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Abstract 34 

Between 26–29 January 2021 an atmospheric river (AR) triggered numerous debris flows within 35 

the 2020 Dolan wildfire burn scar in Big Sur, California. Here we modify WRF-Hydro to simulate 36 

both overland and channelized flows and assess the potential for runoff-generated debris-flow 37 

hazards in burn scars. High-resolution weather radar-derived precipitation is used to drive baseline 38 

and burn scar sensitivity experiments. Compared to the baseline, the burn scar simulation yields 39 

dramatic increases in total and peak discharge, as well as shorter lags between rainfall onset and 40 

peak discharge. At Rat Creek, where California Highway 1 was destroyed, discharge volume 41 

increased eight-fold and peak discharge tripled relative to the baseline. Our WRF-Hydro-based 42 

hazard assessment indicates that over 1/3 of Dolan burn scar catchments were under “very high” 43 

debris-flow hazards. Our work demonstrates that a modified version of WRF-Hydro provides a 44 

compelling new physics-based tool to investigate and potentially predict postfire hydrologic 45 

hazards.  46 

 47 

Plain Language Summary 48 

In January of 2021 a winter storm triggered numerous debris flows in the mountains of coastal 49 

California in an area that had recently been burned by wildfire. One of the debris flows destroyed 50 

California’s famous Highway 1 – substantially impacting local residents and severely curtailing 51 

tourism. Here we use a hydrologic model to assess the hazard potential for debris flows in the area, 52 

as well as constrain the change in debris-flow hazard that resulted from wildfire-induced changes 53 

to the land surface. We use high-resolution meteorological data to drive simulations under pre-fire 54 

and postfire scenarios. Compared to the pre-fire model run, the postfire simulation yields dramatic 55 

increases in total and peak discharge, as well as shorter lags between rainfall onset and peak 56 

discharge. Our model simulation hazard assessment indicates that over 1/3 of the basins within the 57 

burn scar were under “very high” debris-flow hazards. Our work demonstrates the utility of three-58 

dimensional hydrologic models for investigating debris-flow hazards and suggests these tools 59 

might one day be used to forecast postfire hydrologic hazards.  60 

 61 

1 Introduction 62 

Following intense rainfall, areas with wildfire burn scars are more prone to flash flooding (Neary 63 

et al., 2003; Bart & Hope 2010; Bart 2016) and runoff-generated debris-flow hazards compared to 64 

unburned areas (Moody et al., 2013; Ice et al., 2004; Shakesby & Doerr, 2006). After wildfire, 65 

reduced tree canopy interception, decreased soil infiltration due to soil-sealing effects (Larsen et 66 

al., 2009), and increased soil water repellency – especially in hyper-arid environments (Dekker 67 

and Ritsema, 1994; Doerr and Thomas, 2000; MacDonald and Huffman, 2004) – increases excess 68 

surface water, and on sloped terrains leads to overland flow (Shakesby & Doerr, 2006; Stoof et al., 69 

2012). As water moves down hillslopes and erosion adds sediment to water-dominated flows, clear 70 
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water floods can transition to turbulent and potentially destructive debris flows (Meyer & Wells, 71 

1997; Cannon et al., 2001, 2003; Santi et al., 2008). In contrast to debris flows initiated by shallow 72 

landslides, this rainfall-runoff process has been identified as the major cause for postfire debris 73 

flows in the western U.S. (Cannon, 2001; Cannon et al., 2003, 2008; Kean et al., 2011; Nyman et 74 

al., 2015). In California, because climate change is projected to increase the intensity and 75 

frequency of wet-season precipitation (Swain et al., 2018; Polade et al., 2017), increase wildfire 76 

potential (Swain, 2021; Brown et al., 2021), and extend the wildfire season (Goss et al., 2020) 77 

occurrence and intensity of postfire debris flows are likely to increase (Cannon et al., 2009; Kean 78 

