Acknowledgements
This work was financially supported by the Natural Science Foundations
of China (41690142; 41771076; 41961144021; 42071093), and the CAS ”Light
of West China” Program. The logistical supports from the Cryosphere
Research Station on the Qinghai-Tibet Plateau are especially
appreciated. Datasets for this research are available athttps://data.mendeley.com/datasets/hbptbpyw75/1 .
We also thank the three anonymous reviewers for their constructive
suggestions.
References
Aalto, J., Harrison, S., & Luoto, M. (2017). Statistical modelling
predicts almost complete loss of major periglacial processes in Northern
Europe by 2100. Nature Communications , 8, 515.
https://doi.org/10.1038/s41467-017-00669-3
Aalto, J., Karjalainen, O., Hjort, J., & Luoto, M. (2018). Statistical
Forecasting of Current and Future Circum-Arctic Ground Temperatures and
Active Layer Thickness. Geophysical Research Letters , 45,
4889-4898. https://doi.org/10.1029/2018GL078007
Boeckli, L., Brenning, A., Gruber, S., & Noetzli, J. (2012). Permafrost
distribution in the European Alps: calculation and evaluation of an
index map and summary statistics. The Cryosphere , 6(4), 807-820.
https://doi.org/10.5194/tc-6-807-2012
Breiman, L. (2001). Random forests. Machine learning , 45, 5-32.
https://doi.org/10.1023/A:1010933404324
Cao, B., Gruber, S., Zhang, T., Li, L., Peng, X., Wang, K., … & Guo,
H. (2017). Spatial variability of active layer thickness detected by
ground-penetrating radar in the Qilian Mountains, Western China.Journal of Geophysical Research: Earth Surface , 122(3), 574-591.
https://doi.org/10.1002/2016JF004018
Chadburn, S. E., Burke, E. J., Cox, P. M., Friedlingstein, P., Hugelius,
G., & Westermann, S. (2017). An observation-based constraint on
permafrost loss as a function of global warming. Nature Climate
Change , 7(5), 340-344. https://doi.org/10.1038/nclimate3262
Chang, Y., Lyu, S., Luo, S., Li, Z., Fang, X., Chen, B., Li, R., &
Chen, S. (2018). Estimation of permafrost on the Tibetan Plateau under
current and future climate conditions using the CMIP5 data.International Journal of Climatology , 38(15), 5659-5676.
https://doi.org/10.1002/joc.5770
Chen, B., Luo, S., Lyu, S., Fang, X., & Chang Y. (2017). Land surface
characteristics in soil freezing and thawing process on the tibetan
plateau based on community land model (in Chinese with English
abstract). Journal of Glaciology and Geocryology, 39(04),
760-770.
Chen, H., Nan, Z., Zhao, L., Ding, Y., Chen, J., & Pang, Q. (2015).
Noah modelling of the permafrost distribution and characteristics in the
West Kunlun area, Qinghai-Tibet Plateau, China. Permafrost and
Periglacial Processes , 26(2), 160-174. https://doi.org/10.1002/ppp.1841
Cheng, G., &Wang, S. (1982). On the zonation of high-altitude
permafrost in China (in Chinese with English abstract). Journal of
Glaciology and Geocryology , 4(2), 1-17.
Cheng, G., & Wu, T. (2007). Responses of permafrost to climate change
and their environmental significance, Qinghai-Tibet Plateau.Journal of Geophysical Research: Earth Surfac e, 112(F2).
https://doi.org/10.1029/2006JF000631
Cheng, G., Zhao, L., Li, R., Wu, X., Sheng, Y., Hu, G., … & Wu, Q.
(2019). Characteristic, changes and impacts of permafrost on
Qinghai-Tibet Plateau. Chinese Science Bulletin , 64(27),
2783-2795.https://doi.org/10.1360/tb-2019-0191
Du, Y., Li, R., Zhao, L., Yang, C., Wu, T., Hu, G., … & Ma, J., 2020.
Evaluation of 11 soil thermal conductivity schemes for the permafrost
region of the central Qinghai-Tibet Plateau. Catena , 193, 104608.