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Abstract12

The Madden–Julian Oscillation (MJO) is the dominant source of sub-seasonal variabil-13

ity in the tropics. It consists of an Eastward moving region of enhanced convection cou-14

pled to changes in zonal winds. It is not possible to predict the precise evolution of the15

MJO, so subseasonal forecasts are generally probabilistic. Ideally the spread of the fore-16

cast probability distribution would vary from day to day depending on the instantaneous17

predictability of the MJO. Operational subseasonal forecasting models do not have this18

property. We present a deep convolutional neural network that produces skilful state-19

dependent probabilistic MJO forecasts. This statistical model accounts for intrinsic chaotic20

uncertainty by predicting the standard deviation about the mean, and model uncertainty21

using a Monte-Carlo dropout approach. Interpretation of the mean forecasts from the22

neural network highlights known MJO mechanisms, providing confidence in the model,23

while interpretation of the predicted uncertainty indicates new physical mechanisms gov-24

erning MJO predictability.25

Plain Language Summary26

The Madden-Julian Oscillation (MJO) is an important tropical climate phenomenon.27

It consists of enhanced convective thunderstorms and anomalous winds that propagate28

eastward along the Equator for a few weeks. The MJO is difficult to predict and exhibits29

great variability. This means that forecasts are often probabilistic. However, current mod-30

els have difficulty in correctly predicting the uncertainty in the forecast based on the cur-31

rent conditions. In this paper, we propose a model using neural networks capable of mak-32

ing reliable probabilistic forecasts. We interpret the behaviour of the algorithm to ver-33

ify its consistency with the known physical mechanisms of the MJO and to highlight new34

physical conditions that affect MJO prediction uncertainty.35

1 Introduction36

The Madden-Julian Oscillation (MJO: Madden & Julian, 1971) is an envelope of37

enhanced tropical convection with associated changes to the atmospheric circulation. It38

is characterised by its period of 40-50 days, its planetary scale, and its Eastward prop-39

agation at speeds of 4–8 ms−1. It is the major source of predictability on sub-seasonal40

timescales in the Tropics (Zhang, 2013) and influences phenomena such as the North At-41

lantic Oscillation and Arctic sea ice cover through global teleconnections (Ferranti et al.,42
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1990; Cassou, 2008; Yoo et al., 2012; Henderson et al., 2014). Subseasonal forecasts are43

of great socio-economic value through their potential to predict extreme weather events44

several weeks ahead (Vitart & Robertson, 2018). There is therefore great interest in im-45

proving predictions of the MJO, and in understanding sources of MJO predictability (Kim46

et al., 2018).47

The chaotic nature of the Earth System means that it is not possible to predict the48

precise evolution of the MJO beyond a few days, so subseasonal forecasts are generally49

probabilistic (J. Slingo & Palmer, 2011; Bauer et al., 2015). If the probabilistic forecast50

mean is assessed, averaging out the unpredictable ‘noise’, current dynamical models have51

a prediction skill up to three weeks (Lim et al., 2018; Vitart, 2017). However, system-52

atic biases remain, especially in the propagation of the MJO convective anomaly over53

the Maritime Continent (Kim et al., 2016; Barrett et al., 2021; Li et al., n.d.). In con-54

trast to the mean skill, the probabilistic skill of MJO forecasts is low (Lim et al., 2018;55

Vitart, 2017). Improving probabilistic forecasts is essential to quantify our confidence56

in the predictions, and to advance understanding of the predictability of this phenomenon.57

While prediction skill is a property of the forecast model, predictability is a prop-58

erty of the Earth-system. MJO predictability studies have focused on the theoretically59

achievable prediction limit that one could achieve with a perfect model, quantified as 6–60

7 weeks (e.g. Neena et al., 2014; Wu et al., 2016; Kim et al., 2018). This is complemen-61

tary to an approach taken in the medium-range forecasting community, where ‘predictable’62

forecasts are those for which the forecast uncertainty is small (e.g. Palmer, 2000). This63

identification is possible because medium-range forecasts exhibit state-dependent reli-64

ability (Leutbecher & Palmer, 2008). If reliable, state-dependent, MJO forecasts could65

be produced, forecast uncertainty could be used as an indicator of instantaneous MJO66

predictability.67

Increasing volumes of data, advances in computational power, and developments68

in statistical modelling have led to substantial interest in the use of machine learning in69