& Staley, 2021; Oakley, 2021).  79 

To predict postfire debris-flow hazards, statistical approaches are commonly used. For example, 80 

the United States Geological Survey (USGS) uses logistic regression models to predict the 81 

likelihood of post-wildfire debris flows (Staley et al., 2016; Cannon et al., 2010) and multiple 82 

linear regression models to predict debris-flow volumes (Gartner et al., 2014). However, statistical 83 

approaches do not simulate underlying physics, limiting the understanding of debris-flow 84 

mechanisms. Physics-based models that simulate spatially-explicit hydrologic and mass wastage 85 

processes are well-suited for sensitivity analyses, but applications of these models often focus on 86 

landslide-induced debris flows (e.g., Iverson & George, 2014; George & Iverson, 2014), rather 87 

than runoff-generated debris flows which are more common in postfire areas (Cannon et al., 2001, 88 

2003; Santi et al., 2008). Studies that have used process-based models to investigate postfire 89 

hydrologic responses have focused on triggering mechanisms of postfire debris flows at high 90 

spatiotemporal resolutions (McGuire et al., 2017) and long-term runoff responses at coarse 91 

temporal resolutions (Rulli & Rosso, 2007; McMichael & Hope 2007). To overcome 92 

computational limits process-based models often adopt simplifications that can limit effective 93 

prediction and hypothesis testing. For example, the kinematic runoff and erosion model 94 

(KINEROS2) simplifies drainage basins into 1-dimensional channels and hillslope patches 95 

(Canfield & Goodrich, 2005; Goodrich et al., 2012; Sidman et al., 2015), and the Hydrologic 96 

Modeling System (HEC-HMS) uses an empirically-based curve number method to estimate 97 

saturation excess water (Cydzik et al., 2009), which cannot resolve infiltration excess overland 98 

flow, a critical process in burn scars (Chen et al., 2013).  99 

Here we explore use of the physics-based and fully-distributed Weather Research and Forecasting 100 

Hydrological modeling system version 5.1.1 (WRF-Hydro) to assess hazard potential in burn scars. 101 

WRF-Hydro is the core of National Oceanic and Atmospheric Administration’s (NOAA) National 102 

Water Model forecasting system and has been used extensively to study channelized flows (e.g., 103 

Lahmers et al., 2020; Wang et al., 2019). Here, we modify WRF-Hydro to output high temporal 104 

resolution fine-scale (100 m) debris flow-relevant overland flow; a process computed using a fully 105 

unsteady, explicit, finite difference diffusive wave formulation. Previous efforts, employing 106 

diffusive, kinematic, and diffusive-kinematic wave models, have demonstrated that water-only 107 

models can provide critical insights on runoff-driven debris flow behavior (Arattano & Savage, 108 

1994; McGuire & Youberg, 2020; Arratano & Franzi, 2010; Di Cristo et al., 2021), even in burned 109 

watersheds (Rengers et al., 2016).  110 
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To demonstrate the utility of WRF-Hydro in debris flow studies, we investigate the January 2021 111 

debris flow events within the Dolan burn scar on the Big Sur coast of central California. We first 112 

identify multiple debris flow sites using optical and radar remote sensing data and field 113 

investigations. We then calibrate WRF-Hydro against ground-based hydrologic observations and 114 

use it to study the effects of burn scars on debris-flow hydrology and changes in hazard potential.  115 

2 Background of case study 116 

The Dolan wildfire burned from August 18th till December 31st, 2020. 55% of areas within the fire 117 

perimeter were burned at moderate-to-high severity (Burned Area Emergency Response, 2020). 118 

After the fire, USGS Emergency Assessment of Post-Fire Debris-Flow Hazards produced a debris-119 

flow hazard assessment using a design storm based statistical model (USGS, 2020). On January 120 

26–29, 2021, an atmospheric river (AR) made landfall on the Big Sur coast, bringing more than 121 

300 mm of rainfall to California’s Coast Ranges (Figure S1), with a peak rainfall rate of 240 122 

mm/hr. During the AR event, a section of California State Highway 1 (CA1) at Rat Creek was 123 

destroyed by a debris flow. CA1 was subsequently closed for three months and rebuilt at a cost of 124 

