
manuscript submitted to Geochemistry, Geophysics, Geosystems

Global Models from Sparse Data: A Robust Estimate1

of Earth’s Residual Topography Spectrum2

A.P. Valentine1 and D.R. Davies1
3

1Research School of Earth Sciences, The Australian National University,4

142 Mills Road, Acton ACT 2601, Australia.5

Key Points:6

• We present a new method for spectral analysis of sparse point data and apply this to7

measurements of residual topography within the oceans;8

• Using a smaller, more reliable dataset than earlier studies, we confirm a power spec-9

trum that is dominated by long-wavelength components;10

• We also confirm that the spectrum contains significant power at shorter wavelengths,11

reflecting the multiscale nature of global mantle flow.12

Corresponding author: Andrew Valentine, andrew.valentine@anu.edu.au

–1–



manuscript submitted to Geochemistry, Geophysics, Geosystems

Abstract13

A significant component of Earth’s surface topography is maintained by stresses induced14

by underlying mantle flow. This ‘dynamic’ topography cannot be directly observed, but15

it can be approximated — particularly at longer wavelengths — from measurements of16

residual topography, which are obtained by removing isostatic effects from the observed17

topography. However, as these measurements are made at discrete, unevenly-distributed18

locations on Earth’s surface, inferences about global properties can be challenging. In this19

paper, we present and apply a new approach to transforming point-wise measurements20

into a continuous global representation. The approach, based upon the statistical theory21

of Gaussian Processes, is markedly more stable than existing approaches — especially for22

small datasets. We are therefore able to infer the spatial pattern, wavelength and amplitude23

of residual topography using only the highest-quality oceanic spot measurements within24

the database of Hoggard et al. (2017). Our results indicate that the associated spherical25

harmonic power spectrum peaks at l = 2, with power likely in the range 0.46–0.76 km2.26

This decreases by over an order of magnitude to around 0.02 km2 at l = 30. Around 85%27

of the total power is concentrated in degrees 1–3. Our results therefore confirm previous28

findings: Earth’s residual topography expression is principally driven by deep mantle flow,29

but shallow processes are also crucial in explaining the general form of the power spectrum.30

Finally, our approach allows us to determine the locations where collection of new data31

would most impact our knowledge of the spectrum.32

Plain Language Summary33

As the mantle flows, it induces deformation at Earth’s surface, pushing it up at some34

locations and pulling it down elsewhere. This deformation can be quantified by measuring35

so-called ‘residual topography’, at specific locations. However, we only have a small number36

of such measurements, and they are clustered in particular areas on Earth’s surface: inferring37

a global representation of residual topography is therefore a challenge. In this paper, we38

develop a new method for deriving robust global maps from such data, and apply this to a39

set of measurements of residual topography. An advantage of our method is that it remains40

effective for small datasets, enabling a more conservative approach to data selection. Our41

results complement recent studies on residual topography, highlighting how mantle dynamics42

shapes the surface of our planet across a range of scales.43

1 Introduction44

Earth’s surface topography arises as a balance between processes that create elevation,45

such as tectonic convergence, and those that destroy it, including erosion, sediment transport46

and deposition. Most topography is isostatic, being maintained by thickness and density47

variations within the crust and lithospheric mantle. However, there is growing consensus48

that a substantial proportion is controlled by mantle convection: as the mantle flows, it49

transmits normal stresses to the lithosphere, and these are balanced by gravitational stresses50

arising through topographic deflections of Earth’s surface (e.g. Pekeris, 1935; Parsons &51

Daly, 1983; Hager et al., 1985; Hager & Richards, 1989; Mitrovica et al., 1989; Gurnis, 1993;52

Lithgow-Bertelloni & Silver, 1998; Gurnis et al., 2000; Conrad & Husson, 2009; Braun, 2010;53

Shephard et al., 2010; Flament et al., 2013; Hoggard et al., 2016; Yang & Gurnis, 2016;54

Rubey et al., 2017; Eakin & Lithgow-Bertelloni, 2018). This so-called dynamic topography55

is transient, varying both spatially and temporally in response to underlying mantle flow.56

