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Introduction

In this Supporting Information we provide further details on the methodology used in

our study. Text S1 describes the observational data and preprocessing used to train the

model. Text S2 provides more details of the CNN forecasting model, focusing on the

techniques used to represent epistemic and aleatoric uncertainty, and Figure S2 shows

the CNN architecture. Figure S11 shows sensitivity of the CNN performance to chosen

input fields. Text S3 and Table S1 provide details of the Subseasonal-to-seasonal (S2S)

prediction project data used as a benchmark for the CNN performance. Text S4 details
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the PatternNet algorithm. Text S5 details the validation metrics. Text S6 proves the

validity of the DropBlock approach in place of standard dropout for convolutional layers.

We also provide further results to support our conclusions. Figure S1 shows the phase

diagram corresponding to the decaying and propagating events analysed in Section 3.2 of

the manuscript. while Figures S3–S5 show further interpretation of the CNN forecasts for

those events. Figures S6–S10 show further results concerning predictors of uncertainty in

MJO forecasts for outgoing longwave radiation (OLR), 850 hPa geopotential (Z850), and

sea surface temperature (SST).
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Text S1. Observational data and preprocessing

We train the CNN using atmospheric data from the ECMWF ERA5-Reanalysis dataset

(H. Hersbach et al., 2018a), (H. Hersbach et al., 2018b). The inputs are maps of daily

averaged fields from 1979 to 2019 with a spatial coverage of 0 – 360°E, 20°S – 20°N on

a 2.5° x 2.5° grid. We only use ERA5 data over the satellite era for which accurate

estimates of OLR are available. Selected variables are: zonal wind at 200 hPa and 850

hPa (UA200, UA850), Outgoing Long-Wave Radiation (OLR), Sea Surface Temperature

(SST), Specific Humidity at 400 hPa (SHUM400), Geopotential at 850 hPa (Z850), and

Downward Long-Wave Radiation at the surface (DLR). For UA200, UA850 and OLR,

we apply the RMM preprocessing transform of (Wheeler & Hendon, 2004) to leave only

subseasonal anomalies: the time mean, the first three Fourier harmonics and the 120-day

running mean are removed sequentially. For SST, we subtract the climatological mean

(for each date of the calendar year, we compute the average over the same date for all

the years in the training dataset), and set all inland grid points to zero. The raw data

is used for SHUM400, Z850, and DLR, allowing the network to learn seasonal variations

in MJO predictability. Finally for every variable, we rescale the inputs to between 0 and

1 independently at every gridpoint with a Min-Max scaling to ensure the stability of the

training.

Our choice of input fields for the CNN was guided by an iterative procedure. The

first network we trained took as input the three variables used to define the RMM index:

UA200, UA850 and OLR subseasonal anomalies. Subsequent networks were trained using

one or more additional variables, and the predictive performance of the network assessed.
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Supporting Figure S11 shows the relative benefit of including each of the additional input

variables selected for the final network: sea surface temperature anomalies (SST), daily

downwelling long-wave radiative forcing (DLR), daily geopotential at 850 hPa (Z850),

and specific humidity at 400 hPa (SHUM400). We compared the performance of the final

network to a network trained on DLR, Z850 and SHUM400 anomalies instead of means,

but found this degraded performance. We also considered including the values of fields

at earlier timesteps (5, 10 days before), but found this did not improve the network’s

performance, and instead led to overfitting.

Text S2. The CNN forecasting model

For an initial date t and a forecast range τ , let xt be the input at the date t, and yt+τ

be the observed RMM indices, yt+τ = (RMM1t+τ ,RMM2t+τ ) at the chosen lead time, τ .

The input xt is a series of gridded maps representing physical quantities (variables) for

each date t as a function of latitude and longitude. We train a separate network for each

forecast range τ , where τ takes discrete values: τ = 1, 3, 5, 10, 15, 20, 25, 30, 35 days.