58 Earth-system science (Reichstein et al., 2019; Huntingford et al., 2019). Deep learn-70

ing has been applied to the MJO for phase classification (Toms et al., 2020; Martin et71

al., 2021), post processing (Kim et al., 2021), and deterministic prediction (Martin et72

al., 2021). Here, we develop a neural network that produces well calibrated probabilis-73

tic forecasts of the MJO. We use a convolutional neural network (CNN), which has proved74
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effective at identifying hidden patterns and processes in climate (Ham et al., 2019; Ar-75

comano et al., 2020; Schultz et al., 2021) and other scientific areas such as image recog-76

nition (Russakovsky et al., 2015).77

The paper is structured as follows: in Section 2, we describe the CNN, including78

the data used to train the model. In Section 3 we present our results. We evaluate the79

CNN compared to dynamical models from the Subseasonal-to-Seasonal prediction project.80

We validate the CNN by seeking to understand its mean forecasts, before using the CNN81

to uncover potential sources of predictability for the MJO. Finally we discuss the sig-82

nificance of our results and draw conclusions in Section 4.83

2 Methods84

2.1 Data85

Observational data used to train and test the CNN are taken from the ECMWF86

Reanalysis version 5 (ERA5) dataset between 1979–2019 (Hersbach, H., et al., 2020). We87

compare the CNN to models from the Subseasonal-to-Seasonal (S2S) prediction project88

database (F. Vitart et al., 2017). We select reforecast data from four representative mod-89

els, chosen to span the range of performances of models in the S2S database. In partic-90

ular, we include the European Centre for Medium-Range Weather Forecasts (ECMWF)91

model, which is known to produce the most skilful MJO forecasts (Lim et al., 2018). The92

remaining models chosen had the largest reforecast ensemble size, enabling probabilis-93

tic forecast skill to be assessed. Further details are presented in Supporting Table 1.94

2.2 Overview of Predictive Model95

The MJO is a coupled convective-dynamic anomaly that can be summarised by the96

bivariate Real-time Multivariate MJO (RMM) index (Wheeler & Hendon, 2004). The97

RMM index classifies active MJO events (amplitude greater than one) into one of eight98

phases depending on geographical location (e.g. Supporting Figure S1). Using observed99

daily-mean input maps at a single date t, we train a deep CNN to predict RMM1 and100

RMM2 at a later date t+ τ , training a separate CNN for each lead time. The chosen101

lead times are one, three and five days, then every fifth day up to 35 days. The archi-102

tecture of the CNN is shown in Supporting Figure S2.103
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We compute the observed values of the RMM following Wheeler and Hendon (2004)104

(see Supporting Information Text S1 for details). Subseasonal anomalies of Outgoing Long-105

wave Radiation (OLR) and zonal wind at 200 hPa (UA200) and 850 hPa (UA850) be-106

tween 20°S–20°N are latitudinally averaged and divided by their global variance. The107

first two Empirical Orthogonal Functions (EOFs) of the combined fields are computed.108

RMM1 and RMM2 are the projection of the daily fields onto EOFs 1 and 2.109

Even though the MJO shows seasonal behaviour, we train a single model for all110

seasons to maximise the available training data. As inputs we use subseasonal anoma-111

lies of OLR, UA200, and UA850, consistent with fields used to compute the RMM in-112

dices. We supplement these with four further fields which provide complementary infor-113

mation: daily mean Specific Humidity at 400 hPa (SHUM400) was included because Barrett114

et al. (2021) reported large differences in SHUM400 between MJO events which prop-115

agate and weaken over the Maritime Continent; daily mean geopotential at 850 hPa (Z850)116

provided skill in previous work (Toms et al., 2020); daily mean Downwelling Longwave117

Radiation at the surface (DLR) has a marked annual cycle, which we found a more ef-118

fective means of accounting for the seasonality of the MJO than including a dummy vari-119

able. Finally, daily anomalies of sea surface temperature (SST) are included, since the120

MJO is known to be linked to El Nino-Southern Oscillation (ENSO: e.g. Kessler, 2001).121

