References

Abercrombie, R.E. (1995), Earthquake source scaling relationships from -1 to 5 ML using seismograms recorded at 2.5-km depth, J. Geophys. Res. 100, 24015–24036.
Aki, K. (1965), Maximum likelihood estimate of \(b\) in the formula\(\log N=a-bM\) and its confidence limits, Bull. Earthquake Res. Inst. 43, 237-239.
Alava, M.J., Nukala, P.K.V. and Zapperi, S. (2008), Fracture size effects from disordered lattice models, Int. J. Fract. 154, 51-59.
Alber, M. and Hauptfleisch, U. (1999), Generation and visualization of micro-fractures in Carrara marble for estimating fracture toughness, fracture shear and fracture normal stiffness, Int. J. Rock Mech. Min. Sci. 36, 1065-1071.
Andrew, M. (2018), A quantified study of segmentation techniques on synthetic geological XRM and FIB-SEM images, Computational Geosciences 22, 1503-1512.
Ashby M.F. and Sammis, C.G. (1990), The damage mechanics of brittle solids in compression, PAGEOPH 133, 489-521.
Ashby, M.F. and Hallam, S.D. (1986), The failure of brittle solids containing small cracks under compressive stress states, Acta Metall. 34, 497-510.
Bandini, A., Berry, P., Bemporad, E., and Sebastiani, M. (2012), Effects of intra-crystalline microcracks on the mechanical behavior of a marble under indentation, Int. J. Rock Mech. Min. Sci. 54, 47-55.
Bell, A.F., Naylor, M. and Main, I.G. (2013a), Convergence of the frequency-size distribution of global earthquakes, Geophys. Res. Lett. 40, 2585-2589.
Bell, A.F., Naylor, M. and Main, I.G. (2013b), The limits of predictability of volcanic eruptions from accelerating rates of earthquakes, Geophys. J. Int. 194, 1541-1553.
Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P. and Berkowitz, B. (2001), Scaling of fracture systems in geological media, Rev. Geophys. 39, 347-383.
Bouchaud, E. (1997), Scaling properties of cracks, J. Phys. Condens. Matter 9, 4319-4344.
Bouchaud, E., Lapasset, G., and Planès, J. (1990), Fractal dimension of fractured surfaces: a universal value?, Europhys. Lett. 13, 73-79.
Brace, W.F., Paulding, B. and Scholz, C. (1966), Dilatancy in the fracture of crystalline rocks. J. Geophys. Res. 71, 3939-3953.
Brantut, N., Baud, P., Heap, M.J. and Meredith, P.G. (2012), Micromechanics of brittle creep in rocks, J. Geophys. Res. 117, B08412.
Brantut, N., Heap, M.J., Baud, P. and Meredith, P.G. (2014), Rate- and strain-dependent brittle deformation of rocks, J. Geophys. Res. Solid Earth 119, 1818-1836.
Bruce, A. and D. Wallace (1989). Critical point phenomena: universal physics at large length scales, in: Davies, P. (ed.), The New Physics, Cambridge University Press, Cambridge UK.
Bruner, W.M. (1984), Crack growth during unroofing of crustal rocks: effects of thermoelastic behavior and near-surface stresses, J. Geophys. Res. 89, 4167-4184.
Bruner, W.M. (1979), Crack growth and the thermoelastic behavior of rocks, J. Geophys. Res. 84, 5578-5590.
Bufe, C.G. and Varnes, D.J. (1993), Predictive modeling of the seismic cycle of the greater San Francisco Bay region, J. Geophys. Res. 98, 9871-9883.
Burnham, K.P. and Anderson, D.R. (2002), Model selection and multi-model inference: a practical information-theoretic approach (2nd ed.), Springer, New York.
Butler, I.B., Flynn, M., Fusseis, F. and Cartwright-Taylor, A. (2017), Mjolnir: a novel x-ray transparent triaxial rock deformation apparatus, ICTMS2017-56, 3rd International Conference on Tomography of Materials and Structures, Lund, Sweden, 26-30 June.
Cartwright-Taylor, A. (2015), Deformation-induced electric currents in marble under simulated crustal conditions: non-extensivity, superstatistical dynamics and implications for earthquake hazard, PhD thesis, University College London.
Cartwright-Taylor, A., Main, I.G., Butler, I.B., Fusseis, F., Flynn M. and King, A. (2020): In-situ rock deformation and micron-scale crack network evolution: a high-resolution time-resolved x-ray micro-tomography dataset, British Geological Survey (Dataset) https://doi.org/10.5285/0dc00069-8da8-474a-8993-b63ef5c25fb8.