Aleatoric uncertainty is caused by the chaotic nature of the system. Physically, we

recognise that the input variables supplied to the CNN are a subset of all possible vari-

ables, and only include information on scales larger than the resolution of the input maps,

such that the future state of the MJO is not a deterministic function of these inputs1. This

uncertainty is a property of the data and thus irreducible, regardless of the model’s train-

ing. It is also heteroscedastic, or state-dependent. The predicted aleatoric uncertainty

is included as an output of the CNN. We assume the RMM indices follow a Gaussian

bivariate distribution with a null correlation between RMM1 and RMM2 (Wheeler &
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Hendon, 2004). The probabilistic network therefore has a 4-neuron output consisting of

the forecast mean, µt+τ , and variance σ2
a t+τ , where the first and second entries of µ and

σ2
a correspond to RMM1 and RMM2 respectively. Aleatoric uncertainty is accounted for

in the loss function: the model is trained by maximising the log-likelihood:

L =
1

N

N∑
t=1

−1

2
[ln(|Σt+τ |) + (yt+τ − µt+τ )

TΣ−1
t+τ (yt+τ − µt+τ )] + ln(2π) (1)

where Σt is the diagonal covariance matrix and N is the number of samples per batch.

The epistemic uncertainty in the forecast is due to uncertainty on the CNN’s weights θ.

We recognise that the training dataset (X, Y ) is a sample from the true joint distribution

of inputs, X, and outputs, Y . We therefore seek the distribution p(θ | X, Y ) over θ

instead of a single estimate. The Monte-Carlo dropout method approximates p(θ | X, Y )

by a parametric distribution qΦ(θ), where Φ is a vector of parameters to tune. Following

(Scalia et al., 2019), we model qΦ(θ) as a Bernoulli distribution, βΦ. In other words, for a

given set of input fields, each of the CNN’s weights is deactivated with a probability set

by the vector Φ, representing the dropout rate of each layer. For the jth parameter this

gives θj ∼ θ̂j ∗ βΦ j.

Dropout is applied to the network at both training and testing time. During training,

dropout prevents overfitting by randomly deactivating some neurons at each epoch. It

ensures the predictive capability of the network is distributed across all neurons, instead

of converging to a solution in which certain neurons dominate. During testing, we use

dropout to produce M Monte-Carlo forecasts, (θ(i), µ
(i)
t+τ , σ

(i) 2
a t+τ ). We chose M = 10 for

consistency with the ensemble size of dynamical MJO forecasts, though the computational

efficiency of the CNN would enable vastly larger ensemble sizes than this. For the linear
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layers of the CNN, we apply standard dropout with a dropout rate of 0.3. However, this is

not suitable for convolutional layers, because neighbouring points in the feature maps for

each layer are often highly correlated (Ghiasi et al., 2018). Instead, we use a DropBlock

approach, with a dropout rate of 0.1 for the first convolutional layer and 0.3 for subsequent

convolutional layers. In DropBlock, a fraction of points of the maps are randomly set to

zero, before all their neighbouring points are also deactivated (Ghiasi et al., 2018). In this

way, DropBlock introduces a correlation between inactive points. However, in contrast

to standard dropout, DropBlock disables points on the feature maps and not the weights

directly. In the Supplementary Methods we demonstrate that deactivating points on the

input maps as is carried out in DropBlock is equivalent to the weight deactivation applied

in standard dropout, for the case of convolutional layers without bias. This allows us to

combine the dropout and DropBlock techniques to represent epistemic uncertainty in the

CNN.

Finally, the estimated aleatoric and epistemic uncertainties are combined to give the

final predicted mean and total variance:

µt+τ =
1

M

∑
i

µ
(i)
t+τ (2)

σ2
tot t+τ =

1

M

∑
i

σ
(i) 2
a t+τ +Var(µ(i)) (3)

The network’s architecture is shown in supplementary figure S2. Our network has three

convolutional layers without bias. For all of them, we used Leaky ReLU with α = 0.003

as activation function to avoid vanishing gradients. Each of the two first convolutional

layers have a (5,5) kernel and are followed by average pooling with a (3,3) kernel size and a
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(2,1) stride. The third convolutional layer has a (3,3) kernel size. Convolutional layers are

followed by two fully-connected layers with 1920 and 200 neurons. The output layer has

4 neurons: the forecast means and aleatoric variances of RMM1 and RMM2. To ensure

the output variances are positive, we apply the function f : x 7→ log(1 + exp(x)) which

we found more stable than ReLU. We train the network with batches of 50 samples up to

35 epochs and choose the model with the lowest log-score on the test set. In addition to

dropout and DropBlock, we apply a L2 weight decay regularization in the loss function

to prevent overfitting with a coefficient of regularization λ = 0.01. We found the network

to be quite sensitive to λ.