As a result, it is challenging to isolate — but doing so can provide important constraints57

upon the flow regime, planform and intensity of mantle convection.58

Observational constraints on dynamic topography are indirect: estimates of its spatial59

pattern, wavelength and amplitude are generally equated to so-called residual topography,60

which is calculated by removing the isostatic contribution of sediments, ice, crust and litho-61

sphere from the observed topography (e.g. Panasyuk & Hager, 2000; Kaban et al., 2003;62

–2–



manuscript submitted to Geochemistry, Geophysics, Geosystems

Flament et al., 2013; Guerri et al., 2016; Hoggard et al., 2016, 2017). In practice, residual63

topography provides an upper bound on flow-related dynamic topography (e.g. Hoggard64

et al., 2017). Indeed, whilst the long-wavelength components of residual topography are65

principally dynamic in origin, a significant proportion of shorter-wavelength oceanic ‘resid-66

ual’ topography arises from isostatic effects associated with local variations in lithospheric67

thickness and density, that cannot be accounted for through a simple plate cooling model68

(Davies et al., 2019). Despite this, measurements of residual topography are currently our69

best source of information on dynamic topography.70

Accurate measurements of residual topography depend upon a careful synthesis of71

information from a variety of sources — including models for surface elevation, sediment72

cover, crustal properties, and thermal effects. Inevitably, the availability and quality of such73

information is not uniform across Earth’s surface. A recent database of residual topography74

within the world’s oceans, compiled by Hoggard et al. (2016, 2017), provides one of the75

most comprehensive datasets currently available. This has underpinned a series of studies76

into the spectral character of residual topography and its relationship to underlying mantle77

dynamics (e.g. Hoggard et al., 2016, 2017; Steinberger, 2016; Yang & Gurnis, 2016; Yang78

et al., 2017; Watkins & Conrad, 2018; Steinberger et al., 2019). However, the conclusions79

from these studies have often appeared contradictory. At least in part, this has been due80

to authors making different subjective choices within their analyses, with the debate being81

further complicated by a lack of consistency around the spherical harmonic normalisation82

conventions employed by different groups.83

In an effort to reduce subjectivity in the analysis, a recent study by Davies et al.84

(2019) considered the database of Hoggard et al. (2017) using a novel hierarchical Bayesian85

approach (Valentine & Sambridge, 2018). In particular, a strategy of ‘Automatic Relevance86

Determination’ (ARD) was employed to avoid the need to impose any pre-determined notion87

of ‘smoothness’ upon the residual topography. Results indicate that the spectrum was88

dominated by long-wavelength (∼ 104 km) features, with power dropping by about an order89

of magnitude at shorter wavelengths (∼ 103 km). Based upon predictions from instantaneous90

models of global mantle dynamics, Davies et al. (2019) demonstrate that both deep mantle91

flow and shallow, lithosphere-controlled processes are important in generating this surface92

response.93

However, one drawback in the ARD approach employed by Davies et al. (2019) is that94

it becomes unstable as the number of data points is reduced. Within the database compiled95

by Hoggard et al. (2016, 2017), a subset of around 5% of the measurements are considered96

markedly more robust than the rest. Ideally, it would be possible to analyse those points in97

isolation — but this is not possible using the ARD strategy. The present paper, therefore,98

develops an alternative approach to analysis, building on the statistical theory of Gaussian99

Processes (e.g. Rasmussen & Williams, 2006) and the work of Valentine and Sambridge100

(2020a, 2020b). This method remains stable for even the smallest datasets, and allows us to101

convincingly demonstrate that the conclusions of Davies et al. (2019) remain valid when only102

the highest-quality data points are used. We are also able to obtain maps showing where103

new measurements would be most valuable in constraining the residual topography profile.104

While the present paper focusses only on residual topography, our underlying method has105

much wider application, and may be useful for any attempt to characterise continuous Earth106

properties from discrete samples.107

We begin by providing a brief summary of the observational datasets used in this study,108

which are described more fully elsewhere. We then summarise how Gaussian processes can be109

used to represent functions on Earth’s surface, building on the presentation in Valentine and110

