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Introduction  

This document and associated separate files contains supporting information in the form of text, 

figures, tables and movies related to the 4D crack network evolution within two Ailsa Craig 

microgranite samples, which differed only in their degree of starting heterogeneity. These data 

were created from analysis of x-ray μCT images collected during experiments conducted at 

SOLEIL synchrotron in December 2016. The samples were deformed by triaxial compression 

under a constant confining pressure of 15MPa, during which the deformation was imaged in-situ 

at various stages during each experiment. The text S1-S5 gives additional detail about the data 

processing and analysis techniques described in the main text. Figures S1 and S3 show crack 

volume and inter-crack length distributions respectively from one stage of deformation with the 

associated Poisson errors and the most likely statistical distribution of the data, while Figure S2 

shows the results of the Information Criterion used to distinguish the most likely statistical 

distribution for the crack volumes at all stages of deformation and Figure S4 shows the evolution 

with strain of the correlation length and the most likely empirical model for each sample. Figures 

S5 and S6 are zip files containing high resolution png files of the images shown in Figures 4 and 

5 respectively in the main text, labelled according to the conventions shown in Tables 3 and 4 

respectively. Table S1 relates to Figures 5 and 6 in the main text, showing the total data from 

which the percentage scales in those figures were derived. Tables S2 and S3 show the 
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Information Criterion results for the evolution with strain of porosity and the number of cracks 

for each sample, and relates to Figure 9b,c in the main text. Table S4 shows the Information 

Criterion results for the evolution with strain of the correlation length and relates to Figure 13a in 

the main text. Table S5 shows the Information Criterion results for the evolution with stress of 

the correlation length and relates to Figure 12. Movies S1-S4 are mp4 files showing time-lapse 

video of the crack network evolution in each sample viewed from two different angles; along and 

across the loading axis. 

 

Text S1. Image analysis 

S1a. Segmentation 

The Hessian eigenvectors give the local principal direction of curvature and each of these 

has a corresponding magnitude (eigenvalue). The eigenvalues represent the magnitude of the 

largest local contrast change, and the local contrast change in the other two orthogonal principal 

directions. For narrow fractures with a low intensity on a brighter background, we are interested 

in the case where one eigenvalue has a high positive value in conjunction with small values for 

the other two. The corresponding eigenvector is normal to the planar feature (Voorn et al., 2013). 

S1b. 3D microcrack orientations and geometries (object-based) 

The best-fitting ellipsoid around each individual segmented crack, �, was calculated 

from the crack’s 3D moments of inertia. First-order moments define the crack’s center of mass 

(centroid): �� = [∑ ��	 ]/�(�), �� = [∑ ��]	 /�(�) and �� = [∑ ��	 ]/�(�), where �(�) is the 

volume of the crack and (�� , �� , ��) is a point in the crack. Second-order moments define the 

inertia (or covariance) matrix, �: ��� = [∑ (�� −	 ��)�]/�(�), ��� = [∑ (�� −	 ��)�]/�(�), ��� =
[∑ (�� −	 ��)�]/�(�), ��� = [∑ (�� −	 ��)��� − ���]/�(�), ��� = [∑ (�� −	 ��)(�� − ��)]/
�(�) and ��� = [∑ (�� −	 ��)(�� − ��)]/�(�), with eigenvalues corresponding to ellipsoid radii 

as described in the main text and eigenvectors representing ellipsoid axes orientations. The 

eigenvector corresponding to the largest eigenvalue in � is the orientation of the major ellipsoid 

axis and to the smallest eigenvalue is the orientation of the minor ellipsoid axis, and so on.  

 

Text S2. Akaike Information Criterion calculation 

Calculated from the residual sum of squares, ���, as follows: ��� = � ln(��� �⁄ ) + 2#, 

where � is the number of observations in the sample and # is the number of parameters in the 

model, i.e., the number of parameters in the model equation plus 1 to account for the error 

(Burnham and Anderson, 2002). This value was then corrected as follows: ���$ = ��� +
(2#(# + 1))/(� − # − 1), appropriate in the case that � < 40#, which is true here as the 

number of µCT scans in each experiment is < 40. Then, ∆���$ =  ���$*�+ − ���$� and the 

likelihood of model ,�, given the data is ℒ(,�|�) = /(∆01	2 �⁄ ), representing the relative likelihood 

that ,� (with ���$�) is equally as good as ,*�+ (with ���$*�+). 