Text S3. Subseasonal-to-Seasonal forecast model data

We select four representative models from the Subseasonal-to-Seasonal (S2S) prediction

project database (F. Vitart et al., 2017) for comparison with the CNN. The database

consists of near real-time operational ensemble forecasts and reforecasts from 11 centres.

As the operational models are continuously improved, the skill of the forecasts evolves in

time. For that reason, we select the reforecasts for comparison with the CNN. Reforecasts

are forecasts made retrospectively using a single up-to-date version of the dynamical

model.

Details of the available reforecast data for the selected models are presented in Extended

Data Table 1. Some observations have to be made: first, all models do not have the same

number of members, so to be consistent we decided to restrict the number of members to

10. Second, as the computational cost is heavy, the reforecasts are not made every day

and consequently each model has a different reforecasting period and time range. This is
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an issue which is difficult to overcome but with a large enough number of days, we should

still be able to make fair comparisons.

Text S4. PatternNet

PatternNet propagates the estimated signal from the output to the input space. Instead

of weights, each convolutional or feed-forward layer in PatternNet consists of statistical

attribution vectors, which are chosen to maximise certain functions of the covariance

between the signal and the output (Kindermans et al., 2017). These vectors are computed

layerwise during a training phase, using input fields and corresponding CNN forecasts from

the training dataset, and with knowledge of the CNN network weights. Once these vectors

are computed, PatternNet is a backpropagation algorithm. The signal sl at layer l coming

from the neuron i is obtained by multiplying the signal sl+1
i of neuron i in the previous

layer, l+1, with the attribution vector al. The signal slj of neuron j in layer l is then the

sum of all the signals of its input neurons from layer l + 1 : slj =
∑

i s
l+1, j
i .

We used the PyTorch implementation of PatternNet by (Translational Neurotechnology

Lab, 2019). During backpropagation, when a ReLU layer is encountered, the signal is

backpropagated without modification if the neuron was active during the forward pass

and set to zero otherwise. However, the case of Average Pooling and Leaky ReLU layers

has not been addressed (Kindermans et al., 2017; Translational Neurotechnology Lab,

2019). For Average Pooling layers the output neuron is an average of input neurons: for

such layers we backpropagate the output neuron signal to the inputs without modification.

For Leaky ReLU layers, the signal is backpropagated as follows: if the input was positive

in the forward pass, the signal is backpropagated without modification, otherwise it is
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multiplied by the parameter of the Leaky ReLU function (4).

slj =


sl+1
j if positive input in the forward pass

αsl+1
j otherwise

(4)

When using the PatternNet, we use the forecasts of the single CNN member without

dropout to simplify the computation. For a given input and corresponding forecast from

the CNN, PatternNet provides signals S1 and S2 for each pixel in the input fields, cor-

responding to RMM1 and RMM2 respectively. The signals S1 and S2 can take any real

value. We are interested in signal amplitude and not direction, and so take the abso-

lute value, and then rescale the signals to between 0 and 1. The Signal Mean Maps in

Supplementary Figures 2 – 4 are computed with the signals from the test dataset.

Text S5. Validation Metrics

CNN and S2S dynamical model forecasts were validated using days with initial observed

amplitude above 1.0 (Lim et al., 2018). Three deterministic metrics were considered. The

Root Mean Square Error between the forecast and observed RMMs is defined as

RMSE(τ) =

√√√√ 1

N

N∑
t=1

[(f1(t, τ)− v1(t))2 + (f2(t, τ)− v2(t))2] (5)

where f1, f2 are the forecast mean RMM indices for start date t at lead time τ , v1, v2 are

the verification RMM indices at that time, and N is the total number of start dates.