Ceva, H. and Perazzo, R.P.J. (1993), From self-organized criticality to first-order-like behaviour: A new type of percolative transition, Phys. Rev. E 48, 157-160.
Cho, N., Martin, C.D. and Sego, D.S. (2007), A clumped particle model for rock, Int. J. Rock Mech. Min. Sci. 44, 997-1010.
Clint, O.C., Meredith, P.G. and Main, I.G. (2001), Relation between crack damage and permeability near the percolation threshold in a near perfect crystalline rock, Geophys. Res. Abstr. 3, 346.
Cornelius, R.R. and Voight, B. (1994), Seismological aspects of the 1989-1990 eruption at Redoubt Volcano, Alaska: The Materials Failure Forecast Method (FFM) with RSAM and SSAM seismic data, J. Volcanol. Geotherm. Res. 62, 469-498.
Cowie, P.A., Sornette, D. and Vanneste, C. (1995), Multifractal scaling properties of a growing fault population, Geophys. J. Int. 122, 457-469.
Crawford, B.R., Smart, B.G.D., Main, I.G. and Liakopoulou-Morris, F. (1995). Strength characteristics and shear acoustic anisotropy of rock core subjected to true triaxial compression, Int. J. Rock Mech. Min. Sci. 32, 189-200.
Damjanac, B. and Fairhurst, C. (2010), Evidence for a long-term strength threshold in crystalline rock, Rock Mech. Rock Eng. 43, 513-531.
David, C., Menendez, B. and Darot, M. (1999), Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite, Int. J. Rock Mech. Min. Sci. 36, 433–448.
Descoteaux, M., Audette, M., Chinzei, K. and Siddiqi,K. (2005), Bone enhancement filtering: application to sinus bone segmentation and simulation of pituitary surgery, in: Duncan, J.S. and Gerig, G. (eds.), Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI), Palm Springs, California, USA, Lecture Notes in Computer Science 3749, 09–16.
Desrues, J., Chambon, R., Mokni, M. and Mazerolle, F. (1996), Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography, Geotechnique 46, 529-546.
Fairhurst, C. and Cook, N.G.W. (1966), The phenomenon of rock splitting parallel to the direction of maximum compression in the neighborhood of a surface, In: Zeitlen, J.G. (ed) Proceedings of First Congress of the International Society of Rock Mechanics (Lisbon, September-October 1966) Vol 1., LNEC, Lisbon, 687-692.
Faulkner, D.R., Mitchell, T.M., Healy, D. and Heap, M.J. (2006), Slip on ‘weak’ faults by the rotation of regional stress in the damage zone, Nature 444, 922-925.
Fredrich, J.T., and Wong T.-F. (1986), Micromechanics of thermally induced cracking in three crustal rocks, J. Geophys. Res. 91, 12743–12764.
Fredrich, J.T., Evans, B., and Wong, T.-F. (1989), Micromechanics of the brittle to plastic transition in Carrara marble. J. Geophys. Res. Solid Earth 94, 4129-4145.
Fusseis, F., Steeb, H., Xiao, X., Zhu, W., Butler, I., Elphick, S. and Mäder, U. (2014), A low-cost X-ray-transparent experimental cell for synchrotron-based X-ray microtomography studies under geological reservoir conditions, J. Synchrotron Rad. 21, 251-253.
Girard, L., Amitrano, D. and Weiss, J. (2010), Failure as a critical phenomenon in a progressive damage model, J. Stat. Mech. Theory Exp. P01013.
Goodfellow, S.D. and Young, R.P. (2014), A laboratory acoustic emission experiment under in-situ conditions, Geophys. Res. Lett. 41, 3422-3430.
Graham, C.C., Stanchits, S., Main, I.G. and Dresen, G. (2010), Comparison of polarity and moment tensor inversion methods for source analysis of acoustic emission data, Int. J. Rock Mech. Min. Sci. 47, 161-169.
Greenhough, J. and Main, I.G. (2008), A Poisson model for earthquake frequency uncertainties in seismic hazard analysis, Geophys. Res. Lett. 35, L19313.
Griffith, A.A. (1921), The phenomena of rupture and flow in solids, Phil. Trans. R. Soc. A 221, 163-198.
Griffith, A.A. (1924), Theory of rupture, Proc. First Int. Congress Appl. Mech., Delft, 55-63.