~$11.5M (Los Angeles Times, 2021).  125 

 126 

2.1 Debris flow identification from remote sensing and field work 127 

In addition to the Rat Creek debris flow, which made national news, we identified three other 128 

debris flows using a combination of field investigation, and open access satellite optical and 129 

synthetic aperture radar (SAR) images (Figure S2; Supporting Information Text S1). We examined 130 

satellite optical images collected by Copernicus Sentinel-2 (S2) satellites in the cloud-based 131 

Google Earth Engine (GEE). We also examined relative differences in normalized difference 132 

vegetation index (rdNDVI) calculated from S2 data using the HazMapper GEE application (Scheip 133 

& Wegmann, 2021), which identifies areas where vegetation was lost due to debris flows (and 134 

other causes). Lastly, we analyzed changes in SAR backscatter data from Copernicus Sentinel-1 135 

(S1) satellites by comparing pre- and post-event SAR images in GEE (Handwerger et al., in 136 

review). Identified debris-flow source areas and deposition sites were confirmed by field 137 

investigation (N.J. Finnegan) and named after the locations where they deposited (i.e., Big Creek, 138 

Mill Creek, and Nacimiento). We note that there were likely more debris flows triggered during 139 

the AR event. However, given the primary goal of this study – to demonstrate the utility of WRF-140 

Hydro – a comprehensive cataloging of debris flows is beyond this study’s scope. 141 

 142 

3 WRF-Hydro 143 

3.1 Model description 144 

WRF-Hydro is an open-source physics-based community model that simulates land surface 145 

hydrologic processes. It includes the Noah-Multiparameterization (Noah-MP) land surface model 146 
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(LSM; Niu et al., 2011), terrain routing module, channel routing module, and a conceptual 147 

baseflow bucket model. Noah-MP LSM is a 1-D column model that calculates surface and 148 

subsurface runoff on the LSM grid (1 km), while terrain and channel routing modules simulate 149 

overland flow and streamflow on a finer terrain routing grid (100 m). 150 

By default, soil hydraulic and land surface properties are functions of soil texture and land cover 151 

types in WRF-Hydro (Supporting Information Text S2, Figures S3&S4, and Tables S1&S2).  152 

3.2 Meteorological forcing files 153 

WRF-Hydro is used in standalone mode (i.e., no coupling with atmospheric model) and forced 154 

with a combination of Phase 2 North American Land Data Assimilation System (NLDAS-2) 155 

meteorological data and Multi-Radar/Multi-Sensor System (MRMS) radar-only quantitative 156 

precipitation. NLDAS-2 provides hourly forcing data including incoming shortwave and longwave 157 

radiation, 2-m specific humidity and air temperature, surface pressure, and 10-m wind speed at 158 

1/8-degree spatial resolution. MRMS provides hourly precipitation rate at 1-km resolution.  159 

 160 

3.3 Simulation and output of overland flow 161 

The Noah-MP LSM calculates infiltration excess (governing equations in Supporting Information 162 

Text S3) and passes excess water to the terrain routing module, which then simulates overland 163 

flow using a fully-unsteady, explicit, finite-difference diffusive wave equation adapted from Julien 164 

et al. (1995) and Ogden (1997). If overland flow intersects grid cells identified as channel grids 165 

(2nd Strahler stream order and above; pre-defined by the hydrologically conditioned USGS 166 

National Elevation Dataset 30-m digital elevation model (DEM)), the channel routing module 167 

routes the water as channelized streamflow.  168 

Off-the-shelf, WRF-Hydro does not output overland flow at terrain routing grids (100 m), however 169 

it is computed in the background to determine channelized streamflow. We modified WRF-Hydro 170 

source code to output overland flow. Overland flow depth (m) was converted to overland discharge 171 

(m3/s) by multiplying flow depth by grid cell area (10,000 m2) and dividing by the LSM time step 172 

(1 hr).  173 

4 Model simulation, calibration, and validation 174 

4.1 Model domain 175 

The model domain spans the Coast Ranges of central California, Monterey Bay, and the Central 176 