The MJO amplitude is defined as

A(t, τ) =
√
(RMM1(t, τ)2 +RMM2(t, τ)2) (6)

The MJO Bivariate Correlation is defined as

BV (t, τ) =

∑N
t=1 f1(t, τ)v1(t) + f2(t, τ)v2(t)√∑N

t=1(f1(t, τ)
2 + f2(t, τ)2) +

√∑N
t=1 v1(t)

2 + v2(t)2
(7)
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The amplitude error can then be written

ERRA =
1

N

N∑
t=1

(Af − Av) (8)

where Af and Av are the forecast and verification amplitudes respectively.

Following (Kim et al., 2018), the MJO phase is defined as

ERRP =
1

N

N∑
i=1

atan(
v1(t)f2(t, τ)− v2(t)f1(t, τ)

v1(t)f1(t, τ) + v2(t)f2(t, τ)
)) (9)

Three further scoring rules were used to assess the probabilistic skill of the forecasts.

The Continuous Ranked Probability Score (CRPS, (Hersbach, 2000)) is widely used to

validate ensemble forecasts.

CRPS(Pf , v) =

∫ ∞

−∞
[Pf (x)−Θ(x− v)]2 dx, (10)

where Pf is the forecast cumulative distribution function, and Θ(x − v) is the observed

cumulative distribution function, which is equal to the Heaviside step function centres on

the verification, v. Gaussianity is assumed for forecasts. Following (?, ?), the CRPS of a

given day is computed as the sum of the CPRS for RMM1 and RMM2 separately. Then

the resulting CRPS are averaged across the whole dataset.

For consistency with the loss function, the log-score, or Ignorance score (Roulston &

Smith, 2002), score (equation (1)) was also used to assess forecast skill, where the number

of samples N was the number of days in the test data set.

To assess the ability of forecasts to discern predictable from unpredictable days, we

compute Error-Spread diagrams following (Leutbecher & Palmer, 2008). For each day we

have a data triplet consisting of a predicted mean, variance, and an observed value for

RMM1 and RMM2 respectively. We first classify the triplets into 5 equally-populated
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bins according the the predicted variance. Then for each bin we compute the root mean

variance, and the root mean-squared error between the forecast mean and the observation.

This process is repeated for RMM1 and RMM2 separately, for each forecast lead time,

and for each type of uncertainty (epistemic, aleatoric, and total). For well calibrated

forecasts, the average RMSE in each bin should equal the root mean variance.

We also compute the confidence curve C(α) and Error-Drop for each model. For each

lead time and each RMM index in turn, we remove the α% most uncertain cases, and

compute the RMSE between the forecast mean and the observed RMM index for the

remaining data. We repeat this process setting α to be each of the 20 evenly-spaced

quantiles of the RMSE in turn. The Error-Drop is computed from the confidence curve

as:

Error-Drop :=
C(αmax)

C(αmin)
, (11)

where αmin and αmax correspond to the minimum and maximum fraction of days removed

respectively. We set αmin = 0.0 and αmax = 0.95.

Text S6. Monte-Carlo Dropout for DropBlock

Here, we prove that we can use the Monte-Carlo Dropout method with DropBlock. In

our model, the DropBlock is applied after each convolutional layer and these layers do not

have bias. Considering a specific convolutional layer layer l, if we denote X the input of

this layer, (Gal, 2016) showed that the convolutional operation could be seen as a matrix

multiplication W TX where W is a convolutional weight matrix, rewritten to match the

matrix multiplication operation. If we denotem the number of lines ofW T , we can rewrite

W TX with the dot products W TX = (W T
1 X,W T

2 X, ...,W T
mX)T .
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As we have considered the convolutional operation as a matrix multiplication, W TX

is a column vector of size m. We must rewrite this vector as an output feature map of

shape n× p denoted F , such that n ∗ p = m. Each coefficient Fij is equal to a one of the

dot products W T
k X. n and p depend on the convolutional parameters (kernel size, stride,

dilation).