Inputs are provided as maps spanning 0–360oE, 20oS–20oN on a 2.5ox2.5o grid. The dif-122

ferent variables are input to the CNN as separate channels. This allows the CNN to learn123

to identify co-located phenomena. To ensure independence between the training and test-124

ing data sets, we use the first 80% of the dates for training, and the remaining 20% for125

testing.126

We model the two forecast RMM indices as following a Gaussian Bivariate distri-127

bution with null correlation (Wheeler & Hendon, 2004). The network outputs the pre-128

dicted means and variances of RMM1 and RMM2, and is trained by minimising the neg-129

ative log-likelihood. The output variance represents the intrinsic chaotic (aleatoric) un-130

certainty in the prediction. In addition, we represent the epistemic uncertainty in the131

CNN model weights using a Monte-Carlo Dropout method to produce an ensemble of132

forecasts (Gal & Ghahramani, 2016; Gal, 2016; Scalia et al., 2019). The total forecast133

uncertainty is the sum of the aleatoric and epistemic variances. More details are provided134

in Supporting Information Text S2.135
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2.3 Interpretation using PatternNet136

We use the PatternNet algorithm (Kindermans et al., 2017) to interpret forecasts137

made by the CNN, as it outperforms other approaches including Guided BackProp and138

Layerwise Relevance Propagation in both idealised test cases and for image classifica-139

tion problems (Kindermans et al., 2017). Inputs to the CNN include a signal, that con-140

tains information about the future state of the MJO, and a distractor. PatternNet is a141

distinct network to the CNN, but whose structure reflects that of the CNN in reverse,142

propagating the estimated signal from the output to the input space, thereby disentan-143

gling the signal from the distractor: for more details, see Supporting Information Text144

S4.145

3 Results146

3.1 Network performance147

Figure 1 compares the network’s performance to models from the S2S database (see148

Supporting Information Text S5 for definitions of all metrics). Figures 1(a–c) show the149

deterministic skill of the CNN mean forecasts in terms of the Root Mean Square Error150

(RMSE), Amplitude Error, and Phase Error respectively. In terms of RMSE, the CNN151

is competitive with models from the S2S database, though has larger errors than ECMWF.152

Similarly to the dynamical models, the CNN forecasts suffer from an increasing ampli-153

tude error with time, indicating a decay in MJO strength over the duration of the fore-154

cast. It is known that dynamical models simulate slower MJO propagation speeds than155

observed, resulting in a negative phase error. Here the CNN outperforms the dynam-156

ical models, accurately capturing the MJO propagation speed.157

Figures 1(d–f) assess the probabilistic skill of the CNN forecast. The Continuous158

Ranked Probability Score (CRPS: Marshall et al. (2016)) compares the forecast and ob-159

served cumulative distribution functions. The CNN is competitive with forecast from the160

S2S database, outperforming three of the four dynamical models considered. Despite be-161

ing widely used, the CRPS can give unintuitive rankings (e.g Bolin & Wallin, 2019), as162

it more severely penalises errors in the forecast mean than poor calibration of spread (Christensen163

et al., 2015). An alternative score is the ‘Ignorance’ or log-score (Roulston & Smith, 2002),164

shown in Panel (e). This score is local, derived from information theory, and easily gen-165

eralises to multivariate predictions (Roulston & Smith, 2002; Bjerreg̊ard et al., 2021).166
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Figure 1. Skill of CNN (black), compared to forecasts from the subseasonal-to-seasonal pre-

diction project (colours) as a function of lead time. (a) Root mean square error. (b) Amplitude

error. (c) Phase error. (d) Continuous Ranked Probability Score. (e) Log-score (also known as

the Ignorance Score). CNRM and HMCR scores before day-15 were too high to be shown. (f)

Error-Drop. For all scores, a value closer to zero indicates a more skilful forecast.

It is also consistent with the loss function used to train the network. According to the167

log-score, the CNN is one of the two models with the best forecast skill at lead times of168

5–35 days. At shorter lead times, it outperforms all dynamical models. The poor per-169

formance of dynamical models at these short lead times is due to overconfident forecasts170

(Bjerreg̊ard et al., 2021), which are penalised by the log-score. In contrast, the CNN is171

able to balance the loss in accuracy with an increasing predicted uncertainty as the lead172

time increases.173

For probabilistic forecasts to be useful, observations should behave as if they were174

drawn from the forecast probability distribution. For this to hold, a smaller forecast spread175

should indicate a smaller root mean squared error (RMSE) in the forecast mean on av-176

erage. We assess this property of the forecasts using Error-Spread diagrams (Leutbecher177

