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Abstract13

A significant component of Earth’s surface topography is maintained by stresses induced14

by underlying mantle flow. This ‘dynamic’ topography cannot be directly observed, but15

it can be approximated — particularly at longer wavelengths — from measurements of16

residual topography, which are obtained by removing isostatic effects from the observed17

topography. However, as these measurements are made at discrete, unevenly-distributed18

locations on Earth’s surface, inferences about global properties can be challenging. In this19

paper, we present and apply a new approach to transforming point-wise measurements20

into a continuous global representation. The approach, based upon the statistical theory21

of Gaussian Processes, is markedly more stable than existing approaches — especially for22

small datasets. We are therefore able to infer the spatial pattern, wavelength and amplitude23

of residual topography using only the highest-quality oceanic spot measurements within24

the database of Hoggard et al. (2017). Our results indicate that the associated spherical25

harmonic power spectrum peaks at l = 2, with power likely in the range 0.46–0.76 km2.26

This decreases by over an order of magnitude to around 0.02 km2 at l = 30. Around 85%27

of the total power is concentrated in degrees 1–3. Our results therefore confirm previous28

findings: Earth’s residual topography expression is principally driven by deep mantle flow,29

but shallow processes are also crucial in explaining the general form of the power spectrum.30

Finally, our approach allows us to determine the locations where collection of new data31

would most impact our knowledge of the spectrum.32

Plain Language Summary33

As the mantle flows, it induces deformation at Earth’s surface, pushing it up at some34

locations and pulling it down elsewhere. This deformation can be quantified by measuring35

so-called ‘residual topography’, at specific locations. However, we only have a small number36

of such measurements, and they are clustered in particular areas on Earth’s surface: inferring37

a global representation of residual topography is therefore a challenge. In this paper, we38

develop a new method for deriving robust global maps from such data, and apply this to a39

set of measurements of residual topography. An advantage of our method is that it remains40

effective for small datasets, enabling a more conservative approach to data selection. Our41

results complement recent studies on residual topography, highlighting how mantle dynamics42

shapes the surface of our planet across a range of scales.43

1 Introduction44

Earth’s surface topography arises as a balance between processes that create elevation,45

such as tectonic convergence, and those that destroy it, including erosion, sediment transport46

and deposition. Most topography is isostatic, being maintained by thickness and density47

variations within the crust and lithospheric mantle. However, there is growing consensus48

that a substantial proportion is controlled by mantle convection: as the mantle flows, it49

transmits normal stresses to the lithosphere, and these are balanced by gravitational stresses50

arising through topographic deflections of Earth’s surface (e.g. Pekeris, 1935; Parsons &51

Daly, 1983; Hager et al., 1985; Hager & Richards, 1989; Mitrovica et al., 1989; Gurnis, 1993;52

Lithgow-Bertelloni & Silver, 1998; Gurnis et al., 2000; Conrad & Husson, 2009; Braun, 2010;53

Shephard et al., 2010; Flament et al., 2013; Hoggard et al., 2016; Yang & Gurnis, 2016;54

Rubey et al., 2017; Eakin & Lithgow-Bertelloni, 2018). This so-called dynamic topography55

is transient, varying both spatially and temporally in response to underlying mantle flow.56

As a result, it is challenging to isolate — but doing so can provide important constraints57

upon the flow regime, planform and intensity of mantle convection.58

Observational constraints on dynamic topography are indirect: estimates of its spatial59

pattern, wavelength and amplitude are generally equated to so-called residual topography,60

which is calculated by removing the isostatic contribution of sediments, ice, crust and litho-61

sphere from the observed topography (e.g. Panasyuk & Hager, 2000; Kaban et al., 2003;62
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Flament et al., 2013; Guerri et al., 2016; Hoggard et al., 2016, 2017). In practice, residual63

topography provides an upper bound on flow-related dynamic topography (e.g. Hoggard64

et al., 2017). Indeed, whilst the long-wavelength components of residual topography are65

principally dynamic in origin, a significant proportion of shorter-wavelength oceanic ‘resid-66

ual’ topography arises from isostatic effects associated with local variations in lithospheric67

thickness and density, that cannot be accounted for through a simple plate cooling model68

(Davies et al., 2019). Despite this, measurements of residual topography are currently our69

best source of information on dynamic topography.70

Accurate measurements of residual topography depend upon a careful synthesis of71

information from a variety of sources — including models for surface elevation, sediment72

cover, crustal properties, and thermal effects. Inevitably, the availability and quality of such73

information is not uniform across Earth’s surface. A recent database of residual topography74

within the world’s oceans, compiled by Hoggard et al. (2016, 2017), provides one of the75

most comprehensive datasets currently available. This has underpinned a series of studies76

into the spectral character of residual topography and its relationship to underlying mantle77

dynamics (e.g. Hoggard et al., 2016, 2017; Steinberger, 2016; Yang & Gurnis, 2016; Yang78

et al., 2017; Watkins & Conrad, 2018; Steinberger et al., 2019). However, the conclusions79

from these studies have often appeared contradictory. At least in part, this has been due80

to authors making different subjective choices within their analyses, with the debate being81

further complicated by a lack of consistency around the spherical harmonic normalisation82

conventions employed by different groups.83

In an effort to reduce subjectivity in the analysis, a recent study by Davies et al.84

(2019) considered the database of Hoggard et al. (2017) using a novel hierarchical Bayesian85

approach (Valentine & Sambridge, 2018). In particular, a strategy of ‘Automatic Relevance86

Determination’ (ARD) was employed to avoid the need to impose any pre-determined notion87

of ‘smoothness’ upon the residual topography. Results indicate that the spectrum was88

dominated by long-wavelength (∼ 104 km) features, with power dropping by about an order89

of magnitude at shorter wavelengths (∼ 103 km). Based upon predictions from instantaneous90

models of global mantle dynamics, Davies et al. (2019) demonstrate that both deep mantle91

flow and shallow, lithosphere-controlled processes are important in generating this surface92

response.93

However, one drawback in the ARD approach employed by Davies et al. (2019) is that94

it becomes unstable as the number of data points is reduced. Within the database compiled95

by Hoggard et al. (2016, 2017), a subset of around 5% of the measurements are considered96

markedly more robust than the rest. Ideally, it would be possible to analyse those points in97

isolation — but this is not possible using the ARD strategy. The present paper, therefore,98

develops an alternative approach to analysis, building on the statistical theory of Gaussian99

Processes (e.g. Rasmussen & Williams, 2006) and the work of Valentine and Sambridge100