Valley, and covers several burn scars from the 2020 wildfire season (Figure 1a). Here we focus 177 

our analysis on the Dolan burn scar (Figure 1b). According to the USGS 30-m DEM, the Rat Creek 178 

debris-flow site sits at the base of a 1st order catchment with a drainage area of 2.23 km2. Mill 179 

Creek, Big Creek, and Nacimiento debris flows were initiated within extremely steep, intensely 180 

burned, 1st order catchments, but were deposited in 2nd, 3rd, and 3rd Strahler stream order channels, 181 
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respectively. We calibrated and validated WRF-Hydro output using the 2-minute soil moisture 182 

observations from two Physical Sciences Laboratory (PSL) monitoring stations (i.e., Lockwood 183 

(lwd) and Gilroy (gry)) and 15-minute streamflow at three USGS stream gages (i.e., Arroyo Seco 184 

NR Greenfield, CA (ID 11151870), Arroyo Seco NR Soledad, CA (ID 11152000), and Arroyo 185 

Seco BL Reliz C NR Soledad, CA (ID 11152050)) (Figure 1a). All data-model comparisons are 186 

performed at hourly-mean resolution. 187 

4.2 Baseline simulation and soil moisture calibration 188 

The model was run from January 1–31 of 2021. We performed the baseline simulation by 189 

modifying WRF-Hydro default parameters (Table S2) based on a calibration using soil moisture 190 

observations from stations lwd and gry. Neither PSL station is located in a burn scar. Since the 191 

baseline simulation includes no post-fire characteristics, it can also be regarded as the “pre-fire” 192 

scenario. Soil moisture at 10 cm below ground in the baseline simulation was calibrated by 193 

performing a domain-wide adjustment of soil porosity and grain size distribution index at the 194 

simulation start (Table S2). We then allowed the model to spin up from January 1–10 before using 195 

January 11–31 for validation.  196 

 197 

After calibration, soil moisture closely mimics ground-based PSL observations (Figures 1c–d). 198 

Both observed magnitude and variability are well captured, with the simulated ±1 standard 199 

deviation envelope largely encompassing PSL observations during the AR. Model performance 200 

was evaluated using four quantitative metrics, i.e., correlation coefficient, root mean square error, 201 

mean bias, and the Kling-Gupta efficiency (KGE; Gupta et al., 2009) (Supporting Information 202 

Text S4)). The model’s ability to simulate soil moisture substantially improves after calibration 203 

(Figures 1c–d; Table S3). KGE values approach 1 (0.72 at lwd and 0.88 at gry), indicating that 204 

WRF-Hydro adequately simulates the hydrologic environment and its response to meteorological 205 

change.  206 

   207 

4.3 Burn scar simulation and streamflow calibration 208 

To simulate effects of wildfire burn scars on hydrologic processes and debris-flow hazards, we 209 

made two modifications to the baseline simulation soil moisture calibrated model configuration. 210 

First, we changed the land cover type within the burn scar perimeter to its nearest LSM analogue, 211 

i.e., “barren and sparsely vegetated”. Switch to barren land causes: (1) height of the canopy (HVT) 212 

to decrease to 0.5 m; (2) maximum rate of carboxylation at 25°C (VCMX25) to decrease to 0 213 

𝜇𝑚𝑜𝑙 𝐶𝑂 /(𝑚 ∙ 𝑠); and (3) overland flow roughness coefficient (OV_ROUGH2D) to decrease to 214 

0.035 (Table S1 & Figures S5a–c) from default values (Supporting Information Text S2, Figure 215 

S3, and Table S1). 216 

 217 

The second adjustment was to decrease soil infiltration rates within the burn scar perimeter, 218 

achieved by reducing soil saturated hydraulic conductivity (Figure S5d; Scott & van Wyk, 1990; 219 
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Cerdà, 1998; Robichaud, 2000; Martin & Moody, 2001) from default values (Table S2). Consistent 220 

with the hydrophobicity of burned soils, we calibrate the burn scar simulation by systematically 221 

exploring a range of burn scar area saturated hydraulic conductivities (0 to 3×10-7 m/s with a 5×10-222 
8 m/s increment), with the goal of reproducing streamflow behavior similar to USGS gage 223 

observations. We found that a value of 1.5×10-7 m/s gives the highest Nash-Sutcliffe efficiency 224 