Sambridge (2020a, 2020b), and develop the mathematical results necessary for converting the111

recovered model into a spherical harmonic representation. Finally, we show that application112

of this theory to the observational data yields results that are self-consistent across different113

data subsets, and in general agreement with earlier studies.114

–3–



manuscript submitted to Geochemistry, Geophysics, Geosystems

(a) (b)

(c) (d)

(e) (f)

2 0 2

Measured residual topography, km

0.0 0.2 0.4 0.6

Measurement uncertainty, km

Figure 1. Measurements of residual topography. 1160 high-accuracy spot measurements are

shown in (a), with associated uncertainties in (b). A further 870 spot measurements that lack crustal

corrections are shown in (c), with uncertainties in (d): these are shown without the additional 200 m

uncertainty assessed by Hoggard et al. (2017) to reflect the absence of crustal information. Finally,

(e) shows 20767 gridded measurements derived from shiptrack bathymetry; again, the uncertainties

depicted in (f) do not include any additional uncertainty to reflect the lack of crustal corrections.

2 Datasets115

The database employed for this study is described in Davies et al. (2019), and is a116

compilation of residual topography measurements within the world’s oceans. It represents117

an incremental update to the database of Hoggard et al. (2017), which itself builds on several118

previous studies (e.g. Winterbourne et al., 2009; Czarnota et al., 2013, 2014; Winterbourne119

et al., 2014; Hoggard et al., 2016). In comparison to Hoggard et al. (2017), the version120

accompanying Davies et al. (2019) incorporates information from additional marine seismic121

surveys, and has undergone further quality control. For the purposes of this paper, it is122

appropriate to divide the dataset into three classes, and we discuss each in turn.123

2.1 High-accuracy spot measurements124

These measurements are derived from marine seismic surveys, allowing direct observa-125

tion of the topography associated with the oceanic crust. Careful processing allows isostatic126

effects associated with sedimentary loading and crustal thickness to be removed, and age-127
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depth cooling is accounted for using a simple analytical plate model (Hoggard et al., 2017).128

A total of 1160 residual topography observations are obtained (see Fig. 1a), with associated129

uncertainty (Fig. 1b). We consider these points to be the most robust within the database,130

and the primary goal of this paper is to ascertain the extent to which the power spectrum131

of residual topography can be constrained using only these measurements.132

2.2 Lower-accuracy spot measurements133

A further 870 points, shown in Fig. 1(c), were obtained in a similar manner — but a134

lack of information prevented isostatic correction for variations in crustal thickness. These135

observations must therefore be assumed to be less accurate. To reflect this, Hoggard et136

al. (2017) increases the uncertainties reported for these data points by 0.2 km, a somewhat137

arbitrary figure chosen based on the median crustal correction associated with the high-138

accuracy data points. In the present paper, we replace this additional 0.2 km component by139

an unknown correction, ∆. We can then determine the value ∆ should take to ensure sta-140

tistical consistency with information from the high-accuracy data points. The un-corrected141

uncertainties (i.e. without the additional 0.2 km component) are shown in Fig. 1(d).142

2.3 Shiptrack-derived measurements143

Finally, the database contains 20767 measurements derived from a global shiptrack144

bathymetry grid (Smith & Sandwell, 1997), with sedimentary corrections based on the145

model of Laske and Masters (1997). Again, Hoggard et al. (2017) increases the uncertain-146

ties associated with these measurements by 0.2 km, to reflect the lack of detailed crustal147

information; again, we replace this with the unknown correction ∆. These data points are148

illustrated in Fig. 1(e), with uncorrected uncertainties in Fig. 1(f). Clearly, these points149

provide excellent spatial coverage within the oceans, but the use of global datasets, which150

are themselves derived from a variety of sources, raises the possibility of significant un-151

quantified systematic biases within this portion of the dataset. We therefore regard the152

shiptrack-derived measurements as being the least robust within the database.153

3 Methodology154

The fundamental challenge in this work — and in many other geoscience questions155