(2020a, 2020b). This method remains stable for even the smallest datasets, and allows us to101

convincingly demonstrate that the conclusions of Davies et al. (2019) remain valid when only102

the highest-quality data points are used. We are also able to obtain maps showing where103

new measurements would be most valuable in constraining the residual topography profile.104

While the present paper focusses only on residual topography, our underlying method has105

much wider application, and may be useful for any attempt to characterise continuous Earth106

properties from discrete samples.107

We begin by providing a brief summary of the observational datasets used in this study,108

which are described more fully elsewhere. We then summarise how Gaussian processes can be109

used to represent functions on Earth’s surface, building on the presentation in Valentine and110

Sambridge (2020a, 2020b), and develop the mathematical results necessary for converting the111

recovered model into a spherical harmonic representation. Finally, we show that application112

of this theory to the observational data yields results that are self-consistent across different113

data subsets, and in general agreement with earlier studies.114
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Figure 1. Measurements of residual topography. 1160 high-accuracy spot measurements are

shown in (a), with associated uncertainties in (b). A further 870 spot measurements that lack crustal

corrections are shown in (c), with uncertainties in (d): these are shown without the additional 200 m

uncertainty assessed by Hoggard et al. (2017) to reflect the absence of crustal information. Finally,

(e) shows 20767 gridded measurements derived from shiptrack bathymetry; again, the uncertainties

depicted in (f) do not include any additional uncertainty to reflect the lack of crustal corrections.

2 Datasets115

The database employed for this study is described in Davies et al. (2019), and is a116

compilation of residual topography measurements within the world’s oceans. It represents117

an incremental update to the database of Hoggard et al. (2017), which itself builds on several118

previous studies (e.g. Winterbourne et al., 2009; Czarnota et al., 2013, 2014; Winterbourne119

et al., 2014; Hoggard et al., 2016). In comparison to Hoggard et al. (2017), the version120

accompanying Davies et al. (2019) incorporates information from additional marine seismic121

surveys, and has undergone further quality control. For the purposes of this paper, it is122

appropriate to divide the dataset into three classes, and we discuss each in turn.123

2.1 High-accuracy spot measurements124

These measurements are derived from marine seismic surveys, allowing direct observa-125

tion of the topography associated with the oceanic crust. Careful processing allows isostatic126

effects associated with sedimentary loading and crustal thickness to be removed, and age-127
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depth cooling is accounted for using a simple analytical plate model (Hoggard et al., 2017).128

A total of 1160 residual topography observations are obtained (see Fig. 1a), with associated129

uncertainty (Fig. 1b). We consider these points to be the most robust within the database,130

and the primary goal of this paper is to ascertain the extent to which the power spectrum131

of residual topography can be constrained using only these measurements.132

2.2 Lower-accuracy spot measurements133

A further 870 points, shown in Fig. 1(c), were obtained in a similar manner — but a134

lack of information prevented isostatic correction for variations in crustal thickness. These135

observations must therefore be assumed to be less accurate. To reflect this, Hoggard et136

al. (2017) increases the uncertainties reported for these data points by 0.2 km, a somewhat137

arbitrary figure chosen based on the median crustal correction associated with the high-138

accuracy data points. In the present paper, we replace this additional 0.2 km component by139

an unknown correction, ∆. We can then determine the value ∆ should take to ensure sta-140

tistical consistency with information from the high-accuracy data points. The un-corrected141

uncertainties (i.e. without the additional 0.2 km component) are shown in Fig. 1(d).142

2.3 Shiptrack-derived measurements143

Finally, the database contains 20767 measurements derived from a global shiptrack144

bathymetry grid (Smith & Sandwell, 1997), with sedimentary corrections based on the145

model of Laske and Masters (1997). Again, Hoggard et al. (2017) increases the uncertain-146

ties associated with these measurements by 0.2 km, to reflect the lack of detailed crustal147

information; again, we replace this with the unknown correction ∆. These data points are148

illustrated in Fig. 1(e), with uncorrected uncertainties in Fig. 1(f). Clearly, these points149

provide excellent spatial coverage within the oceans, but the use of global datasets, which150

are themselves derived from a variety of sources, raises the possibility of significant un-151

quantified systematic biases within this portion of the dataset. We therefore regard the152

shiptrack-derived measurements as being the least robust within the database.153

3 Methodology154

The fundamental challenge in this work — and in many other geoscience questions155

— is to infer a continuous spatial function (i.e. the residual topography at any position on156

Earth’s surface) from a finite set of observations made at discrete locations. A variety of157

approaches are possible, but one common strategy is to assume that the spatial function158

can be expanded in terms of a finite set of basis functions. This transforms the inference159

task into one of determining the expansion coefficients relative to this basis, typically as a160

least-squares inversion problem. This is the approach adopted by Hoggard et al. (2016) and161

Davies et al. (2019), using a spherical harmonic basis. However, two key difficulties emerge.162

First, it is likely that the true spatial function contains features that cannot be represented163

using the finite basis. This can lead to an aliasing-like effect known as ‘spectral leakage’164

(Trampert & Snieder, 1996), biasing the recovered expansion coefficients away from their165

correct values. While it is possible to correct for this, it is computationally expensive to166

do so. Instead, Davies et al. (2019) adopted a pragmatic approach: since spectral leakage167

mainly affects the shortest-wavelength components within the expansion, these terms were168

omitted from further analysis.169

The second difficulty arises because with sparse, unevenly-distributed data, not all170

components of the basis function expansion are equally-well constrained. Typically, some171

expansion coefficients can be varied significantly without affecting the fit to data, which can172

cause the interpolated function to behave unrealistically in regions of low data coverage.173

To address this, one typically introduces ‘regularisation’: additional constraints on the ba-174

sis function expansion, designed to ensure that a well-behaved solution can be found. In175
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Hoggard et al. (2016), the chosen constraints amounted to a requirement that the residual176

topography field be ‘small’ and ‘smooth’. In general, these are reasonable requirements—177

but they carry implications for the spectral characteristics of the recovered field. Thus, one178

could question whether the power spectrum from Hoggard et al. (2016) was truly mandated179

by the data, or if it had arisen as a consequence of the assumptions inherent to their analy-180

ses. As noted above, to overcome this potential shortcoming, Davies et al. (2019) employed181

a novel approach to regularisation, developed in Valentine and Sambridge (2018), based on182

the idea of ‘Automatic Relevance Determination’ (ARD) (Mackay, 1992). In the present183

context, this enables appropriate ‘smoothness’ characteristics to be determined from the184

data, rather than being imposed from the outset. However, application of this approach185

requires a relatively large dataset and, as a result, the ARD analysis can only be applied to186

the full residual topography dataset (i.e. that incorporating all spot- and shiptrack-derived187