(NSE; Nash & Sutcliffe, 1970) (Supporting Information Text S4) across all three USGS stream 225 

gages (Table S3). NSEs increase from negative values in the baseline to greater than 0.5 when 226 

burn scar characteristics are included, and the NSEs at gages 1870 and 2000 reach 0.84 and 0.73, 227 

respectively. Higher NSE scores indicate the abovementioned burn scar parameter changes 228 

improve the model’s ability to simulate streamflow observations (Table S3).  229 

 230 

5 Results 231 

5.1 Hydrologic response due to burn scar incorporation 232 

The pre-fire baseline simulation fails to capture the hydrologic behavior observed at the USGS 233 

gage sites located within the burn scar (Figures 1e–g). Incorporation of burn scar characteristics 234 

substantially alters the hydrologic response of the model and provides much higher fidelity 235 

streamflow simulations (Figures 1e–g). Observed hydrographs are characterized by two early 236 

streamflow peaks related to two precipitation bursts on January 27th and 28th. Our burn scar 237 

simulation captures this behavior, while the baseline simulation streamflow peaks just once, with 238 

a lower magnitude and an ~3-day lag after peak precipitation (Figures 1e–g). The steep rising limbs 239 

and high magnitude discharge peaks of the burn scar hydrograph are indicative of flash flooding. 240 

Compared with the pre-fire baseline scenario, the burn scar’s barren land and low infiltration rate 241 

substantially accelerate drainage rates and increase discharge volume into stream channels.  242 

 243 

  244 
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Figure 1| WRF-Hydro study site with observed and simulated hydrologic conditions. (a) WRF-247 

Hydro domain depicting topography, 2020 wildfire season burn scars, and PSL soil moisture and 248 

USGS stream gage observing sites. The black rectangle outlines the Dolan burn scar inset. (b) 249 

Dolan burn scar with debris flow locations and major streams. (c)–(d) January 11–31, 2021 MRMS 250 

precipitation and observed and simulated volumetric soil moisture 10 cm below ground at PSL 251 

sites (c) Lockwood (lwd) and (d) Gilroy (gry). Envelope of purple shading depicts ±1 standard 252 

deviation of model simulated soil moisture. KGE scores are provided at top left for each station. 253 

(e)–(g) January 26–31, 2021 MRMS precipitation, observed and baseline and burn scar simulated 254 

streamflow at three USGS gage sites. NSE scores for baseline and burn scar simulations are shown 255 

at top left.  256 

 257 

5.2 Hydrologic response at four debris flow sites  258 

We identified locations and extent of four debris flows from remote sensing data and field work 259 

(Figures 2a–d and Figure S2). rdNDVI shows vegetation loss caused by debris flows. Mill Creek, 260 

Big Creek, and Nacimiento were relatively large debris flows with runout lengths between ~2–5 261 

km. Rat Creek occurred in a smaller catchment and had a runout length of ~300 m. The difference 262 

in runout length and debris-flow size is controlled by upstream catchment size. Due to its low 263 

stream order (1st Strahler stream order), Rat Creek is the only debris-flow site modeled entirely as 264 

overland flow in our WRF-Hydro simulations.  265 

At the four debris-flow sites, we use three metrics to characterize hydrologic anomalies: (1) 266 

accumulated runoff volume, (2) peak discharge, and (3) time to peak discharge. Figures 2e–h 267 

depict accumulated channelized discharge volume (blue shading) and accumulated overland 268 

discharge volume (yellow-red shading) from January 27th 00:00 to 28th 12:00 near the four debris-269 

flow sites in the burn scar simulation. Accumulation time period is chosen such that it covers the 270 

first two runoff surges in the simulated hydrographs which are likely associated with debris flows 271 