Then we apply DropBlock. In a first step, each Fij is independently multiplied by a

Bernoulli β(p). Then in a second time, for each Fij, we consider all its neighbours. We

denote dij the number of neighbours of Fij (in particular, there are less neighbours on

the edges than in the center). Fij is disabled if one of its neighbours (or itself) has been

disabled during the first step. It is equivalent as considering that Fij has been multiplied

by a Bernoulli β(pdij). Hence we can write that after the DropBlock,

F ∗
ij = Fijβ(p

dij) = W T
k β(p

dk)X (12)

W T ∗
k = W T

k β(p
dk) (13)

Thus we conclude that DropBlock applied after a convolutional layer without bias is

equivalent to a standard Dropout with a distinct dropout probability for each weight,

which can be achieved using the Monte-Carlo Dropout method.

Notes

1. Note that even if the network were supplied with the highest resolution observational data available, these estimates of

the observed Earth System would have a finite resolution and would contain errors, thus aleatoric uncertainty remains.

March 3, 2022, 9:40am



: X - 13

Figure S1. Phase diagrams for a decaying and a propagating event for forecasts

initialised in phase 3.

Observations from the first day - 25/02/2006 (a.) and 28/02/2012 (b.) - are represented up to

day-10 in blue. All forecasts (day-1, 3, 5, 10) which began in initial observed phase 3 for each

chosen event are represented in shades of orange.
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Figure S2. CNN Architecture. Leaky ReLU was used as the activation function of the

convolutional layers 1 and 2.
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Figure S3. Interpretation of the CNN mean forecasts. (a–b) Composite maps of phase-3

SHUM400 for an MJO event which (a) decays and (b) propagates over the Maritime Continent.

(c–d) PatternNet RMM2 signal mean maps (signal maps averaged over all variables) correspond-

ing to ten-day CNN forecasts for the decaying and propagating event respectively. (e–f) RMM2

signal anomalies in SHUM400 for the decaying and propagating events respectively. The signal

anomalies show a greater focus over the Maritime Continent region for this input variable.
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Figure S4. Interpretation of the CNN mean forecasts. (a–b) Composite maps of phase-3

OLR for an MJO event which (a) decays and (b) propagates over the Maritime Continent. (c–d)

PatternNet RMM1 signal mean maps (signal maps averaged over all variables) corresponding to

ten-day CNN forecasts for the decaying and propagating event respectively. (e–f) RMM1 signal

anomalies in OLR for the decaying and propagating events respectively. The signal anomalies

show a greater focus over the Maritime Continent region for this input variable.
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Figure S5. Interpretation of the CNN mean forecasts. (a–b) Composite maps of phase-3

OLR for an MJO event which (a) decays and (b) propagates over the Maritime Continent. (c–d)

PatternNet RMM2 signal mean maps (signal maps averaged over all variables) corresponding to

ten-day CNN forecasts for the decaying and propagating event respectively. (e–f) RMM2 signal

anomalies in OLR for the decaying and propagating events respectively. The signal anomalies

show a greater focus over the Maritime Continent region for this input variable.
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Figure S6. OLR uncertainty interpretation of the CNN MJO forecasts. a. and b.

Composite maps of OLR in initial phases 3 and 7 for day-10 forecasts. Maps have been rescaled

using MinMax scaling at each grid point before being fed to the CNN. c. to f. Anomalies maps

between Weak (Strong) Predictable minus Weak (Strong) Unpredictable events. Weak events

have an amplitude below (above) 1.0. Predictable (Unpredictable) events have RMM1 and

RMM2 aleatoric uncertainties both inferior (superior) to their 30% (70%) percentiles. Stippling

denotes areas where anomalies are significant at the 95% level using the Student’s t-test.
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Figure S7. Z850 uncertainty interpretation of the CNN MJO forecasts. a. and b.

Composite maps of geopotential at 850hPa (Z850) in initial phases 4 and 5 for day-10 forecasts.