measurements); attempts to apply it to only the high-accuracy spot measurements prove188

unstable.189

Subsequently, Valentine and Sambridge (2020a, 2020b) set out an alternative frame-190

work for inferring continuous functions from point data, based on the statistical theory191

of Gaussian Processes. This avoids a number of the difficulties associated with the basis-192

function–expansion approach, and remains stable for small datasets. Thus, unlike ARD, it193

can be used to analyse the high-accuracy spot data from Hoggard et al. (2017) in isolation,194

as well as their dataset incorporating ship-track derived constraints.195

3.1 A Gaussian Process model for residual topography196

Gaussian Processes are a class of statistical model that have become an increasingly197

popular tool for machine learning. They are discussed at length in, for example, Rasmussen198

and Williams (2006) or Murphy (2012), and we do not attempt to provide a comprehensive199

introduction here. Instead, we outline the key features, building on the development and200

notation adopted in Section 2 of Valentine and Sambridge (2020a). Readers are encouraged201

to consult that paper if further details are required.202

We wish to develop a model for the residual topography field, which we denote h(θ, ϕ),203

as a function of latitude (θ) and longitude (ϕ). To simplify notation, we introduce the posi-204

tion vector x = (θ, ϕ), and will use h(x) interchangeably with h(θ, ϕ). Whereas expressing205

h(x) using a basis function expansion requires us to choose the set of basis functions and206

an approach to regularisation, expressing it as a Gaussian Process requires us to specify a207

‘mean function’ and a ‘covariance function’. The mean function, µ(x), describes our a priori208

statistical assumptions about the expected value of h(x); for present purposes, we assume209

that this has a constant value everywhere,210

µ(x) = µ0 . (1)

The covariance function, k(x,x′) describes our a priori assumptions about the covariance211

between h(x) and h(x′). Put in more intuitive terms: k(x,x′) describes how learning the212

value of h at some point, x, would influence our beliefs about the value of h at some other213

point, x′. In the present case, it is reasonable to assume that the degree of influence should214

diminish as the distance between x and x′ grows: we might expect residual topography to215

be similar for two localities 1 km apart, but knowledge of residual topography in the North216

Atlantic would not help us constrain residual topography in Australia. In this paper, we217

adopt the Matérn family of covariance functions, for which218

k(x,x′) = σ2
1

21−ν

Γ(ν)

(√
2ν d(x,x′)

σ2

)ν
Kν

(√
2ν d(x,x′)

σ2

)
, (2)

where Γ denotes the Gamma function, and Kν is a modified Bessel function of the second219

kind. Here, d(x,x′) is some measure of the distance between the points x and x′; for reasons220

which will later become apparent, we employ the epicentral angle, Θ, defined such that221

d(θ, ϕ; θ′, ϕ′) ≡ Θ(θ, ϕ; θ′, ϕ′) = arccos (sin θ sin θ′ + cos θ cos θ′ cos(ϕ− ϕ′)) . (3)
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Note that this can be converted into the great-circle distance on the surface of the (assumed222

spherical) Earth by multiplying by Earth’s radius. The quantities σ1, σ2 and ν in eq. (2)223

are hyperparameters controlling the detailed shape of the covariance function. Specifically,224

σ1 governs its amplitude, σ2 represents the spatial length-scale over which we expect an225

observation to be informative, and ν is an order parameter that, essentially, determines226

the smoothness of the interpolation. This Matérn family arises as a generalisation of the227

Gaussian (or squared-exponential) covariance function, which corresponds to the case ν =228

∞, and is widely-used in machine learning and spatial statistics in cases where a general,229

localised covariance function is required. Readers seeking greater intuition on the role played230

by the covariance function may wish to consult Figs. 1 & 2 of Valentine and Sambridge231

(2020a) and the associated discussion.232

When we represent residual topography using a Gaussian Process, which we denote by233

writing h(x) ∼ GP (µ(x), k(x,x′)), we effectively assert that whenever we consider the value234

of h at any N distinct locations, x1...N , our overall state of knowledge should be described235

by an N -dimensional Gaussian distribution,236 
h(x1)
h(x2)

...
h(xN )

 ∼ N (µ,K) . (4)

The elements of µ are obtained by evaluating the mean function, µi = µ(xi), and the237

elements of K are derived from the covariance function, Kij = k(xi,xj). In particular, if238

we consider a single point x, we find that239

h(x) ∼ N (µ0, σ
2
1) . (5)

This represents our prior probability distribution for residual topography at a point. Thus,240

before observing any data, our presumptions about residual topography, irrespective of241

location, can be characterised as h = µ0 ± σ1.242

Now, suppose we are able to measure residual topography at a discrete set of points,243

x̂1...N (as in Valentine and Sambridge (2020a), a ‘hat’ is used to distinguish quantities as-244

sociated with the observational dataset). Our set of N measurements can be represented as245

the N -dimensional vector d̂, such that d̂i represents our estimate of h(x̂i), and we assume246

that all measurement errors are Gaussian, described overall by the N×N covariance matrix,247

Cd̂. In the present case, this has entries on the leading diagonal only (so that all measure-248

ments are assumed independent), and is treated as a function of the unknown contribution249

to uncertainty arising from a lack of crustal corrections, ∆. According to the assumptions250

we have made in setting up our Gaussian Process model, this specific set of observations251

have likelihood252

P(d̂ |σ) =
1

(2π)N/2|K̂σ + Cd̂(∆)|1/2
exp

{
−1

2

(
d̂− µ̂σ

)T (
K̂σ + Cd̂(∆)

)−1 (
d̂− µ̂σ

)}
(6)

where µ̂σ and K̂σ are obtained by evaluating the mean and covariance functions at the253

sample points x̂, and where the subscript σ is used to emphasise that these quantities them-254

selves depend on specific choices for the hyperparameters, σ = (µ0, σ1, σ2, ν,∆). Plainly,255

we should not adopt assumptions that make our observations inherently ‘unlikely’, and so256

it is sensible to select hyperparameter values that maximise eq. (6). This is straightforward257

to implement using standard computational tools for optimisation, such as the L-BFGS-B258

algorithm (Byrd et al., 1995), available through Scipy. We remark that this concept can be259

framed more formally as an approximation to a hierarchical Bayesian estimation of σ; see260

Valentine and Sambridge (2018).261

Having selected optimal values for σ, we are now in a position to predict residual262

topography at unseen locations. To do this, we note that eq. (4) holds for any set of263
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locations: in particular, it must hold if we consider the N observed locations and one264

additional point, x. We can then condition this distribution on the values we actually265

observed, exploiting the correlations between locations to refine our knowledge about h(x).266