— is to infer a continuous spatial function (i.e. the residual topography at any position on156

Earth’s surface) from a finite set of observations made at discrete locations. A variety of157

approaches are possible, but one common strategy is to assume that the spatial function158

can be expanded in terms of a finite set of basis functions. This transforms the inference159

task into one of determining the expansion coefficients relative to this basis, typically as a160

least-squares inversion problem. This is the approach adopted by Hoggard et al. (2016) and161

Davies et al. (2019), using a spherical harmonic basis. However, two key difficulties emerge.162

First, it is likely that the true spatial function contains features that cannot be represented163

using the finite basis. This can lead to an aliasing-like effect known as ‘spectral leakage’164

(Trampert & Snieder, 1996), biasing the recovered expansion coefficients away from their165

correct values. While it is possible to correct for this, it is computationally expensive to166

do so. Instead, Davies et al. (2019) adopted a pragmatic approach: since spectral leakage167

mainly affects the shortest-wavelength components within the expansion, these terms were168

omitted from further analysis.169

The second difficulty arises because with sparse, unevenly-distributed data, not all170

components of the basis function expansion are equally-well constrained. Typically, some171

expansion coefficients can be varied significantly without affecting the fit to data, which can172

cause the interpolated function to behave unrealistically in regions of low data coverage.173

To address this, one typically introduces ‘regularisation’: additional constraints on the ba-174

sis function expansion, designed to ensure that a well-behaved solution can be found. In175
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Hoggard et al. (2016), the chosen constraints amounted to a requirement that the residual176

topography field be ‘small’ and ‘smooth’. In general, these are reasonable requirements—177

but they carry implications for the spectral characteristics of the recovered field. Thus, one178

could question whether the power spectrum from Hoggard et al. (2016) was truly mandated179

by the data, or if it had arisen as a consequence of the assumptions inherent to their analy-180

ses. As noted above, to overcome this potential shortcoming, Davies et al. (2019) employed181

a novel approach to regularisation, developed in Valentine and Sambridge (2018), based on182

the idea of ‘Automatic Relevance Determination’ (ARD) (Mackay, 1992). In the present183

context, this enables appropriate ‘smoothness’ characteristics to be determined from the184

data, rather than being imposed from the outset. However, application of this approach185

requires a relatively large dataset and, as a result, the ARD analysis can only be applied to186

the full residual topography dataset (i.e. that incorporating all spot- and shiptrack-derived187

measurements); attempts to apply it to only the high-accuracy spot measurements prove188

unstable.189

Subsequently, Valentine and Sambridge (2020a, 2020b) set out an alternative frame-190

work for inferring continuous functions from point data, based on the statistical theory191

of Gaussian Processes. This avoids a number of the difficulties associated with the basis-192

function–expansion approach, and remains stable for small datasets. Thus, unlike ARD, it193

can be used to analyse the high-accuracy spot data from Hoggard et al. (2017) in isolation,194

as well as their dataset incorporating ship-track derived constraints.195

3.1 A Gaussian Process model for residual topography196

Gaussian Processes are a class of statistical model that have become an increasingly197

popular tool for machine learning. They are discussed at length in, for example, Rasmussen198

and Williams (2006) or Murphy (2012), and we do not attempt to provide a comprehensive199

introduction here. Instead, we outline the key features, building on the development and200

notation adopted in Section 2 of Valentine and Sambridge (2020a). Readers are encouraged201

to consult that paper if further details are required.202

We wish to develop a model for the residual topography field, which we denote h(θ, ϕ),203

as a function of latitude (θ) and longitude (ϕ). To simplify notation, we introduce the posi-204

tion vector x = (θ, ϕ), and will use h(x) interchangeably with h(θ, ϕ). Whereas expressing205

h(x) using a basis function expansion requires us to choose the set of basis functions and206

an approach to regularisation, expressing it as a Gaussian Process requires us to specify a207