 

Text S3. Maximum likelihood 3-value estimation and Bayesian Information Criterion 

We first estimated the 4-parameter for the characteristic Pareto distribution. The 

logarithm of the likelihood function, ℓ, for n observations of fracture volume, ��, is: ℓ =
�[4 log(�8) + log(4)] − (1 + 4) ∑ log ��

+
�9:  (eqn. 21 in Kagan, 2002). Optimization of this 
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function was carried out by minimizing the negative log-likelihood (−ℓ) using the fminsearch 

MATLAB function. Similar optimizations of the two-parameter log-likelihood functions for the 

truncated and tapered Pareto distributions (eqns. 26 and 37 respectively in Kagan, 2002) did not 

converge so we used the 4-parameter estimate from the characteristic Pareto distribution 

together with the one-parameter estimations presented in Kagan (2002) to determine the 

unbiased �2-parameter (corner volume) for (i) the truncated Pareto: �2 =  �*;� {1 + 1/
�4[��*;�/�8)= − 1>} (Pisarenko, 1991; Kijko and Graham, 1998; eqn. 27 in Kagan 2002), and (ii) 

the tapered Pareto based on statistical moments of the volume distribution: �2* = [∑ ��
� �⁄ −

�8
�]/2[�84 + (1 − 4)�@] , where �@ = :

+
∑ �� is the average fracture volume (Kagan and 

Schoenberg, 2001; eqn. 35 in Kagan, 2002).  

We then used a modified Bayesian Information Criterion (A��) to distinguish between 

the three competing models (Bell et al., 2013a), introducing an appropriate penalty for the 

additional parameters �2  and �2*  in the TRP and TAP models respectively: A�� = −2 ln(ℓ) +
# ln(�), where ℓ is the likelihood function, � is the total number of events and # is the number of 

model parameters, including the error (Leonard and Hsu, 1999). The difference is then: 

∆A��BCDECF = −2(∆ ln(ℓ)) + ln(�). In this notation, the preferred model has the lower BIC so 

in the case described (GR-TRP), ∆A�� < 0 if the unrestricted Pareto model (GR) is preferred and 

∆A�� > 0 if the truncated Pareto model (TRP) is preferred. The same calculation was performed 

to compare the unrestricted Pareto model (GR) with the tapered Pareto model (TAP): 

∆A��BCDE0F. 

 

Text S4. Estimation of two-point correlation dimension H  

If the number of features I with a characteristic linear dimension greater than J 

(complementary cumulative) satisfies the condition I(J ≥ J�) ~ JDM, then a fractal is defined 

with a fractal dimension N (Turcotte, 1997). The derivative of this condition is then 

OI ~ JDMD: OJ. This translates in our case, for finite inter-crack lengths P� with a higher 

probability of large inter-crack lengths than small ones, to a cumulative probability density 

function, Q(P ≤ P�) ∝  P�
M and an incremental probability density function, Q� ∝  P�

MD:. The 

exponent, N�+2 = N − 1, of the PDF of P� in the identified power-law region, 30 < P� < 1350 

μm, was obtained from the gradient of the best-fitting linear regression model in log-log space 

(Figure S3). From this the fractal dimension, N = N�+2 + 1. Confirmation of N was obtained from 

a separate but equivalent modelling of the cumulative distributions, Q(P ≤ P�) for 30 < P� <
1350 μm, which showed that N2V* ~ N�+2 + 1. 