As explained in Valentine and Sambridge (2020a), application of a standard result for the267

conditioning of Gaussian distributions results in a posterior estimate of residual topography268

given by269

h̃(x) ∼ GP
(
µ̃(x), k̃(x,x′)

)
, (7a)

where270

µ̃(x) = µ(x) + k̂(x)T
(
K̂ + Cd̂

)−1 (
d̂− µ̂

)
(7b)

k̃(x,x′) = k(x,x′)− k̂(x)T
(
K̂ + Cd̂

)−1
k̂(x′) (7c)

and where k̂(x) is the vector-valued function that evaluates the covariance function between271

point x and each of the observation locations, such that272 [
k̂(x)

]
i

= k(x, x̂i) . (7d)

Thus, within the Gaussian Process framework, the data allow us to infer that273

h̃(x) = µ̃(x)±
√
k̃(x,x) . (8)

This allows us to map the spatial pattern and amplitude of residual topography, which we274

return to in Section 4.275

3.2 The power spectrum of residual topography276

To understand the power spectrum of the recovered residual topography field, and to277

compare this with previously-published results, we must express h(x) in terms of spherical278

harmonics. As in Hoggard et al. (2016) and Davies et al. (2019), we employ the real surface279

spherical harmonics, Ylm(θ, ϕ), defined as in Section B6 of Dahlen and Tromp (1998). The280

infinite set of spherical harmonics is complete and, thus, we can express our Gaussian Process281

model exactly as an infinite sum282

h̃(θ, ϕ) =

∞∑
l=0

l∑
m=−l

clmYlm(θ, ϕ) . (9)

Moreover, the spherical harmonics are normalised, and orthogonal, in the sense that283 ∫
Ω

Ylm(θ, ϕ)Yl′m′(θ, ϕ) dΩ = δll′δmm′ , (10)

where δij is a Kronecker delta and integration is over a spherical surface. Hence, any284

coefficient clm can be found by evaluating285

clm =

∫
Ω

h̃(θ, ϕ)Ylm(θ, ϕ) dΩ . (11)

It is important to recognise that, whereas Hoggard et al. (2016) and Davies et al. (2019)286

sought to directly fit a spherical harmonic expansion to point data, our approach is different:287

we have already obtained a global representation of h̃(θ, ϕ), and we simply need to express288

this within the spherical harmonic basis. This distinction underpins the stability of our289

approach.290

Because h̃(θ, ϕ) is a Gaussian Process, the integration in eq. (11) results in a probability291

distribution for clm. As discussed in Valentine and Sambridge (2020a), clm is normally-292

distributed, and the coefficients associated with different values of l andm are jointly normal.293

If we use c to denote some set of these coefficients, then294

c ∼ N (y,Σ) (12a)

–8–



manuscript submitted to Geochemistry, Geophysics, Geosystems

where295

yi =

∫
Ω

µ̃(θ, ϕ)Ylimi(θ, ϕ) dΩ (12b)

Σij =

∫∫
Ω2

Ylimi
(θ, ϕ)k̃(θ, ϕ; θ′, ϕ′)Yljmj

(θ′, ϕ′) dΩ dΩ′ (12c)

and where we have used (li,mi) to indicate the spherical harmonic degree and order appro-296

priate to the ith element of c.297

Substituting the expressions for µ̃ and k̃ from eq. (7) into these integrals, we obtain298

yi =

∫
Ω

µ(x)Ylimi
(x) dΩ +

∑
pq

flimi
(x̂p)

[(
K̂ + Cd̂

)−1]
pq

(d̂q − µ(x̂q)) (13a)

Σij = glimiljmj
−
∑
pq

flimi
(x̂p)

[(
K̂ + Cd̂

)−1]
pq

fljmj
(x̂q) (13b)

where we have introduced f and g to represent certain integrals of the covariance function,299

flm(θ, ϕ) =

∫
Ω

k(θ, ϕ; θ′, ϕ′)Ylm(θ′, ϕ′) dΩ′ (14a)

glml′m′ =

∫
Ω

flm(θ, ϕ)Yl′m′(θ, ϕ) dΩ (14b)

Näıvely, one might anticipate evaluating these numerically. However, this is impractical,300

since integration over the surface of the sphere requires a double integral, and thus g rep-301

resents a quadruple integral. For our approach to be tractable, it is essential that we find302

analytic reductions of these integrals.303

By design, we adopted epicentral angle as the distance measure within our covariance304

function. As a result, the function k can be regarded as a function of epicentral angle,305

k(θ, ϕ; θ′, ϕ′) → k(cos(Θ)). Recognising this allows us to write it as an expansion in terms306

of Legendre polynomials,307

k(cos(Θ)) =

∞∑
l=0

alPl(cos(Θ)) (15)

where, again, no approximation is involved provided the sum is infinite. Any coefficient in308

this expansion can be computed,309

al =
2l + 1

2

∫ π

0

k(cos Θ)Pl(cos Θ) sin Θ dΘ (16)

and this integral can be evaluated numerically for any l.310

However, by the spherical harmonic addition theorem, we can also express the Legendre311

polynomials as a sum of spherical harmonics,312

Pl(cos(Θ)) =
4π

2l + 1

l∑
m=−l

Ylm(θ, ϕ)Ylm(θ′, ϕ′) . (17)

Combining eqs. (14–17) and exploiting the orthogonality properties given in eq. (10), we313

therefore have314

flm(θ, ϕ) = 2πYlm(θ, ϕ)

∫ π

0

k(cos Θ)Pl(cos Θ) sin Θ dΘ (18a)

glml′m′ = 2πδll′δmm′

∫ π

0

k(cos Θ)Pl(cos Θ) sin Θ dΘ (18b)

We are now in a position to evaluate y and Σ, and, thus, characterise the distribution315

describing c. We highlight that no approximations have been made in determining these316
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Table 1. Optimal hyperparameters determined for each dataset. Quantities are defined as in the

main text.