(Figures 2i–l) given that nearly concurrent peak rainfall intensity and peak discharge is a signature 272 

characteristic of debris flows (Kean et al., 2011). Runoff volume is on the order of 104 m3 at Rat 273 

Creek and 106 m3 at the other three sites.  274 

 275 

Dramatic hydrographic changes after inclusion of burn scar characteristics are simulated at debris-276 

flow source areas (Figure S6 and Table S4) and deposition sites (Figures 2i–l and Table S5). WRF-277 

Hydro facilitates investigation of the hydrologic response at triggering and deposition locations 278 

and along the runout path. Here, to emphasize the downstream hazards, our analysis is focused on 279 

debris-flow deposits. At Rat Creek, where a section of CA1 collapsed, the magnitude of discharge 280 

substantially increases, and overland flow surges are concurrent with rainfall bursts (Figure 2i). 281 

Total discharge accumulated during the AR event increases approximately eight-fold, and peak 282 

discharge more than triples compared to the baseline simulation (Figure 2i and Table S5). At Mill 283 

Creek, Big Creek, and Nacimiento, baseline hydrographs are characterized by less variability, 284 

muted responses to two early precipitation bursts, and a delayed third discharge peak that does not 285 
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occur until ~3 days after AR passage (Figures 2j–l). Maximum discharge peaks in the baseline 286 

hydrographs lag those in the burn scar simulation by ~2 days (Figures 2j–l; Table S5). In the burn 287 

scar simulation, total volume substantially increases at the three channelized sites – total volume 288 

increases ~650% at Mill Creek, ~891% at Big Creek, and ~829% at Nacimiento (Figures 2j–l and 289 

Table S5), and the absolute increase in volume is on the order of 106 m3 (Table S5). Peak discharge 290 

more than triples at Mill Creek and Big Creek and more than quadruples at Nacimiento. 291 

Additionally, response times of the peak in discharge to the peak in precipitation decrease to less 292 

than an hour, highlighting the simulated flashiness of the burned catchments. 293 

 294 

  295 
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Figure 2| Identified debris-flow sites and WRF-Hydro simulated discharge. (a)–(d) Sentinel-2 298 

rdNDVI vegetation change at (a) Rat Creek, (b) Mill Creek, (c) Big Creek, and (d) Nacimiento. 299 

(e)–(h) Total volume of accumulated overland flow (yellow-red shading) and streamflow (blue 300 

shading) on log10 scale between January 27th 00:00 and 28th 12:00 at four debris-flow sites. Black 301 

rectangles correspond to domains of (a)–(d). Black circles and triangles indicate debris-flow source 302 

areas and deposits, respectively. (i)–(l) MRMS precipitation and baseline and burn scar simulated 303 

discharge time-series for January 26th 00:00 to 31st 23:00 at the four debris-flow deposition sites. 304 

 305 

5.3 Debris-flow hazard assessment for the Dolan burn scar 306 

Since high magnitude runoff is often the cause and precursor of runoff-generated debris flows in 307 

burned areas (Cannon et al., 2003, 2008; Rengers et al., 2016), we use simulated accumulated 308 

volume of overland flow and streamflow to assess runoff-generated debris-flow hazard potential 309 

under pre-fire (i.e., baseline; Figures 3a&d) and postfire (i.e., burn scar simulation; Figures 3b&e) 310 

conditions. We assess changes at both stream and catchment levels and use the difference between 311 

burn scar and baseline simulations to assess added debris-flow hazard potential (Figures 3c&f). 312 

Hazard levels are categorized according to the order of magnitude of runoff volume following 313 

USGS Emergency Assessment of Post-Fire Debris-Flow Hazards convention, i.e., low (0–103 m3), 314 

medium (103–104 m3), high (104–105 m3), and very high (>105 m3) (Figure 3; Cannon et al., 2010). 315 