Griffiths, L., Lengliné, O., Heap, M.J., Baud, P. and Schmittbuhl, J. (2018), Thermal cracking in Westerly granite monitored using direct wave velocity, coda wave interferometry and acoustic emissions, J, Geophys. Res. Solid Earth 123, 2246-2261.
Guéguen, Y. and Schubnel, A. (2003), Elastic wave velocities and permeability of cracked rocks, Tectonophys. 370, 163-176.
Hallbauer, D.K., Wagner, H. and Cook N.G.W. (1973), Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 10, 713-726.
Haneberg, W.C. (2004), Computational Geosciences with Mathematica, Springer-Verlag, Berlin Heidelberg New York.
Healy, D., Blenkinsop, T.G., Timms, N.E., Meredith, P.G., Mitchell, T.M. and Cooke, M.L. (2015), Polymodal faulting: time for a new angle on shear failure, J. Struct. Geol. 80, 57-71.
Hildebrand, T. and Rüegsegger, P. (1997), A new method for the model‐independent assessment of thickness in three‐dimensional images, J. Microscopy 185, 67-75.
Horii, H. and Nemat-Nasser, S. (1985), Compression-induced microcrack growth in brittle solids: axial splitting and shear failure, J. Geophys. Res. 90, 3105-3125.
Horii, H. and Nemat-Nasser, S. (1986), Brittle failure in compression: splitting, faulting and brittle-ductile transition, Phil. Trans. R. Soc. A 319, 337-374.
Hurvich, C.M. and Tsai, C.-L. (1989), Regression and time series model selection in small samples, Biometrika 76, 297-307.
Kagan, Y.Y. (2002), Seismic moment distribution revisited: i. statistical results, Geophys. J. Int. 148, 520-541.
Kagan, Y.Y. and Schoenberg, F. (2001), Estimation of the upper cutoff parameter for the tapered Pareto distribution, J. Appl. Probab. 38, 168-185.
Kamb, W.B. (1959), Ice petrofabric observations from Blue Glacier, Washington, in relation to theory and experiment, J. Geophys. Res. 64, 1891-1909.
Kandula, N., Cordonnier, B., Boller, E., Weiss, J., Dysthe, D.K. and Renard, F. (2019), Dynamics of microscale precursors during brittle compressive failure in Carrara marble, J. Geophys. Res. Solid Earth, 124, 6121-6139.
Kijko, A. and Graham, G. (1998), Parametric-historic procedure for probabilistic seismic hazard analysis part i: estimation of maximum regional magnitude \(m_{\max}\), PAGEOPH 152, 413-442.
Kilburn, C.R.J. (2003), Multiscale fracturing as a key to forecasting volcanic eruptions, J. Volcanol. Geotherm. Res. 125, 271-289.
Kilburn, C.R.J. and Voight, B. (1998), Slow rock fracture as eruption precursor at Soufriere Hills, Geophys. Res. Lett. 25, 3665-3668.
Kosterlitz, J.M. (1974), The critical properties of the two-dimensional xy model, J. Phys. C: Solid State Phys. 7, 1046-1060.
Kosterlitz, J.M. and Thouless, D.J. (1973), Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C: Solid State Phys. 6, 1181-1203.
Kranz, R.L. (1979), Crack-crack and crack-pore interactions in stressed granite, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 16, 37-47.
Kun, F., Pal, G., Varga, I. and Main, I.G. (2018), Effect of disorder on the spatial structure of damage in slowly compressed porous rocks, Phil. Trans. R. Soc. A 377, 20170393.
Kun, F., Varga, I., Lennartz-Sassinek, S. and Main, I.G. (2013), Approach to failure in porous granular materials under compression, Phys. Rev. E 88, 062207.
Lajtai, E.Z. (1974), Brittle fracture in compression. Int. J. Fract. 10, 525-536.
Lei, X. and Satoh, T. (2007), Indicators of critical point behavior prior to rock failure inferred from pre-failure damage, Tectonophys. 431, 97-111.
Lei, X., Kusunose, K., Nishizawa, O., Cho, A. and Satoh, T. (2000), On the spatiotemporal distribution of acoustic emissions in two granitic rocks under triaxial compression: the role of pre-existing cracks, Geophys. Res. Lett. 27, 1997-2000.
Lennartz-Sassinek, S., Main, I.G., Zaiser, M. and Graham, C.C. (2014), Acceleration and localization of subcritical crack growth in a natural composite material, Phys. Rev. E 90, 052401.