µ0 (km) ∆ (km) σ1 (km) σ2 (rad) ν

High accuracy spot only -0.03 – 0.63 0.24 0.49
All spot -0.06 0.08 0.64 0.20 0.49

All spot and shiptrack -0.01 0.09 0.65 0.20 0.69

10000 5000 0 5000 10000
Distance, d(x, x′), km

0.0

0.2

0.4

Co
va

ria
nc

e,
 k

(x
,x

′ )

High accuracy spot only
All spot
All spot and shiptrack

Figure 2. Covariance properties of datasets. Transects through the function k(x,x′), plotted

as a function of the distance between x and x′. All three datasets display similar properties.

expressions, and our results are not influenced by spectral leakage caused by truncation of317

a spherical harmonic expansion at some particular degree.318

Finally, to obtain a spectrum for any random realisation of c, we follow Hoggard et319

al. (2016) and define the power at degree l to be320

pl =

l∑
m=−l

c2lm . (19)

Since the coefficients clm are Gaussian-distributed, pl follows a generalised χ2-distribution.321

It should be noted that this has a number of counter-intuitive properties, including the fact322

that the expected value of the power is typically higher than the power of the expected set323

of coefficients.324

4 Results and Discussion325

4.1 Dataset properties and models of residual topography326

We begin by considering the 1160 high-accuracy spot measurements only. We deter-327

mine the hyperparameters µ0, σ1, σ2 and ν that maximise the inherent likelihood of this328

dataset (subject to the assumptions underpinning our approach), as discussed in Section 3.1.329

Values are given in Table 1; in particular, we find the characteristic length-scale over which330

each data-point is informative to be around 1500 km. The resulting covariance function331

k(x,x′) is shown in Fig. 2.332

We then condition the Gaussian Process on the observed data, to obtain a model for333

residual topography. The posterior mean elevation for this high-accuracy dataset is mapped334
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in Fig. 3(a), with uncertainties shown in Fig. 3(b). We observe a spatial pattern of residual335

topography that is consistent with that reported by Davies et al. (2019), dominated by336

broad topographic highs within the Pacific, African and North Atlantic regions, separated337

by a band of topographic lows extending from Antarctica, through the Americas to the338

Arctic, broadening beneath the Eurasian continent and extending south of Australia. Un-339

surprisingly, given the sparse and uneven data coverage, this model has large uncertainties340

in many regions of the globe, including continental interiors and substantial sections of the341

oceans.342

In any Bayesian approach, the posterior distribution arises as a compromise between343

information obtained from the data, and information imposed by the prior distribution. To344

help quantify where the dataset is informative, it is useful to measure the difference between345

prior and posterior distributions at any point in our model. To do this, we employ a common346

similarity measure for probability distributions, the Kullback-Leibler divergence (Kullback347

& Leibler, 1951),348

DKL(h(x)‖h̃(x)) =

∫ ∞
−∞

ρh(u) log
ρh̃(u)

ρh(u)
du (20)

where ρh and ρh̃ represent the probability density functions associated with the distribu-349

tions h(x) and h̃(x), respectively. Since the natural logarithm is used, information gain is350

expressed in units of ‘nats’ (compare ‘bits’ for base-2 information measures). Where the351

Kullback-Leibler divergence is low, our posterior distribution remains rather similar to our352

prior distribution, and so our inference has not taught us much. This is mapped for the353

high-accuracy spot measurements in Fig. 3(c), and in many regions — particularly conti-354

nental interiors, the Pacific Ocean and the Southern Ocean — there is little information355

available from data. This must be borne in mind when interpreting the residual topography356

maps.357

We repeat this analysis, extending the dataset to include the additional 870 spot358

measurements for which crustal corrections are not available. As discussed in Section 3.1, we359

increase the uncertainties associated with these data points by an amount ∆, and determine360

∆ = 0.08 km as part of the hyperparameter optimisation process. This is somewhat less361

than the correction adopted by Hoggard et al. (2017) (who proposed ∆ = 0.2 km, based on362

the median crustal correction applied to the high-accuracy points). Other hyperparameter363

values are as listed in Table 1: these are generally similar to those obtained using the364

high-accuracy points, with the characteristic length-scale determined to be ∼ 1300 km. The365

resulting covariance function is depicted in Fig. 2, and is consistent with that obtained using366

the high-accuracy data alone.367

Conditioning the Gaussian Process on the observed data, we obtain the residual to-368

pography model shown in Fig. 4. Again, this is generally similar to that obtained using the369

high-accuracy data, although the additional constraints reveal new features in some regions370

(e.g. the Western Pacific, where some shorter wavelength structure is apparent). Again, we371

report uncertainties and the information gain between prior and posterior, and these should372

be considered carefully before any detailed interpretation of model features.373

Finally, we extend the dataset once more, incorporating the 20767 measurements de-374

rived from shiptrack bathymetry. Again, to reflect the fact that no crustal corrections are375

applied to these data points, we increase measurement uncertainties by the amount ∆. We376

redetermine a value for this using the expanded dataset, obtaining ∆ = 0.09 km, and other377

hyperparameters as given in Table 1. Given the significant expansion of the dataset, these378

are remarkably consistent with those determined from the spot data alone. Only the order379

parameter ν changes appreciably. However, Fig. 2 illustrates that this has minimal effect380

on the form of the covariance function.381

A residual topography model derived from the full dataset is shown in Fig. 5. Unsur-382

prisingly, given the ten-fold increase in the number of measurements used to construct the383

model, we see fine-scale detail that is not visible using the spot data alone. Uncertainties384
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Figure 3. Residual topography determined from high-accuracy spot measurements only. Panel

(a) shows the posterior mean point-wise estimate of residual topography, µ̃(x), with (b) mapping

the associated standard deviation,
√
k̃(x,x). In (c), we show the point-wise information gain from

prior to posterior, DKL(x), in units of ‘nats’ (see text). Colour scales are chosen for consistency

with subsequent figures; the maximum values for each map are given in the lower-right corner.

Note that uncertainties grow rapidly away from measurement locations, and there are large regions

(including all continental interiors) where the spot data is uninformative.
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Figure 4. Residual topography determined from spot data, including the 1160 high-accuracy

points and a further 870 measurements lacking a crustal correction, for which an additional un-

certainty has been estimated. As in Fig. 3, we show (a) the mean residual topography, (b) the

standard deviation in this estimate, and (c) the pointwise information gain.
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Figure 5. Residual topography determined from all available data, including both spot- and

shiptrack-derived measurements. As in Figs 3 and 4, we show (a) the mean residual topography,

(b) the standard deviation in this estimate, and (c) the pointwise information gain. The use of

shiptrack-derived data substantially expands the area in which the model is informative.
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Figure 6. The power spectrum of residual topography: (a) spectrum obtained using high-

accuracy spot measurements only; (b) spectrum obtained using all spot measurements; and (c)

spectrum obtained using spot and shiptrack data. All panels also show results from Davies et

al. (2019) (derived from spot and shiptrack data) for comparison. Solid lines represent the power

spectrum of the mean spherical harmonic coefficients; coloured bands represent the ranges spanned

by the central 50% and 99% of spectra computed for 100,000 random samples from the distribution

of spherical harmonic coefficients. In general, the results obtained in this paper are in agreement

with those of Davies et al. (2019).