& Palmer, 2008) shown in Figure 2. For well calibrated forecasts, the observed RMSE178

should equal the predicted standard deviation, with scattered points lying on the one-179

to-one line. None of the dynamical models have this property: their error distributions180

are independent of the forecast spread, such that the spread gives no indication of the181
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true predictability of the MJO on that day. In contrast, if the CNN forecast spread is182

low, the RMSE is indeed smaller than if the spread is high. The probabilistic forecasts183

produced by the CNN are a dynamic indicator of the certainty in the MJO forecasts, and184

therefore the instantaneous predictability of the MJO.185

Figure 2. Error-Spread Diagrams for (a) RMM1 and (b) RMM2. Well calibrated forecasts lie

on the one-to-one dashed line.

To quantify this property across many lead times, we incrementally remove the days186

with the highest predicted variance for each lead time and RMM index before comput-187

ing the RMSE in the forecast of the remaining days. This produces the confidence curve188

(Scalia et al., 2019). If the forecast correctly ranks different days in terms of forecast un-189

certainty, the confidence curve should be strictly decreasing. The error-drop (Figure 1(f)),190

is the ratio between the last and first points on the confidence curve (Scalia et al., 2019).191

The smaller the error-drop, the greater the reduction in RMSE when test days are sorted192

by the forecast uncertainty. The CNN performs better than all dynamical models. It is193

able to distinguish between predictable and unpredictable days at all lead times.194

3.2 Interpretation to validate network behaviour195

Before using the CNN to understand sources of uncertainty in the evolution of the196

MJO, we must understand how the CNN can make skilful forecasts of the MJO. This197

is necessary, as it reveals any concerning behaviour or spurious correlations (e.g. Lapuschkin198

et al., 2019), lending confidence to the predictions.199
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To interpret the CNN mean forecasts, we use the PatternNet algorithm (Kindermans200

et al., 2017) to derive signal maps for each forecast. These indicate where information201

is detected by the CNN in each input field. Because the different input variables are in-202

troduced as separate channels into the CNN, weights are shared across all variables for203

much of the network: the CNN distinguishes between variables in the first layer only. It204

is therefore useful to consider both the signal maps averaged over all variables (the sig-205

nal mean) and the difference between the signal map for each variable and the signal mean206

map (the signal anomalies).207

Since propagation over the Maritime Continent is a source of error in MJO fore-208

casts in many models (Kim et al., 2016), we contrast one event which successfully prop-209

agated over the Maritime Continent (28/02/2012), and one which decayed (25/02/2006)210

to validate the CNN’s behaviour. Supporting Figure S1 shows the observed RMM in-211

dices for these two events, and the corresponding mean forecasts initialised in phase 3,212

which capture the observed behaviour.213

Figure 3(a–b) shows the SHUM400 input fields averaged over all days in RMM214

phase 3 for the decaying and the propagating events respectively. Panels (c–d) show the215

signal means for RMM1 for the associated ten-day CNN forecasts initialised in phase 3.216

(The signal means for the decaying RMM2 are much smaller, consistent with the pre-217

diction that day-10 RMM2 is close to zero on average for the events selected: see Sup-218

porting Figure S3). For both events, the CNN signal mean maps show that the CNN in-219

tegrates over a large region spanning the Indian and Pacific Oceans, rather than tightly220

focusing on the active MJO region: the CNN also derives information from the input fields221

in regions of suppressed convection (Feng et al., 2015; Barrett et al., 2021).222

Figure 3 (e–f) show the corresponding PatternNet signal anomalies for SHUM400,223

highlighting the relative information provided by this input field. We see a large reduc-224

tion in signal over the Pacific (150°E–90°W), and an enhancement over the Maritime Con-225

tinent (90°E–110°E) co-located with enhanced SHUM400. Supporting Figures S4–S5 show226

the equivalent figure for OLR. The RMM1 signal anomaly is greater than for SHUM400,227

and it is stronger over the Pacific than was the case for SHUM400. Both Feng et al. (2015)228

and Barrett et al. (2021) found OLR precursors in this region which distinguished be-229

tween propagating and non-propagating MJO events. We conclude that the CNN has230
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identified true predictive features of MJO propagation, giving us confidence in the net-231

work.232

Figure 3. Interpretation of the CNN mean forecasts. (a–b) Composite maps of phase-3

SHUM400 for an MJO event which (a) decays and (b) propagates over the Maritime Conti-

nent. (c–d) PatternNet RMM1 signal mean maps (averaged over all variables) for ten-day CNN

forecasts for the decaying and propagating event respectively. (e–f) RMM1 signal anomalies in

SHUM400 for the decaying and propagating events respectively.