Leonard, T. and Hsu, J.S.J. (1999), Bayesian Methods, Cambridge University Press, Cambridge UK.
Liakopoulou-Morris, F., Main, I.G., Crawford, B.R. and Smart, B.G.D. (1994), Microseismic properties of a homogeneous sandstone during fault nucleation and frictional sliding, Geophys. J. Int. 119, 219-230.
Lockner, D., Byerlee, J.D., Kuksenko, V., Ponomarev, A. and Sidorin, A. (1992), Observations of quasi-static fault growth from acoustic emissions, in: Evans, B. and Wong, T.-F. (eds.), Fault Mechanics and Transport Properties of Rocks (1st ed.), International Geophysics 51, 3-31.
Lockner, D., Byerlee, J.D., Kuksenko, V., Ponomarev, A. and Sidorin, A. (1991), Quasi-static fault growth and shear fracture energy in granite. Nature 350, 39-42.
Lominitz-Adler, J., Knopoff, L. and Martinez-Mekler, G. (1992), Avalanches and epidemic models of fracturing in earthquakes, Phys. Rev. A 45, 2211-2221.
Main, I.G. (1996), Statistical physics, seismogenesis and seismic hazard, Rev. Geophys. 34, 433-462.
Main, I.G., Meredith, P.G., Sammonds, P.R. and Jones, C. (1990), Influence of fractal flaw distributions on rock deformation in the brittle field, in: Knipe, R.J. and Rutter, E.H. (eds.), Deformation Mechanisms, Rheology and Tectonics, Geol. Soc. Spec. Pub. 54, 81-96.
Main, I.G. (1992). Damage mechanics with long-range interactions: correlation between the seismic b-value and the two point correlation dimension, Geophys. J. Int. 111, 531-541.
Main, I.G., Sammonds, P.R. and Meredith, P.G. (1993), Application of a modified Griffith criterion to the evolution of fractal damage during compressional rock failure, Geophys. J. Int. 115, 367-380.
Mandelbrot, B., Passoja, D.E., and Paullay, A.J. (1984), Fractal character of fracture surfaces of metals, Nature 308, 721-722.
Meijering, E.H.W. (2010), FeatureJ 1.6.0, Biomedical Imaging Group Rotterdam, Erasmus MC, University Medical Center Rotterdam, The Netherlands, 2002-2010 (http://www.imagescience.org/meijering/software/featurej/).
Meredith, P.G., Clint, O.C., Ngwenya, B., Main, I.G., Odling, N.W.A. and Elphick, S.C., (2005), Crack damage and permeability evolution near the percolation threshold in a near-perfect crystalline rock, in: Shaw, R.P., (ed.) Understanding the Micro to Macro Behavior of Rock-Fluid Systems, Geol. Soc. Spec. Pub. 249, 159-160.
Meredith, P.G., Main, I.G., Clint, O.C. and Li, L. (2012), On the threshold of flow in a tight natural rock, Geophys. Res. Lett. 39, L04307.
Mignan, A. and Woessner, J. (2012), Estimating the magnitude of completeness for earthquake catalogues. Community Online Resource for Statistical Seismicity Analysis, pp. 1–45.
Mirone, A., Brun, E., Gouillart, E., Tafforeau, P. and Kieffer, J. (2014), The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative re-construction and a priori knowledge capabilities. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 324, 41–48.
Mitchell, T.M. and Faulkner, D.R. (2012), Towards quantifying the matrix permeability of fault damage zones in low porosity rocks, Earth Planet. Sci. Lett. 339-340, 24-31.
Molli, G. and Heilbronner, R. (1999), Microstructures associated with static and dynamic recrystallization of Carrara marble (Alpi Apuane, NW Tuscany, Italy), Geologie en Mijnbouw 78, 119-126.
Moura, A., Lei, X.-L., Nishizawa, O., 2005. Prediction scheme for the catastrophic failure of highly loaded brittle materials or rocks. J. Mech. Phys. Solids 53, 2435–2455
Nemat-Nasser, S. and Horii, H. (1982), Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst, J. Geophys. Res. 87, 6805-6821.
Nemat-Nasser, S. and Obata, M. (1988), A microcrack model of dilatancy in brittle materials, J. Appl. Mech. 55, 24-35.
Nicksiar, M. and Martin, C.D. (2013), Crack initiation stress in low porosity crystalline and sedimentary rocks, Eng. Geol. 154, 64-76.