‘mean function’ and a ‘covariance function’. The mean function, µ(x), describes our a priori208

statistical assumptions about the expected value of h(x); for present purposes, we assume209

that this has a constant value everywhere,210

µ(x) = µ0 . (1)

The covariance function, k(x,x′) describes our a priori assumptions about the covariance211

between h(x) and h(x′). Put in more intuitive terms: k(x,x′) describes how learning the212

value of h at some point, x, would influence our beliefs about the value of h at some other213

point, x′. In the present case, it is reasonable to assume that the degree of influence should214

diminish as the distance between x and x′ grows: we might expect residual topography to215

be similar for two localities 1 km apart, but knowledge of residual topography in the North216

Atlantic would not help us constrain residual topography in Australia. In this paper, we217

adopt the Matérn family of covariance functions, for which218

k(x,x′) = σ2
1

21−ν

Γ(ν)

(√
2ν d(x,x′)

σ2

)ν
Kν

(√
2ν d(x,x′)

σ2

)
, (2)

where Γ denotes the Gamma function, and Kν is a modified Bessel function of the second219

kind. Here, d(x,x′) is some measure of the distance between the points x and x′; for reasons220

which will later become apparent, we employ the epicentral angle, Θ, defined such that221

d(θ, ϕ; θ′, ϕ′) ≡ Θ(θ, ϕ; θ′, ϕ′) = arccos (sin θ sin θ′ + cos θ cos θ′ cos(ϕ− ϕ′)) . (3)
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Note that this can be converted into the great-circle distance on the surface of the (assumed222

spherical) Earth by multiplying by Earth’s radius. The quantities σ1, σ2 and ν in eq. (2)223

are hyperparameters controlling the detailed shape of the covariance function. Specifically,224

σ1 governs its amplitude, σ2 represents the spatial length-scale over which we expect an225

observation to be informative, and ν is an order parameter that, essentially, determines the226

smoothness of the interpolation.227

When we represent residual topography using a Gaussian Process, which we denote by228

writing h(x) ∼ GP (µ(x), k(x,x′)), we effectively assert that whenever we consider the value229

of h at any N distinct locations, x1...N , our overall state of knowledge should be described230

by an N -dimensional Gaussian distribution,231 
h(x1)
h(x2)

...
h(xN )

 ∼ N (µ,K) . (4)

The elements of µ are obtained by evaluating the mean function, µi = µ(xi), and the232

elements of K are derived from the covariance function, Kij = k(xi,xj). In particular, if233

we consider a single point x, we find that234

h(x) ∼ N (µ0, σ
2
1) . (5)

This represents our prior probability distribution for residual topography at a point. Thus,235

before observing any data, our presumptions about residual topography, irrespective of236

location, can be characterised as h = µ0 ± σ1.237

Now, suppose we are able to measure residual topography at a discrete set of points,238

x̂1...N (as in Valentine and Sambridge (2020a), a ‘hat’ is used to distinguish quantities239

associated with the observational dataset). Our set of N measurements can be represented240

as the N -dimensional vector d̂, such that d̂i represents our estimate of h(x̂i), and we assume241

that all measurement errors are Gaussian, described overall by the N×N covariance matrix,242

Cd̂. In the present case, we regard this as a function of the unknown contribution to243

uncertainty arising from a lack of crustal corrections, ∆. According to the assumptions we244

have made in setting up our Gaussian Process model, this specific set of observations have245

likelihood246

P(d̂ |σ) =
1

(2π)N/2|K̂σ + Cd̂(∆)|1/2
= exp

{
−1

2

(
d̂− µ̂σ

)T (
K̂σ + Cd̂(∆)

)−1 (
d̂− µ̂σ

)}
(6)

where µ̂σ and K̂σ are obtained by evaluating the mean and covariance functions at the247

sample points x̂, and where the subscript σ is used to emphasise that these quantities them-248

selves depend on specific choices for the hyperparameters, σ = (µ0, σ1, σ2, ν,∆). Plainly,249

we should not adopt assumptions that make our observations inherently ‘unlikely’, and so250

it is sensible to select hyperparameter values that maximise eq. (6). This is straightforward251

to implement using standard computational tools for optimisation, such as the L-BFGS-B252

algorithm (Byrd et al., 1995), available through Scipy. We remark that this concept can be253

framed more formally as an approximation to a hierarchical Bayesian estimation of σ; see254