 316 

In the pre-fire simulation, the AR-induced precipitation produces a low debris-flow hazard over 317 

most of the domain, but medium-to-high hazards along stream channels (Figure 3a). We note no 318 

substantial differences between areas in or out of the burn scar. In the burn scar simulation, debris-319 

flow hazard levels increase across the Dolan burn scar and along channels outside but downstream 320 

of the burn scar (Figures 3b–c). At Rat Creek, hazard levels increase from medium to high, while 321 

hazard levels at Big Creek, Mill Creek, and Nacimiento change from very high to beyond very 322 

high (above 106 m3). Within the burn scar, hazard levels along major stream channels, such as the 323 

Nacimiento River and San Antonio River increase from high to very high. Outside the burn scar, 324 

hazard levels along river channels downstream of the burn scar, such as the Arroyo Seco River, 325 

also increase (Figure 3c). 326 

 327 

At catchment level, debris-flow hazards are assessed using accumulated discharge volume at the 328 

outlet of each catchment between January 27th 00:00 to 28th 12:00 (Figures 3d–f). Corresponding 329 

normalized by catchment area hazard levels (Santi et al., 2012) are also provided (Figures 3g–i). 330 

In the baseline simulation, the majority of catchments are subject to low-to-medium debris-flow 331 

hazards (Figure 3d). In the burn scar simulation, over half of catchments within the Dolan burn 332 

scar have high-to-very high hazards, with over 1/3 of basins classified as having very high hazards 333 

(Figure 3e). Rat Creek catchment has a high hazard, while the three other sites are within 334 

catchments with very high hazards. The additional debris-flow hazard caused by the wildfire burn 335 

scar is substantial (Figure 3f). Beyond the burn scar perimeter, effects of fire expand to adjacent 336 
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and downstream catchments, and drainage basins of the Arroyo Seco and Nacimiento Rivers are 337 

simulated to have very high debris-flow hazards (Figures 3e&f). Catchment area-normalized 338 

hazard levels demonstrate that Mill Creek, Big Creek, and Nacimiento had above average hazard 339 

potential (Figures 3g–i), consistent with the event outcome. 340 

 341 

 342 
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Figure 3| Runoff-generated debris-flow hazard levels. Hazard levels are categorized according to 343 

order of magnitude of overland flow and streamflow volume, i.e., low (0–103 m3), medium (103–344 

104 m3), high (104–105 m3), and very high (>105 m3). Debris-flow hazards at individual stream 345 

level for the (a) baseline, (b) burn scar, and (c) difference between burn scar and baseline 346 

simulations. Hazard level is calculated as total discharge volume from January 27th 00:00 to 28th 347 

12:00. (d)–(f) Debris-flow hazards at catchment level. For each catchment, the hazard is 348 

determined by total discharge volume at the catchment outlet from January 27th 00:00 to 28th 349 

12:00. (g)–(i) Debris-flow hazards normalized by catchment area.   350 

 351 

6 Discussion and conclusion 352 

Given the historic and growing frequency of wildfires in the western U.S. (Swain 2021; Williams 353 

et al., 2019; Goss et al., 2020) and globally (Jolly et al., 2015; Flannigan et al., 2013), developing 354 

tools to investigate, better understand, and potentially predict changes in burn scar hydrology and 355 

natural hazards is critical. Here, we demonstrate the first use of WRF-Hydro to simulate the surface 356 

hydrologic response over a burn scar during a landfalling AR. We modified the default WRF-357 

Hydro to output overland flow and to replicate burn scar behavior by adjusting vegetation type and 358 

infiltration rate parameters. WRF-Hydro simulations were validated against PSL soil moisture and 359 

USGS streamflow observations before we used simulated streamflow and overland flow volumes 360 

to characterize debris-flow hazard potential. A comparison between baseline and burn scar 361 

simulations demonstrated that changes in hydraulic properties of burned areas causes drastic 362 

changes in surface flows, including faster discharge response times, greater discharge volumes, 363 

and overall flashier hydrologic behavior in surface flows. The magnitude of our simulated changes 364 

is consistent with findings from previous postfire hydrology studies (Anderson et al., 1976; Scott, 365 