Nicksiar, M. and Martin, C.D. (2014), Factors affecting crack initiation in low porosity crystalline rocks, Rock Mech. Rock Eng. 47, 1165-1181.
Nozieres, P. (1992), Shape and growth of crystals, in: Godrèche, C. (ed.), Solids Far From Equilibrium, Cambridge University Press, Cambridge UK.
Odling, N.W.A., Elphick, S.C., Meredith, P., Main, I. and Ngwenya, B.T. (2007), Laboratory measurement of hydrodynamic saline dispersion within a micro-fracture network induced in granite, Earth Planet. Sci. Lett. 260, 407-418.
Oesterling, N. (2004), Dynamic recrystallization and deformation mechanisms of naturally deformed Carrara marble: a study on one- and two-phase carbonate rocks, PhD thesis, University of Basel.
Ojala I.O., Main, I.G. and Ngwenya, B.T. (2004), Strain rate and temperature dependence of Omori law scaling constants of AE data: implications for earthquake foreshock-aftershock sequences, Geophys. Res. Lett. 31, L24617.
Ollion, J., Cochennec, J., Loll, F., Escudé C. and Boudier, T. (2013), TANGO: A Generic Tool for High-throughput 3D Image Analysis for Studying Nuclear Organization, Bioinformatics 29, 1840-1841.
Olson, J.E., & Pollard, D.D. (1991), The initiation and growth of en échelon veins, J. Struct. Geol. 13, 595-608.
Ouillon, G. and Sornette, D. (2000), The concept of ‘critical earthquakes’ applied to main rockbursts with time-to-failure analysis, Geophys. J. Int. 143, 454–468.
Pál, G., Jánosi, Z., Kun, F. and Main, I.G. (2016). Fragmentation by slow compression of porous rocks, Physical Review E 94, 053003.
Pisarenko, V.F. (1991), Statistical evaluation of maximum possible earthquakes, Phys. Solid Earth 27, 757-763.
Potyondy, D.O. and Cundall, P.A. (2004), A bonded particle model for rock, Int. J. Rock Mech. Min. Sci. 41, 1329-1364.
Ramez, M.R.H. and Murrell, S.A.F. (1964), A petro-fabric analysis of Carrara marble. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1, 217-229.
Reches, Z. and Lockner, D.A. (1994), Nucleation and growth of faults in brittle rocks, J. Geophys. Res. 99, 18159-18173.
Renard, F., Cordonnier, B., Dysthe, D.K., Boller, E., Tafforeau, P. and Rack A. (2016), A deformation rig for synchrotron microtomography studies of geomaterials under conditions down to 10 km depth in the Earth, J. Synchrotron Rad. 23, 1030-1034.
Renard, F., Cordonnier, B., Kobchenko, M. and Kandula, N. (2017), Microscale characterization of rupture nucleation unravels precursors to faulting in rocks, Earth Plan. Sci. Lett. 476, 69-78.
Renard, F., Weiss, J., Mathiesen, J. Ben-Zion, Y., Kandula, N. and Cordonnier, B. (2018), Critical evolution of damage toward system-size failure in crystalline rock, J. Geophys. Res. 123, 2017JB014964.
Richter, D. and Simmons G. (1974), Thermal expansion behaviour of igneous rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15, 145–148.
Roberts, N.S., Bell, A.F. and Main, I.G. (2015), Are volcanic seismic\(b\)-values high, and if so when? J. Volc. Geotherm. Res. 308, 127-141.
Robertson, M.C., Sammis, C.G., Sahimi, M. and Martin, A.J. (1995), Fractal analysis of three-dimensional spatial distributions of earthquakes with a percolation interpretation, J. Geophys. Res. 100, 609-620.
Rundle, J.B. and Klein, W. (1989), Nonclassical nucleation and growth of cohesive tensile cracks, Phys. Rev. Lett. 63, 171-174.
Russ, J.C. (1994), Fractal Surfaces, Plenum Press, New York.
Rydelek, P.A. and Sacks, I.S. (1989), Testing the completeness of earthquake catalogues and hypothesis of self-similarity, Nature 337, 251–253.
Sammis, C.G. and Ashby, M.F., (1986), The failure of brittle porous solids under compressive stress states, Actaa Metall. 34 511-526.
Sammis, C.G. and Sornette, D. (2002), Positive feedback, memory and the predictability of earthquakes, PNAS 99, 2501-2508.