Valentine and Sambridge (2018).255

Having selected optimal values for σ, we are now in a position to predict residual256

topography at unseen locations. To do this, we note that eq. (4) holds for any set of locations:257

in particular, it must hold if we consider the N observed locations and one additional point,258

x. We can then condition this distribution on the values we actually observed, exploiting259

the correlations between locations to refine our knowledge about h(x). As explained in260

Valentine and Sambridge (2020a), our posterior estimate of residual topography is therefore261

given by262

h̃(x) ∼ GP
(
µ̃(x), k̃(x,x′)

)
, (7a)
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where263

µ̃(x) = µ(x) + k̂(x)T
(
K̂ + Cd̂

)−1 (
d̂− µ̂

)
(7b)

k̃(x,x′) = k(x,x′)− k̂(x)T
(
K̂ + Cd̂

)−1
k̂(x′) (7c)

and k̂(x) is the vector-valued function that evaluates the covariance function between point264

x and each of the observation locations, such that265 [
k̂(x)

]
i

= k(x, x̂i) . (7d)

Thus, within the Gaussian Process framework, the data allow us to infer that266

h̃(x) = µ̃(x)±
√
k̃(x,x) . (8)

This allows us to map the spatial pattern and amplitude of residual topography, which we267

return to in Section 4.268

3.2 The power spectrum of residual topography269

To understand the power spectrum of the recovered residual topography field, and to270

compare this with previously-published results, we must express h(x) in terms of spherical271

harmonics. As in Hoggard et al. (2016) and Davies et al. (2019), we employ the real surface272

spherical harmonics, Ylm(θ, ϕ), defined as in Section B6 of Dahlen and Tromp (1998). The273

infinite set of spherical harmonics is complete and, thus, we can express our Gaussian Process274

model exactly as an infinite sum275

h̃(θ, ϕ) =

∞∑
l=0

l∑
m=−l

clmYlm(θ, ϕ) . (9)

Moreover, the spherical harmonics are normalised to each have unit power, and are orthog-276

onal, in the sense that277 ∫
Ω

Ylm(θ, ϕ)Yl′m′(θ, ϕ) dΩ = δll′δmm′ , (10)

where δij is a Kronecker delta and integration is over a spherical surface. Hence, any278

coefficient clm can be found by evaluating279

clm =

∫
Ω

h̃(θ, ϕ)Ylm(θ, ϕ) dΩ . (11)

It is important to recognise that, whereas Hoggard et al. (2016) and Davies et al. (2019)280

sought to directly fit a spherical harmonic expansion to point data, our approach is different:281

we have already obtained a global representation of h̃(θ, ϕ), and we simply need to express282

this within the spherical harmonic basis. This distinction underpins the stability of our283

approach.284

Because h̃(θ, ϕ) is a Gaussian Process, the integration in eq. (11) results in a probability285

distribution for clm. As discussed in Valentine and Sambridge (2020a), clm is normally-286

distributed, and the coefficients associated with different values of l andm are jointly normal.287

If we use c to denote some set of these coefficients, then288

c ∼ N (y,Σ) (12a)

where289

yi =

∫
Ω

µ̃(θ, ϕ)Ylimi(θ, ϕ) dΩ (12b)

Σij =

∫∫
Ω2

Ylimi
(θ, ϕ)k̃(θ, ϕ; θ′, ϕ′)Yljmj

(θ′, ϕ′) dΩ dΩ′ (12c)
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and where we have used (li,mi) to indicate the spherical harmonic degree and order appro-290

priate to the ith element of c.291

Substituting the expressions for µ̃ and k̃ from eq. (7) into these integrals, we obtain292

yi =

∫
Ω

µ(x)Ylimi
(x) dΩ +

∑
pq

flimi
(x̂p)

[(
K̂ + Cd̂

)−1]
pq

(d̂q − µ(x̂q)) (13a)