 

Text S5. Inverse power-law parameters for correlation length, W as a function of stress, X  

The model Y/Z = #([\ − [)D\, where Y is the correlation length, Z is the length of the 

analyzed sub-volume and [ is the differential stress has parameters #, [\ (predicted failure 

stress) and ]. We used the MATLAB function lsqcurvefit with the trust-region-reflective 

algorithm to obtain the parameters by non-linear regression, i.e., by minimizing the sum of 

residuals between the model function and the observed data. Initial values for # and ] were 

obtained from a linear regression in loglog space of the observed data, Y against ([̂ − [) where 

[̂  is the observed failure stress, log # is the zero cut-off and ] is the absolute value of the 

gradient. The initial value of [\ was 200; close to the observed values of 185 and 182. Bounds 

were chosen as follows: 0 < # < 1000, 0 < [\ < 1000 and 0.1 < ] < 6. 
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Figure S1. Examples of the incremental frequency-volume distribution (blue circles) and the 

cumulative complementary distribution (orange circles) at (a) 97% of peak stress in the untreated 

sample and (b) peak stress in the heat-treated sample. Blue and orange lines show the preferred 

GR model (incremental and cumulative respectively). Error bars show the Poisson counting errors 

(Greenhough and Main, 2008). The completeness volume ab is shown at the peak of the 

incremental distribution (cde ab), i.e., the highest value of the first derivative of the cumulative 

frequency-volume function, which corresponds to the largest microcrack volume with the 

maximum incremental probability.  

 

 

 

 

 

Figure S2. (a) ∆fghijDkjl and (b) ∆fghijDkml evolution with strain for the untreated (blue) 

and heat-treated (orange) samples showing that both samples preferred the GR model over the 

TAP. The untreated sample preferred the TRP model early on and then transitioned to the GR 

model, while the heat-treated sample preferred the GR model for the whole experiment. 
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Figure S3. Examples of inter-void length incremental frequency distributions in log-log space 

with best-fitting linear model and 95% confidence intervals at (a) 97% of peak stress in the 

untreated sample and (b) peak stress in the heat-treated sample. 

 

 

 

 

 

 

 

Figure S4. Evolution of correlation length with strain for both samples, with their most likely 

relationship. In untreated sample this relationship is exponential: W = no. opqrs.tuu±s.wwox, and 

for in the heat-treated sample it is a power-law: W = y. z{xo.zs±w.yw + os. y. See also Table S4. 
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Figure S5. Zip file containing high resolution images of crack evolution in the untreated sample 

(Figure 5 in main text – |, } projection). Filename: fs04_high-res_untreated_sample 

 

 

Figure S6. Zip file containing high resolution images of crack evolution in the heat-treated 

sample (Figure 6 in main text – |, } projection). Filename: fs05_high-res_heat-treated_sample 

 

 

Table S1. Degree of anisotropy in void strike, ~, with 95% confidence intervals determined 

from regression of model  l~ = l~@@@@ + m ���(w~). Each distribution contains 46 bins (� = �o). 

 

 

Table S2. Corrected Akaike Information Criterion (mgh�) for porosity, �, and the number of 

microcracks, �, with strain, x, regression model fits for the untreated sample [ACfresh02]. 

Lowest values are highlighted bold showing that power-law accelerations are preferred; of the 

form | = ��� for � and | = ��� + � for �. The most likely models for the untreated sample 

are ��k = s. s{xn.y�±s.{us and ��k = yu{xn.st±y.ys + zwo. 

  

μCT scan Untreated sample [ACfresh02] Heat-treated sample [ACHT01] 

A 0.143±0.118 0.330±0.151 

B 0.179±0.125 0.324±0.157 

C 0.147±0.127 0.496±0.142 

D 0.185±0.120 0.516±0.167 

E 0.169±0.129 0.495±0.152 

F 0.167±0.115 0.556±0.142 

G 0.171±0.102 0.496±0.134 

H 0.212±0.103 0.590±0.162 

I 0.176±0.107 0.713±0.164 

J 0.147±0.103 0.611±0.165 

K 0.141±0.139 0.597±0.147 

L 0.132±0.145 0.714±0.179 

M 0.139±0.114 0.735±0.129 

N 0.111±0.132 0.760±0.133 

O 0.142±0.144 0.962±0.140 

P 0.592±0.171 0.683±0.109 

model [for ACfresh02] mgh� for � mgh� for � 

quadratic: | = ��w + �� + � -98.10 154.84 

exponential 1: | = ����   -96.24 162.38 

exponential 2: | = ���� + ����  -88.70 158.82 

power 1: | = ��� -100.05 180.04 

power 2: | = ��� + � -97.94 154.55 

summary 38% chance that quad, 35% that pow2 

and <15% other models are good as 

pow1. 