Sammonds, P.R., Meredith, P.G. and Main, I.G. (1992), Role of pore fluids in the generation of seismic precursors to shear fracture, Nature 359, 228-230.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., (2012), Fiji: an open-source platform for biological-image analysis, Nature Methods 9, 676–682.
Schmittbuhl, J. and Maloy, K.J. (1997), Direct observation of a self-affine crack propagation, Phys. Rev. Lett. 78, 3888-3891.
Schmittbuhl, J., Schmitt, F., and Scholz, C. (1995), Scaling invariance of crack surfaces, J. Geophys. Res. 100, 5953-5973.
Sethna, J.P. (2006). Statistical mechanics: entropy, order parameters, and complexity. Oxford University Press, Oxford UK.
Simmons, G. and Cooper, H.W. (1978), Thermal cycling cracking in three igneous rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15, 145-148.
Smith, R., Sammonds, P.R. and Kilburn, C.R.J. (2009), Fracturing of volcanic systems: experimental insights into pre-eruptive conditions, Earth Planet. Sci. Lett. 280, 211-219.
Sornette, D. (2006), Critical phenomena in natural sciences: chaos, fractals, self-organization and disorder: concepts and tools, Springer, Berlin.
Sornette, D. (2009), Dragon-kings, black swans and the prediction of crises, in press in the Int. J. of Terraspace Sci. and Eng. 2, 1-18, https://arxiv.org/abs/0907.4290
Sornette, D. and Sammis, C.G. (1995), Complex critical exponents from renormalization group theory of earthquakes: implications for earthquake predictions, J. Phys. I [French] 5, 607-619.
Stanley, H.G. (1971), Introduction to phase transitions and critical phenomena, Oxford University Press, Oxford UK.
Sykes, L.R. and Jaumé, S. (1990), Seismic activity on neighboring faults as a long-term precursor to large earthquakes in the San Francisco Bay area, Nature 348, 595–599.
Tapponnier, P. and Brace, W.F. (1976), Development of stress-induced microcracks in Westerly granite, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 13, 103-112.
Thomas, A.L., & Pollard, D.D. (1993), The geometry of echelon fractures in rock: implications from laboratory and numerical experiments, J. Struct. Geol. 15, 323-334.
Thouless (1989), Condensed matter physics in less than three dimensions, in: Davies, P. (ed.), The New Physics, Cambridge University Press, Cambridge UK.
Turcotte, D. (1997), Fractals and chaos in geology and geophysics, Cambridge University Press, Cambridge UK.
Tyupkin, Y.S. and Giovambattista, R.D. (2005), Correlation length as an indicator of critical point behavior prior to a large earthquake, Earth Planet. Sci. Lett. 230, 85–96.
Utsu, T., Ogata, Y. and Matsu’ura, R.S. (1995), The centenary of the Omori formula for a decay law of aftershock activity, J. Phys. Earth 43, 1-33.
Vasseur, J., Wadsworth, F.B., Heap, M.J., Main, I.G., Lavallée, Y. and Dingwell, D. B. (2017), Does an inter-flaw length control the accuracy of rupture forecasting in geological materials? Earth Plan. Sci. Lett. 475, 181-189.
Vasseur, J., Wadsworth, F.B., Lavallée, Y., Bell, A.F., Main, I.G. and Dingwell, D. B. (2015), Heterogeneity: the key to failure forecasting, Sci. Rep. 5, 13259.
Vinciguerra, S., Trovato, C., Meredith, P.G. and Benson P.M. (2005), Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts, Int. J. Rock Mech. Min. Sci. 42, 900–910.
Voight, B. (1988), A method for prediction of volcanic eruptions, Nature 332, 125-130.
Voorn, M., Exner, U. and Rath, A. (2013), Multiscale Hessian fracture filtering for the enhancement and segmentation of narrow fractures in 3D image data, Comp. Geosci. 57, 44-53.
Weiss, J. (2001), Self-affinity of fracture surfaces and implications on a possible size effect on fracture energy, Int. J. Fract. 109, 365-381.
Woessner, J. and Wiemer, S. (2005), Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty, Bull. Seismol. Soc. Am. 95, 684-698.
Zhang, S., Cox, S.F., and Paterson, M.S. (1994), The influence of room temperature deformation on porosity and permeability in calcite aggregates. J. Geophys. Res. Solid Earth, 99, 15761-15775.
Zöller, G., Hainzl, S. and Kurths, J. (2001), Observation of growing correlation length as an indicator for critical point behavior prior to large earthquakes, J. Geophys. Res. 106, 2167-2175.