3.3 Predictors of uncertainty in MJO forecasts233

The ability of the CNN to rank days by uncertainty enables us to investigate drivers234

of short-term predictability of the MJO. We consider cases in Boreal winter, and sep-235

arate MJO events into 4 categories according to the CNN’s 10-day forecast. We first cat-236

egorise according to strength: for each day, an event is weak (strong) if the initial ob-237

served RMM amplitude is less than (greater than) 1.0. The data are then divided into238

certain and uncertain forecasts. To study the uncertainty that is directly linked to the239

MJO initial conditions, we use the network’s predicted aleatoric uncertainty. An event240

is certain (uncertain) if both the RMM1 and RMM2 forecast aleatoric uncertainties are241

under (over) their respective 30% (70%) percentiles. For each initial observed phase and242

input feature, we compute the difference between certain and uncertain days, separately243

for weak and strong events.244
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Figure 4 shows the results for SHUM400 for events starting in phases 3 and 7. The245

difference maps for weak and strong events are similar to each other: these maps pro-246

vide information concerning factors influencing the uncertainty of the MJO forecasts as247

opposed to its initial strength.248

For MJO events in phase 3, the initial conditions of ‘certain’ forecasts have reduced249

humidity at the equator in the central Pacific (150°E-120°W) and Indian Ocean (45°E-250

100°E), combined with off-equatorial regions of enhanced humidity over the Maritime251

Continent and Australia (100°E-160°E). Such a structure has been found to hinder the252

eastward propagation of the MJO (Jiang et al., 2020). Looking at the outcome for each253

type of event, we find ∼ 65% of events classified as ‘certain’ are forecast weak by day-254

10. In contrast, ∼ 80% of ‘uncertain’ events are strong at day-10 (see Supporting Ta-255

ble S3). This correlation between forecast strength at day-10 and forecast uncertainty256

means one cannot draw conclusions as to whether the initial condition humidity anomaly257

is a predictor of forecast strength, uncertainty, or both. To remove this confounding fac-258

tor, we further stratified the events by strength at day-10. We found that the moisture259

signal was substantially muted if we removed all events forecast as weak at day-10 from260

the composites, whereas if only events forecast as transitioning from strong to weak were261

considered, the signal became more intense (not shown). This confirms that final strength262

is the dominant factor here.263

For events initialised in phase 7, uncertain events show reduced moisture over the264

Maritime Continent in the MJO suppressed region (90°E-120°E), and enhanced mois-265

ture over the MJO active region (150°E-150°W), when compared to certain events. This266

signature of an enhanced MJO signal in the initial conditions for unpredictable events267

is observed for other variables for phase 7, particularly OLR (Supporting Figure S6). For268

events initialised in phase 7, 85% of uncertain forecasts are also likely to be strong at269

day-10, whereas that drops to 40% for certain forecasts (see Supporting Table S4). How-270

ever, if we further stratify the forecasts by final strength, we find the signature persists271

(not shown). Thus we conclude that an initially stronger MJO signal is associated with272

more uncertainty in the forecast.273

Finally, we find that MJO predictability is affected by the background state through274

which it propagates. In particular, for certain events, Z850 shows an enhanced gradient275

between the Eastern Pacific and the Maritime Continent for all forecasts initialised in276
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phases 4–7 (i.e. all events crossing the Pacific: see Supporting Figure S7–S8). An enhanced277

Z850 gradient is consistent with a higher Southern Oscillation index and a stronger Walker278

circulation cell over the Pacific. Further stratification by strength at day-10 indicates that279

this signal is unrelated to forecast strength. An enhanced (neutral or weakened) Walker280

circulation therefore leads to enhanced (reduced) certainty in the MJO.281

Figure 4. Interpretation of CNN uncertainty forecasts. (a-b) Composite maps of specific

Humidity at 400hPa (SHUM400) for extended Boreal winter MJO events in (a) phase 3 and (b)

phase 7. (c-f) Difference between input maps for predictable and unpredictable events as classi-

fied by ten-day forecasts using the CNN. (c) Weak phase 3 events (d) Weak phase 7 events. (e)

Strong phase 3 events (f) Strong phase 7 events. Stippling denotes areas where anomalies are

significant at the 95% level using the Student’s t-test.

