons.  However, the TROPOMI observed level of XNO2 is lower than simulated 482 

using WRF by 25 % in summer and 40 to 50 % in winter. In both seasons, TROPOMI XCO agrees within 10 % with 483 

WRF. The variation in XNO2, XCO and their ratio as a function of downwind distance to the centre of Riyadh agrees 484 

well between WRF and TROPOMI. However, the WRF derived XNO2/XCO ratio is higher by 15% to 30 % in summer 485 

and 49 % in winter compared to TROPOMI, explained mostly by the difference in XNO2.  486 

The differences between WRF and TROPOMI observations have been used to optimize emissions and the NO2 487 

lifetime. To this end, scaling factors for the city emissions, OH and the background level have been optimized 488 

iteratively using a least squares method. Ratio and component wise optimizations have been compared to test the 489 

overall consistency of the method. In summer, the ratio and XNO2 optimization for XNO2 suggest that the OH prior 490 

from CAMS is underestimated by 32.03±4.0%. Estimates obtained from the ratio and NO2-only optimization agree 491 

within 10 %, demonstrating the robustness of the method. Summertime emissions of NOx and CO from EDGAR are 492 

increased by 42.1±8.7 % and 100.8±9.5%. For winter, the ratio and component wise optimizations increase OH by 493 

~52.0±5.3 % to fit TROPOMI inferred ratios. In the optimization of winter data, NOx emissions are reduced by 15.45± 494 

3.4% and CO emissions are doubled. In the future, the remaining differences between TROPOMI observations and 495 

WRF simulations could be reduced further by the use of precise temporal and monthly emission factors, emission 496 

heights and full chemistry to account for secondary sources of CO and NO2.   497 

TROPOMI inferred OH concentrations obtained from the least squares optimization method have been compared to 498 

the EMG method. For the summer, the optimized OH concentrations differ by 18 %, whereas they are within 7.5 % 499 

during winter. These results confirm that urban emissions and OH concentrations can robustly be estimated from 500 

TROPOMI data. With our method, single TROPOMI overpass can be used to estimate OH whereas EMG method 501 

requires averaging of NO2 urban plume by wind sector. The iterative approach allows to test the factors i.e. femis, foh 502 

and fbg  obtained from optimization method, whereas EMG method does not allows such flexibility.   503 

An important remaining uncertainty is the bias correction of the TROPOMI XNO2 retrieval. Following the 504 

recommended procedure, the air mass factor AMF is recalculated by replacing the tropospheric AMF based on TM5, 505 

that is provided with the data, with WRF-chem. The TROPOMI XNO2 bias correction increases the mixing ratio in 506 

the urban plume of Riyadh by 5 to 10 % in summer and 25 to 30 % in winter. The background is less affected by the 507 

bias correction.  Without TROPOMI XNO2 bias correction, the uncertainty in scaling factor for OH can vary up to 20 508 

% and NOx emission to 60 % over Riyadh.    509 

Appendix A: NO2 bias correction 510 

The air mass factor (AMF) used in the retrieval of TROPOMI XNO2 has been re-calculated by replacing the 511 

tropospheric AMF, calculated from the NO2 column simulated by TM5, with its WRF-chem equivalent, as described 512 

by Lamsal et al. (2010) and Boersma et al. (2016) using the following equation, 513 

Mtrop,   WRF =  Mtrop,   TM5  ×  
∑ Atrop,lxl,WRF

L
l=1

∑ xl,WRF
L
l=1

                                     (16)                                514 

where, Mtrop,WRF   and Mtrop,TM5 are the tropospheric air mass factors derived from WRF and TM5, respectively.  515 

Atrop,l is the tropospheric averaging kernel, ranging from the surface to the uppermost layer of the troposphere in the 516 

TM5 model (l). xl,WRF is the equivalent NO2 column density in model layer l, based on WRF. Atrop in equation 16  is 517 

derived using Atrop = A ×
M

Mtrop
, where M and Mtrop are the total and tropospheric AMF’s respectively. Finally, the 518 

bias corrected NO2 vertical column density is computed using, 519 

NO2,   bias corrected  =  
Mtrop,   TM5

Mtrop,   WRF

 × NO2 520 
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where,  NO2  is the TROPOMI tropospheric NO2 vertical column density and NO2,   bias corrected   is the bias corrected 521 

TROPOMI tropospheric NO2 vertical column density. 522 

  523 

Appendix B 524 

The component wise optimization of XCOWRF  to estimate the emission and background of CO uses the following 525 

equation, 526 

XCOTROPOMI =  XCOWRF +  ∆XCOemis ∗
femis 

10
+  ∆XCOBg ∗

fBg 

10
 527 

XCOWRF       =  XCOemis + XCOBg 528 

∆XCOemis     =  XCOemis ∗ 1.10 − XCOemis 529 

∆XCOBg        =  XCOBg ∗ 1.10 − XCOBg 530 

Here, XCOTROPOMI is TROPOMI XCO, XCOWRF is the WRF simulated XCO accounting for emissions and background 531 

CO, XCOemis is the XCO contribution from the urban CO emission and XCOBg is the CAMS-derived XCO 532 

background. ∆XCOemis is the change in XCO due to emission and  ∆XCOBg is the change in the XCO background 533 

level.  534 
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