1993; Meixner & Wohlgemuth, 2003; Kinoshita & Hogue, 2015; Kean et al., 2011). At Rat Creek, 366 

where a debris flow destroyed CA1, our model simulation predicted an eight-fold increase in 367 

accumulated overland flow and a tripling in peak discharge when compared to the baseline 368 

simulation. At Mill Creek, Big Creek, and Nacimiento, runoff volume in the burn scar simulation 369 

is on the order of 106 m3 which the USGS categorizes as a very high debris-flow hazard (Cannon 370 

et al., 2010).  371 

 372 

Despite methodological differences, our debris-flow hazard assessment for this AR event is 373 

generally consistent with the USGS’ post-fire, pre-AR, design-storm-based preliminary hazard 374 

assessment (USGS, 2020). USGS preliminary hazard assessments use logistic regression models 375 

to estimate the likelihood of debris-flow occurrence and multivariate linear regression models to 376 

estimate debris-flow volumes. This empirical approach is trained on historical western U.S. debris-377 

flow occurrence and magnitude data and incorporates estimated burn scar soil erodibility and burn 378 

severity data (Cannon et al., 2010; Gartner et al., 2014; Staley et al., 2016). For the Dolan burn 379 

scar, both assessments find that (i) large stream channels had relatively higher hazard levels than 380 

small streams or overland areas, (ii) almost the entire burn scar had medium hazard and above, 381 
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and (iii) approximately half of burn scar catchments were subject to high-to-very high debris-flow 382 

hazards. However, close comparison of hazard maps reveals differences in spatial distribution of 383 

high-hazard catchments. In the USGS assessment, higher hazard levels are predicted north and 384 

southeast of the burn scar, whereas in our assessment the highest hazards occur along major stream 385 

channels. We hypothesize that USGS-assessed areas of higher hazard potential are related to their 386 

use of design-storm precipitation (see Figure S1 for MRMS precipitation footprint) and burn 387 

severity data (Burned Area Emergency Response, 2020). Comparison with the USGS assessment 388 

framework suggests room for improvement in WRF-Hydro-based assessments (i.e., inclusion of 389 

burn severity and soil erodibility data), but also highlights the potential utility of working with 390 

spatially-distributed and time-varying precipitation.  391 

 392 

As a water-only model, WRF-Hydro is currently restricted to simulating the hydrologic ingredients 393 

of debris flows. While water-only models have been widely used to investigate and better 394 

understand debris-flow dynamics (Arattano & Savage, 1994; Arattano & Franzi, 2010; Rengers et 395 

al., 2016; McGuire & Youberg, 2020; Di Cristo et al., 2021), sediment supply, soil erodibility, and 396 

other sedimentological factors also play important roles in determining the potential for and 397 

severity of mass failure events (McGuire et al., 2017). Developing a debris-flow model that 398 

couples hydrologic and sediment erosion and transport processes would represent a significant 399 

advance and be of great practical use (Banihabib et al., 2020; Shen et al., 2021). At a minimum, 400 

soil grain size maps and domain-specific rainfall intensity-duration curves can provide guidance 401 

to define transitions from water floods to debris flows (McGuire & Youberg, 2020; Tognacca et 402 

al., 2000; Gregoretti & Fontana, 2008; Cannon et al., 2007). 403 

 404 

Use of WRF-Hydro to simulate runoff-generated debris-flow hazards in burn scar settings 405 

represents a novel application. Other potential applications of our modified model framework 406 

include alpine areas and steep hillslopes with sparse vegetation where runoff-generated debris 407 

flows dominate over landslide-initiated ones (Davies et al., 1992; Coe et al., 2003, 2008). In 408 

addition, here WRF-Hydro is driven by historical precipitation and meteorological data, i.e., 409 

hindcast mode. We see no reason why this modeling framework could not also be employed to 410 

project hazards under future climatic conditions (e.g., Huang et al., 2020), or given its relatively 411 

low computational expense, in operational forecast mode. Indeed, modern ensemble-based 412 

meteorological forecasting could provide high spatiotemporal forcing data with which disaster 413 

preparedness managers could probabilistically assess debris-flow hazard potential, and issue 414 

advanced life and property saving warnings.     415 

 416 

 417 

 418 

 419 
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