are markedly reduced throughout the oceans, particularly in the North Atlantic. As ex-385

pected, the data is informative throughout the oceans, but the lack of onshore data results386

in significant uncertainties within continental interiors.387

4.2 Power spectra388

Having obtained residual topography models based on the three data subsets, we next389

express each in terms of spherical harmonics and compute power spectra. These are shown in390

Fig. 6, presented in a format consistent with Hoggard et al. (2016) and Davies et al. (2019),391

allowing for straightforward comparison. To represent the (non-Gaussian) uncertainties as-392

sociated with these spectra, we generate power spectra for 100,000 random samples from the393

posterior residual topography models, and Fig. 6 depicts the ranges spanned by the central394

99% and 50% of samples. An alternative presentation of the same data is shown in Fig. 7,395

allowing direct comparison between the three data sets at each spherical harmonic degree,396

and some representative numerical values are provided in Table 2. Files containing the ex-397

pansion coefficients for each data set are included in the software repository accompanying398

this paper; see the ‘data availability statement’ for details.399

In general, all three datasets tell a similar story, which is consistent with that reported400

by Davies et al. (2019) (results also shown in Fig. 6). The spectrum of residual topography401

is relatively flat, peaking at or around degree-2 (wavelength ∼ 16000 km), with steadily-402

declining power at shorter length scales. Based on the high-accuracy spot data, the most-403

probable model has degree-2 power 0.53 km2, although the data could support power up to404

∼ 1.3 km2. By degree-10 (wavelength ∼ 4000 km) and degree-20 (∼ 2000 km), the power is405

likely in the ranges 0.12–0.18 km2 and 0.04–0.06 km2, respectively. In general, the additional406

information available in the expanded datasets (all spot data; all spot and shiptrack data)407

enables a modest reduction in the spectral uncertainty, but does not substantially alter the408

most-probable power. Based on our random samples, we find that degrees 1–3 account409

for about 85% of the total power in the residual topography field below degree-30 (high410

accuracy spot data only: 85.9%; all spot data: 83.9%; spot and shiptrack data: 84.2%).411
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Figure 7. Uncertainties in the power spectrum of residual topography. An alternative repre-

sentation of the data in Fig. 6: histograms of the power per degree for 100,000 random samples

from the posterior distribution of spherical harmonic coefficients obtained using each dataset. Note

that the vertical (power) scale here is linear, whereas in Fig. 6 a logarithmic scale is used, to match

figures elsewhere in the literature. Beyond l = 22 differences between the two datasets are negligible

on the scale of this figure.

By generating random models consistent with the data, we can also quantify the412

typical height variations associated with residual topography. Some representative figures413

are given in Table 3. Based on the high-accuracy data, we see that the maximum amplitude414

of residual topography is likely to be in the range 2.12–2.39 km, with an upper limit of415

around 3 km. This is consistent with the range of measurements depicted in Fig. 1. When416

filtered at the longest wavelengths (spherical harmonic degrees 1–3), models consistent with417

the data typically have maximum amplitudes in the range 680–850 m, with an upper limit of418

∼ 1.2 km. The expanded datasets reduce these ranges somewhat: the full spot and shiptrack419

data suggests maximum amplitudes at these wavelengths of 740–820 m, and an upper limit420

of ∼ 1 km.421

4.3 A synthetic test422

The consistency of results across datasets is a strong indication that we are obtaining423

models that provide a useful representation of the truth. To further validate our approach,424

we perform a synthetic test. We take a synthetic residual topography field generated from425

a global model of instantaneous mantle flow (fully-described in Davies et al. (2019); we here426

use the simulation ‘with shallow structure’, which incorporates shallow-density heterogeneity427

and thermal structure based upon an estimate of lithospheric thickness, and has been shown428

to have characteristics that are consistent with the observational data). This simulated field429

is first sampled at the 1160 locations corresponding to our high-accuracy measurements. We430

use this dataset to construct a global Gaussian Process model, which — as already discussed431

— enables us to generate the mean and standard deviation characterising our prediction432

for residual topography at any point on Earth’s surface. We then sample our synthetic433

residual topography field at 116062 points drawn from a regular mesh within the oceans,434

and compare this synthetic ground truth data with our Gaussian Process predictions for435

these 116062 locations. For each location, we compute the difference between the mean436
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Standard deviations from the mean

Figure 8. A synthetic test: predictive performance of Gaussian Process residual topography

model constructed using simulated data. Output from a global simulation of instantaneous mantle

flow from Davies et al. (2019) is used to generate a synthetic residual topography dataset at the

same 1160 locations as in our ‘high accuracy’ dataset. Applying our Gaussian Process approach,

we can then predict the residual topography on a regular mesh of 116062 locations throughout the

oceans, and associated uncertainties. We then compare these to the ‘true’ simulation-derived value

at each point, expressing any prediction error relative to the uncertainty. In the ideal case, results

(grey bars) should follow a standard normal distribution (red line).

predicted topography and the ‘true’ value, and then divide this by the standard deviation437

associated with that prediction. Treating performance at each location as independent, this438

quantity should follow a standard normal distribution (i.e., one with zero mean and unit439

variance) if our model were perfect.440

A histogram of the resulting data is shown in Fig. 8, overlain by a standard normal441

distribution. As one might anticipate, the two do not match exactly, with the histogram442

somewhat skewed. Nevertheless, it is clear that the Gaussian Process model provides good443

predictive performance: the truth lies within one standard deviation of the predicted mean444

in 65.4% of cases, and within three standard deviations in 96.2%. For a true normal distri-445

bution, these figures should be 68.3% and 99.7% respectively.446

A number of factors can be identified that contribute to this discrepancy. First, it447

is not strictly correct to treat the performance at adjacent locations as independent; we448

ought to account for the fact that they are correlated. However, neglecting this greatly449

simplifies the analysis, and likely better-represents the manner in which users will approach450

maps such as those shown in Figs. 3–5. Second, in treating the residual topography field as451

being representable using a Gaussian Process, we are making a strong assumption about its452

statistical properties. This is pragmatically justifiable — one cannot analyse any dataset453

without making assumptions — but is almost certainly imperfect.454

A third issue may lie within the hyperparameter optimisation procedure. Implicit455

in this is an assumption that the available data is representative of the field as a whole.456