4 Discussion and Conclusions282

We presented a CNN framework which produces probabilistic forecasts of the MJO283

in terms of means and variances of the bivariate RMM index. The skill of the CNN is284

competitive with models from the S2S database. Moreover, the CNN outperforms all S2S285

models for one key forecast property: it can to rank start dates according to the fore-286

cast uncertainty associated with the initial conditions. In other words, the CNN fore-287

cast spread is a dynamic indicator of the uncertainty in the MJO forecast on a given day.288

Since the CNN exhibits state-dependent reliability, we identify ‘certain’ CNN fore-289

casts with predictable states of the Earth system. We therefore interpret the CNN fore-290

casts to probe sources of predictability for the MJO. We do this by considering compos-291
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ites of initial conditions which the CNN indicated led to ‘certain’ and ‘uncertain’ ten-292

day forecasts respectively. We found that for forecasts initialised in phase 3, reduced hu-293

midity on the equator increases the likelihood of a decaying MJO event, which is asso-294

ciated with high forecast certainty. However, enhanced humidity on the equator increases295

the likelihood of MJO propagation over the MC, but it does not guarantee propagation,296

leading to high uncertainty in the forecast and low medium-range predictability.297

The CNN also used background state information to determine the MJO’s instan-298

taneous predictability. A reduced gradient in Z850 was linked to more forecast uncer-299

tainty for all MJO phases approaching the Pacific. This change in Z850 reflects a weaker300

Walker circulation, associated with El-Niño events. However, we found no consistent sig-301

nal in East Pacific SST across these phases (see Supporting Figures S9-S10). There is302

substantial debate about the dependency of the MJO on the state of the El Niño-Southern303

Oscillation (ENSO) (e.g. Ling et al., 2017). The Eastward extent of MJO activity is greater304

in El Niño years, (Kessler, 2001), and the MJO lifetime and propagation speed is also305

modulated by ENSO, though it shows sensitivity to the season of interest and type of306

ENSO event (Pohl & Matthew, 2007; Pang et al., 2016). In contrast, the overall ampli-307

tude of MJO activity appears unrelated to ENSO (J. M. Slingo et al., 1999; Kessler, 2001).308

While the dependency of the MJO on the back-ground state is usually considered in terms309

of SST, our results demonstrate ENSO could primarily influence the MJO via changes310

to the atmospheric dynamical background associated with El Niño and La Niña.311

Our CNN approach is complementary to earlier MJO predictability studies (e.g.312

Neena et al., 2014; Wu et al., 2016; Kim et al., 2018). Instead of quantifying the poten-313

tial predictability limit using our model, we are assessing relative predictability in the314

medium-range across different initial conditions. We can only do this because the CNN315

produces state dependent reliable probabilistic forecasts.316

The CNN is competitive with the best available dynamical models at predicting317

the MJO. However CNNs are complementary to dynamical models, and further improve-318

ments to MJO forecasting may be achieved through a blend of dynamical and machine319

learning approaches (Kim et al., 2021). Nevertheless, developing a stand-alone CNN fa-320

cilitates interpretation, enabling us to probe the performance of the CNN and develop321

new physical understanding, e.g. the role of different input features. This framework of322

combining state-dependent uncertainty estimates from neural networks with interpre-323
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tation techniques could be applied to other climate phenomena, allowing us to quantify324

the diverse range of sources of uncertainty in the Earth System.325

5 Open Research326

Data related to this paper can be downloaded from ERA5 Copernicus database https://327

cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels,328

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single329

-levels and the S2S Project ftp://s2sidx:s2sidx@acquisition.ecmwf.int/RMMS.330

The RMM indices were computed using the CLIVAR diagnostics package available at331

https://www.ncl.ucar.edu/Applications/mjoclivar.shtml. PyTorch (https://www332

.pytorch.org) and DropBlock (https://github.com/miguelvr/dropblock) libraries333

were implemented to build and train the CNN model. PatternNet code was adapted from334

https://github.com/TNTLFreiburg/pytorch patternnet. The codes used in the cur-335

rent analysis are available at https://www.github.com/adelaunay3/.336
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