86% likelihood that quad and <12% 

that other models are good as 

pow2. 
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Table S3. Corrected Akaike Information Criterion (mgh�) for porosity, �, and the number of 

microcracks, �, with strain, x, regression model fits for the heat-treated sample [ACHT01]. 

Lowest values are highlighted bold showing that a power-law acceleration of the form | =
��� + � is the preferred model for both variables. The most likely models for the heat-treated 

sample are ��k = s. sssoxt.ts±y.nt + s. sw{ and ��k = n. yuxu.oo±y.os + {yo. 

 

 

 

 

Table S4. Corrected Akaike Information Criterion (mgh�) for correlation length, W, with strain, 

x, from regression model fits for both the untreated sample [ACfresh02] and the heat-treated 

sample [ACHT01]. Lowest values showing the preferred model are highlighted in bold. The 

most likely model for the untreated sample is an exponential: W = no. opqrs.tuu±s.wwox, and for 

the heat-treated sample is a power-law: W = y. z{xo.zs±w.yw + os. y. 

 

  

model [for ACHT01] mgh� for � mgh� for � 

quadratic: | = ��w + �� + � -109.53 124.46 

exponential 1: | = ����   -119.38 137.83 

exponential 2: | = ���� + ����  -148.22 98.09 

power 1: | = ��� -115.19 145.27 

power 2: | = ��� + � -152.19 94.37 

summary 14% chance that exp2 and <0.01% 

that remaining models are as good 

as pow2. 

16% chance that exp2 and <0.01% 

that remaining models are as good 

as pow2. 

model                                                 mgh� 

 ACfresh02 ACHT01 

linear: | = �� + � 103.05 111.59 

quadratic: | = ��w + �� + � 96.34 96.77 

exponential 1: | = ����   95.78 103.72 

exponential 2: | = ���� + ����  104.02 82.713 

power 1: | = ��� 99.54 111.61 

power 2: | = ��� + � 96.50 78.27 

summary 75% chance that quad, 70% that 

pow2 and <15% that remaining 

models are good as exp1. 

<11% chance that other models 

are as good as pow2. 
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Table S5. Corrected Akaike Information Criterion (mgh� – see Text S2 for full details of the 

calculations) for normalized correlation length, W/�, with stress, X, from non-linear regression 

model fits for both the untreated sample [ACfresh02] and the heat-treated sample [ACHT01]. 

Lowest values showing the preferred model are highlighted in bold. The untreated sample 

prefers the exponential, while the heat-treated sample prefers the inverse power-law. 

Parameters for these preferred models are provided in Figure 12 in the main text.  

 

 

 

Movie S1. Time-lapse video showing crack network evolution in the untreated sample in the 

(�, |) plane. Filename: ms01_untreated_x-y-plane 

Movie S2. Time-lapse video showing crack network evolution in the untreated sample in the 

(|, }) plane. Filename: ms02_untreated_y-z-plane 

Movie S3. Time-lapse video showing crack network evolution in the heat-treated sample in the 

(�, |) plane. Filename: ms03_heat-treated_x-y-plane 

Movie S4. Time-lapse video showing crack network evolution in the heat-treated sample in the 

(|, }) plane. Filename: ms04_heat-treated_y-z-plane 

model mgh� 

 ACfresh02 ACHT01 

exponential: | = ����   -113.46 -66.20 

inverse power-law: | = �(�� − �)D\ -106.53 -66.86 

∆mgh� =  mgh���� − mgh�� -6.93 -0.66 

�(��|�) = �(∆mgh� w⁄ ) 0.03 0.72 

summary 3% chance that inverse power-law 

fits data as well as exponential 

72% chance that exponential fits 

data as well as inverse power-law 