Unfortunately, as with most geoscience datasets, our sample locations are not randomly-457

distributed around the globe: they are influenced by a variety of practical, economic and458

scientific constraints. In the present case, the points within the high-accuracy dataset are459

governed by the availability of seismic surveys. Inevitably, such surveys are targeted towards460

particular geological environments — resulting in a bias towards older oceanic crust that461

abuts continental margins. As a result, there is a significant possibility that our observations462
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Figure 9. Hyperparameter tradeoffs, computed using all spot data. Plots show the un-

normalised likelihood of residual topography measurements, eq. (6), as pairs of hyperparameters

are varied in the vicinity of the optimal set (see Table 1); in each plot, all other hyperparameters

are fixed to their optimal value. All hyperparameters are fairly tightly-constrained. Relationships

between σ1, σ2, ν and µ0 computed using the high-accuracy spot data are very similar to those

seen here; the parameter ∆ is not relevant to that dataset.

present a biased picture of the overall field. This is the case in our synthetic example:463

although the average global residual topography is zero, the average residual topography at464

our 1160 sample points is−422 m (globally, the simulation has amplitudes that are somewhat465

larger than we expect for the Earth, lying in the range −4.95–3.39 km). This sampling bias466

likely explains (at least partially) the skewness seen in Fig. 8. It is impossible to fully assess467

whether similar biases are present in the real datasets used elsewhere in this paper (although468

the consistency across all three datasets suggests that the issue is not as pronounced as in469

this synthetic test). We stress that any such biases depend heavily on the detail of the470

residual topography field, and these synthetic results should not be taken to indicate that471

the models in Figs. 3–5 are similarly skewed towards underestimating topography.472

4.4 Hyperparameter tradeoffs and interpretability473

In Fig. 9, we show slices through the hyperparameter likelihood function, computed474

using all spot data. We see that the maximum-likelihood point is well-constrained, implying475

that any uncertainty associated with the values presented in Table 1 is small. There are476

clear correlations: σ1 is correlated with both σ2 and ν, while σ2 is anti-correlated with477

–19–



manuscript submitted to Geochemistry, Geophysics, Geosystems

ν. The mean function hyperparameter, µ0, appears to be largely independent of others.478

Essentially identical patterns are seen with the high-accuracy spot data alone; we use all479

spot data here since this also illuminates the uncertainty hyperparameter, ∆. This is also480

seen to have some weak trade-offs with the hyperparameters σ1, σ2 and ν. It is not feasible481

to make similar plots using the full spot and shiptrack dataset, due to the computational482

costs involved.483

To what extent are these hyperparameters interpretable? In particular, it is notable484

that the uncertainty correction, ∆, is markedly less than that identified Hoggard et al.485

(2017), who adopted ∆ = 0.2 km. This raises the question: is our value ‘more correct’? In486

addressing this, it is essential to remember that our hyperparameters are optimal in a very487

specific sense: they maximise eq. 6 for the available data, and are predicated on the various488

assumptions inherent to our approach. These inevitably represent a simplified version of489

reality, and one can readily propose alternative assumptions that are — at a minimum —490

equally plausible. End users must carefully consider whether our choices are appropriate to491

their application, and thus whether it makes sense to rely on our hyperparameter values or492

other results.493

In the present work, we effectively assume that we have no prior knowledge about the494

hyperparameters, and that all values are equally plausible. If desired, it would be straight-495

forward to modify the hyperparameter determination procedure to incorporate an explicit496

‘hyperprior’, expressing a priori expectations or preferences. This is discussed in more de-497

tail in, for example, Valentine and Sambridge (2018). However, for the present problem,498

we do not see a route to constructing a hyperprior that is objectively more justifiable than499

the uniform hyperprior implicit in our approach. Nevertheless, we emphasise that the pri-500

mary goal of the present work is the analysis of the high-accuracy spot data, for which the501

uncertainty hyperparameter ∆ is not relevant.502

4.5 The future: obtaining new measurements503

Although the first order characteristics of the power spectra obtained here are consis-504

tent across all data sets, there is no doubt that tighter constraints on the exact spatial pat-505

tern, wavelength and amplitude of residual topography require extending the high-accuracy506

spot measurements across the globe: our knowledge of residual topography is limited by the507

amount of data available to us. However, obtaining high-quality observations is expensive508

and time-consuming. A pertinent question is therefore: where would new data be most509

useful? This question takes us into the field of ‘optimal experimental design’ (e.g. Curtis,510

1999), and the Gaussian Process approach allows it to be addressed straightforwardly.511

As discussed in Section 3.1, our knowledge of residual topography after seeing the data512

is given by h̃(x) ∼ GP(µ̃(x), k̃(x,x′)). Suppose we subsequently obtain one more data point513

at some location x0, measuring value d0±σd. Incorporating this additional information into514

our model results in an updated estimate of topography, h̄(x) ∼ GP(µ̄(x), k̄(x,x′)), where515

µ̄(x) = µ̃(x) + α(x0)k̃(x,x0) [d0 − µ̃(x0)] (21a)

k̄(x,x′) = k̃(x,x′)− α(x0)k̃(x,x0)k̃(x′,x0) (21b)

and where we have introduced516

α(x0) =
1

k̃(x0,x0) + σ2
d

. (21c)

We can then express this updated model in terms of spherical harmonics, as before. This517

yields a new distribution for the coefficients, c̄ ∼ N (ȳ, Σ̄), where518

ȳi = yi + α(x0)zi(x0) [d0 − µ̃(x0)] (22a)

Σ̄ij = Σij − α(x0)zi(x0)zj(x0) (22b)

–20–



manuscript submitted to Geochemistry, Geophysics, Geosystems

l = 2

0.13

l = 5

0.15
l = 10

0.06

l = 15

0.03
l = 20

0.02

l = 30

0.01
0 Max/2 Max
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Figure 10. Where should data collection efforts be focused? Map of expected information gained

(see eq. 24) by collecting one additional sample at that point, broken down by spherical harmonic

degree, for the 1160-point high-accuracy spot dataset. Each map is normalised by its maximum

value, given in the lower-right corner. Compare with Fig. 3: unsurprisingly, the most-useful places

to collect new information correspond to regions of high uncertainty in the recovered topography

model.

with519

zi(x) = flimi
(x)−

∑
pq

flimi
(x̂p)

[(
K̂ + Cd̂

)−1]
pq

k(x, x̂q) . (22c)

520

Using the Kullback-Leibler divergence (cf. eq. 20), we can now quantify how much the521

single additional observation has revealed about the spherical harmonic coefficients, given522

by523

DKL =
1

2

[
Tr(Σ̄

−1
Σ)−D + log

det Σ̄

det Σ

]
+

1

2
α2(x0)z(x0)TΣ̄

−1
z(x0) [d− µ̃(x0)]