Σij = glimiljmj
−
∑
pq

flimi
(x̂p)

[(
K̂ + Cd̂

)−1]
pq

fljmj
(x̂q) (13b)

where we have introduced f and g to represent certain integrals of the covariance function,293

flm(θ, ϕ) =

∫
Ω

k(θ, ϕ; θ′, ϕ′)Ylm(θ′, ϕ′) dΩ′ (14a)

glml′m′ =

∫
Ω

flm(θ, ϕ)Yl′m′(θ, ϕ) dΩ (14b)

Näıvely, one might anticipate evaluating these numerically. However, this is impractical,294

since integration over the surface of the sphere requires a double integral, and thus g rep-295

resents a quadruple integral. For our approach to be tractable, it is essential that we find296

analytic reductions of these integrals.297

By design, we adopted epicentral angle as the distance measure within our covariance298

function. As a result, the function k can be regarded as a function of epicentral angle,299

k(θ, ϕ; θ′, ϕ′) → k(cos(Θ)). Recognising this allows us to write it as an expansion in terms300

of Legendre polynomials,301

k(cos(Θ)) =

∞∑
l=0

alPl(cos(Θ)) (15)

where, again, no approximation is involved provided the sum is infinite. Any coefficient in302

this expansion can be computed,303

al =
2l + 1

2

∫ π

0

k(cos Θ)Pl(cos Θ) sin Θ dΘ (16)

and this integral can be evaluated numerically for any l.304

However, by the spherical harmonic addition theorem, we can also express the Legendre305

polynomials as a sum of spherical harmonics,306

Pl(cos(Θ)) =
4π

2l + 1

l∑
m=−l

Ylm(θ, ϕ)Ylm(θ′, ϕ′) . (17)

Combining eqs. (14–17) and exploiting the orthogonality properties given in eq. (10), we307

therefore have308

flm(θ, ϕ) = 2πYlm(θ, ϕ)

∫ π

0

k(cos Θ)Pl(cos Θ) sin Θ dΘ (18a)

glml′m′ = 2πδll′δmm′

∫ π

0

k(cos Θ)Pl(cos Θ) sin Θ dΘ (18b)

We are now in a position to evaluate y and Σ, and, thus, characterise the distribution309

describing c. We highlight that no approximations have been made in determining these310

expressions, and our results are not influenced by spectral leakage caused by truncation of311

a spherical harmonic expansion at some particular degree.312

Finally, to obtain a spectrum for any random realisation of c, we follow Hoggard et313

al. (2016) and define the power at degree l to be314

pl =

l∑
m=−l

c2lm . (19)
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Table 1. Optimal hyperparameters determined for each dataset. Quantities are defined as in the

main text.

µ0 (km) ∆ (km) σ1 (km) σ2 (rad) ν

High accuracy spot only -0.03 – 0.63 0.24 0.49
All spot -0.06 0.08 0.64 0.20 0.49

All spot and shiptrack -0.01 0.09 0.65 0.20 0.69

10000 5000 0 5000 10000
Distance, d(x, x′), km

0.0

0.2

0.4

Co
va

ria
nc

e,
 k

(x
,x

′ )

High accuracy spot only
All spot
All spot and shiptrack

Figure 2. Covariance properties of datasets. Transects through the function k(x,x′), plotted

as a function of the distance between x and x′. All three datasets display similar properties.

Since the coefficients clm are Gaussian-distributed, pl follows a generalised χ2-distribution.315

It should be noted that this has a number of counter-intuitive properties, including the fact316

that the expected value of the power is typically higher than the power of the expected set317

of coefficients.318

4 Results319

4.1 Dataset properties and models of residual topography320

We begin by considering the 1160 high-accuracy spot measurements only. We deter-321

mine the hyperparameters µ0, σ1, σ2 and ν that maximise the inherent likelihood of this322

dataset (subject to the assumptions underpinning our approach), as discussed in Section 3.1.323