Maps have been rescaled using MinMax scaling at each grid point before being fed to the CNN. c.

to f. Anomalies maps between Weak (Strong) Predictable minus Weak (Strong) Unpredictable

events. Weak events have an amplitude below (above) 1.0. Predictable (Unpredictable) events

have RMM1 and RMM2 aleatoric uncertainties both inferior (superior) to their 30% (70%)

percentiles. Stippling denotes areas where anomalies are significant at the 95% level using the

Student’s t-test.
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Figure S8. Z850 uncertainty interpretation of the CNN MJO forecasts. a. and b.

Composite maps of geopotential at 850hPa (Z850) in initial phases 6 and 7 for day-10 forecasts.

Maps have been rescaled using MinMax scaling at each grid point before being fed to the CNN. c.

to f. Anomalies maps between Weak (Strong) Predictable minus Weak (Strong) Unpredictable

events. Weak events have an amplitude below (above) 1.0. Predictable (Unpredictable) events

have RMM1 and RMM2 aleatoric uncertainties both inferior (superior) to their 30% (70%)

percentiles. Stippling denotes areas where anomalies are significant at the 95% level using the

Student’s t-test.
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Figure S9. SST uncertainty interpretation of the CNN MJO forecasts. a. and b.

Composite maps of Sea Surface Temperatures (SST) in initial phases 4 and 5 for day-10 forecasts.

Maps have been rescaled using MinMax scaling at each grid point before being fed to the CNN. c.

to f. Anomalies maps between Weak (Strong) Predictable minus Weak (Strong) Unpredictable

events. Weak events have an amplitude below (above) 1.0. Predictable (Unpredictable) events

have RMM1 and RMM2 aleatoric uncertainties both inferior (superior) to their 30% (70%)

percentiles. Stippling denotes areas where anomalies are significant at the 95% level using the

Student’s t-test.
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Figure S10. SST uncertainty interpretation of the CNN MJO forecasts. a. and

b. Composite maps of Sea Surface Temperatures anomalies (SST) in initial phases 6 and 7 for

day-10 forecasts. Maps have been rescaled using MinMax scaling at each grid point before being

fed to the CNN. c. to f. Anomalies maps between Weak (Strong) Predictable minus Weak

(Strong) Unpredictable events. Weak events have an amplitude below (above) 1.0. Predictable

(Unpredictable) events have RMM1 and RMM2 aleatoric uncertainties both inferior (superior)

to their 30% (70%) percentiles. Stippling denotes areas where anomalies are significant at the

95% level using the Student’s t-test.
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Figure S11. Comparison of the features’ performance. Log-score is computed for a CNN

trained on different subsets of input features for day-10 forecasts. Days used have initial ampli-

tude above 1.0. Standard stands for “UA200 + UA850 + OLR”.

March 3, 2022, 9:40am



X - 24 :

Table S1. Description of the dynamical forecast models used for comparison.a

Model Time Range Reforecast frequency Ensemble size Model year
ECMWF 02/01/2000 - 30/11/2019 Twice weekly 11 2020
CNRM 07/01/1993 - 28/12/2017 Weekly 10 2019
BOM 01/01/1982 - 26/12/2013 Twice weekly 33 2014
HMCR 02/01/1985 - 31/12/1985 Weekly 10 2020
CNN (Train) 01/05/1979 - 18/10/2011 Daily 10 2021
CNN (Test) 19/10/2011 - 30/11/2019 Daily 10 2021
a The most recent model version were selected according to their availability. The reforecasts

are available at ftp://s2sidx:s2sidx@acquisition.ecmwf.int/RMMS/

Table S2. All initial phases

Certain Uncertain
Strong at t Weak at t Strong at t Weak at t Total

Strong at t+ 10 142 213 707 74 1136
Weak at t+ 10 193 418 117 38 766

Total 335 631 824 112 1902

Table S3. Initial Phase 3
Certain Uncertain

Strong at t Weak at t Strong at t Weak at t Total
Strong at t+ 10 16 24 135 13 188
Weak at t+ 10 15 42 33 5 95

Total 31 66 168 18 283

Table S4. Initial Phase 7
Certain Uncertain

Strong at t Weak at t Strong at t Weak at t Total
Strong at t+ 10 26 43 56 4 129
Weak at t+ 10 40 66 6 5 117

Total 66 109 62 9 246
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