2
, (23)

where D represents the dimension of the vector c̄. We therefore see that the amount we learn524

depends on the value of d: if our additional observation happens to match what we predicted525

based on the original dataset (µ̃(x0)) we learn less than if the observation reveals unexpected526

new features. Using h̃(x), we can determine that the expected value (in a statistical sense)527

of (d − µ̃)2 is k̃(x0,x0) and, hence, we can quantify the expected information gain due to528
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an additional observation at x0 by529

G(x0) =
1

2

[
Tr(Σ̄

−1
Σ)−D + log

det Σ̄

det Σ

]
+

1

2
α2(x0)k̃(x0,x0)z(x0)TΣ̄

−1
z(x0) . (24)

This quantity is straightforward to compute, and it is therefore possible to produce maps530

showing the expected value of one additional sample at any point on the globe. Alternatively,531

for a more conservative perspective, one might map only the first, parenthesised term in532

eq. (24): this would represent the minimum information gain from a sample at any point.533

In particular, one can make such maps considering only the spherical harmonic coefficients534

corresponding to a particular angular order l, to yield an understanding of how samples in535

different regions might help constrain different aspects of the residual topography spectrum.536

In Fig. 10, we map the expected information gain (i.e., the complete form of G(x0))537

based on the high-accuracy spot data. We assume that the one additional data point is538

measured with an uncertainty of σd = 0.1 km. We clearly see that our knowledge of the539

low-degree spherical harmonic components can be improved through addition of samples540

at a relatively small number of locations: continental interiors (especially in Russia), the541

Southern Ocean, and the South and West Pacific. To constrain shorter wavelengths, our542

analysis indicates that the most useful sampling locations are in regions close to existing543

data points: this makes sense, as our approach is predicated on collecting only a single544

sample.545

5 Conclusions546

In this paper, we have successfully demonstrated a new approach for obtaining a con-547

tinuous, global model for residual topography given a finite set of point-wise measurements.548

Our method is based upon the statistical theory of Gaussian Processes (Valentine & Sam-549

bridge, 2020a, 2020b), and has a number of important advantages over those employed550

in previous studies, particularly: (i) it does not presuppose that the residual topography551

field is well-represented using a particular set of basis functions, avoiding potential issues552

such as ‘spectral leakage’; (ii) prior information (i.e. the covariance function) is defined553

within physical space, rather than in an abstract ‘model space’ where its effects may be554

poorly-understood; and (iii) the method remains robust for even the smallest datasets.555

These properties enable us to construct a residual topography model that is based556

only on the 1160 high-accuracy spot measurements in the database compiled by Hoggard et557

al. (2017). These points are believed to be particularly robust, since they are obtained via558

bespoke analysis of seismic and other datasets, and incorporate location-specific information559

about crustal properties. The resulting model is broadly in agreement with those reported in560

earlier studies, which have typically relied on a much larger dataset derived from automated561

processing of shiptrack bathymetry. Applying our method to this larger dataset continues562

to yield self-consistent results.563

The global pattern of residual topography is dominated by broad topographic highs564

in the North Atlantic, African and central Pacific regions, with the largest amplitudes adja-565

cent to Iceland. These are separated by broad topographic lows, extending from Antarctica,566

through the Americas, beneath the Eurasian continent and to the south of Australia. Based567

on just the 1160 high-accuracy measurements, the associated spherical harmonic power spec-568

trum peaks at l = 2, with power likely to lie in the range 0.46–0.76 km2. This decreases by569

over an order of magnitude to the range 0.02 km2 at l = 30. The overall form of the spectrum570

is consistent across all data subsets analysed. In light of the sensitivity kernels linking topo-571

graphic deflections to density anomalies within the mantle at different depths and spherical572

harmonic degree (e.g. Richards & Hager, 1984; Colli et al., 2016), and as discussed in detail573

by Davies et al. (2019), generating this spectrum requires Earth’s topographic response to be574

driven by multi-scale convective processes. The long-wavelength portion of the spectrum is575
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Residual topography at degrees 1-3, km

Figure 11. Long-wavelength residual topography. Models (as in Figs. 3–5) filtered to include

only spherical harmonic degrees 1–3. We see consistent patterns across all three datasets: (a)

high-accuracy spot measurements; (b) all spot measurements; and (c) all spot and shiptrack mea-

surements. Contours are drawn at 200 m intervals, and the amplitude range in each plot is shown,

bottom right. Negative contours are dashed. Zero contour is in grey.
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primarily attributable to deep mantle flow, while shorter-wavelength features are supported576

by flow associated with structural heterogeneity in the shallow mantle and lithosphere.577

Given the link between the long-wavelength components of residual topography and578

deep mantle flow, the patterns and amplitudes associated with low-order spherical harmonics579

provide an independent constraint on the long-wavelength components of global seismic to-580

mography images and the dynamical interpretation of these images. Accordingly, in Fig. 11,581

we show our best-fitting models for each data set, filtered to contain only degrees 1–3. The582

spatial pattern is fairly consistent across all three datasets, with highs centred off South-East583

Africa that extend into the North Atlantic, and in the central and western Pacific Ocean.584

As set out in Table 3, models consistent with the observations may have maximum residual585

topography heights up to around 1.2 km at these wavelengths, although a figure in the range586

680–850 m is most likely. The residual topography highs strongly resemble the shape and587

extent of the large low velocity provinces that have been consistently imaged in the deep588

mantle across a number of global seismic tomography studies (e.g. Becker & Boschi, 2002;589

Ritsema et al., 2011; Bozdağ et al., 2016), and likely represent concentrations of hot (and590

potentially chemically-distinct) material that drives upwelling flow towards Earth’s surface591

(e.g. McNamara & Zhong, 2005; Schuberth et al., 2009; Bull et al., 2009; Davies et al.,592

2012; Flament et al., 2013; Davies, Goes, & Sambridge, 2015; Garnero et al., 2016). These593

long-wavelength residual topography highs are separated by a band of residual topography594

lows, extending from Antarctica, through the Americas, the Arctic, Eurasia and Australia.595

These are likely related to downwelling slabs, associated with former subduction zones (e.g.596

Richards & Engebretson, 1992; Bunge et al., 2002; Flament et al., 2013; Davies, Goes, &597

Lau, 2015; Rubey et al., 2017).598

Finally, from a methodological perspective, the Gaussian Process-based approach for599

inferring global models from point data appears attractive. It is mathematically-elegant and,600

as we have demonstrated, produces results that are consistent with basis-function expansion601

strategies. Indeed, as discussed in detail in Valentine and Sambridge (2020b), the two have602

close links, becoming equivalent under certain conditions as the number of basis functions603

tends to infinity. We highlight that our approach can be straightforwardly translated to the604

analysis of other datasets and problems, and suggest that it may prove powerful in cases605

where models must be constrained using spatially-sparse data.606
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