Values are given in Table 1; in particular, we find the characteristic length-scale over which324

each data-point is informative to be around 1500 km. The resulting covariance function325

k(x,x′) is shown in Fig. 2.326

We then condition the Gaussian Process on the observed data, to obtain a model for327

residual topography. The posterior mean elevation for this high-accuracy dataset is mapped328

in Fig. 3(a), with uncertainties shown in Fig. 3(b). We observe a spatial pattern of residual329

topography that is consistent with that reported by Davies et al. (2019), dominated by330

broad topographic highs within the Pacific, African and North Atlantic regions, separated331

by a band of topographic lows extending from Antarctica, through the Americas to the332

Arctic, broadening beneath the Eurasian continent and extending south of Australia. Un-333

surprisingly, given the sparse and uneven data coverage, this model has large uncertainties334

in many regions of the globe, including continental interiors and substantial sections of the335

oceans.336
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Figure 3. Residual topography determined from high-accuracy spot measurements only. Panel

(a) shows the posterior mean point-wise estimate of residual topography, µ̃(x), with (b) mapping

the associated standard deviation,
√
k̃(x,x). In (c), we show the point-wise information gain from

prior to posterior, DKL(x), in units of ‘nats’ (see text). Colour scales are chosen for consistency

with subsequent figures; the maximum values for each map are given in the lower-right corner.

Note that uncertainties grow rapidly away from measurement locations, and there are large regions

(including all continental interiors) where the spot data is uninformative.
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In any Bayesian approach, the posterior distribution arises as a compromise between337

information obtained from the data, and information imposed by the prior distribution.338

To help quantify where the dataset is informative, it is useful to measure the difference339

between prior and posterior distributions at any point in our model. To do this, we employ340

the Kullback-Leibler divergence (Kullback & Leibler, 1951),341

DKL(h(x)‖h̃(x)) =

∫ ∞
−∞

ρh(u) log
ρh̃(u)

ρh(u)
du (20)

where ρh and ρh̃ represent the probability density functions associated with the distribu-342

tions h(x) and h̃(x), respectively. Since the natural logarithm is used, information gain is343

expressed in units of ‘nats’ (compare ‘bits’ for base-2 information measures). Where the344

Kullback-Leibler divergence is low, our posterior distribution remains rather similar to our345

prior distribution, and so our inference has not taught us much. This is mapped for the346

high-accuracy spot measurements in Fig. 3(c), and in many regions — particularly conti-347

nental interiors, the Pacific Ocean and the Southern Ocean — there is little information348

available from data. This must be borne in mind when interpreting the residual topography349

maps.350

We repeat this analysis, extending the dataset to include the additional 870 spot351

measurements for which crustal corrections are not available. As discussed in Section 3.1, we352

increase the uncertainties associated with these data points by an amount ∆, and determine353

∆ = 0.08 km as part of the hyperparameter optimisation process. This is somewhat less354

than the correction adopted by Hoggard et al. (2017) (who proposed ∆ = 0.2 km, based on355

the median crustal correction applied to the high-accuracy points). Other hyperparameter356

values are as listed in Table 1: these are generally similar to those obtained using the357

high-accuracy points, with the characteristic length-scale determined to be ∼ 1300 km. The358

resulting covariance function is depicted in Fig. 2, and is consistent with that obtained using359

the high-accuracy data alone.360

Conditioning the Gaussian Process on the observed data, we obtain the residual to-361

pography model shown in Fig. 4. Again, this is generally similar to that obtained using the362

high-accuracy data, although the additional constraints reveal new features in some regions363

(e.g. the Western Pacific, where some shorter wavelength structure is apparent). Again, we364

report uncertainties and the information gain between prior and posterior, and these should365

be considered carefully before any detailed interpretation of model features.366

Finally, we extend the dataset once more, incorporating the 20767 measurements de-367

rived from shiptrack bathymetry. Again, to reflect the fact that no crustal corrections are368

applied to these data points, we increase measurement uncertainties by the amount ∆. We369

redetermine a value for this using the expanded dataset, obtaining ∆ = 0.09 km, and other370

hyperparameters as given in Table 1. Given the significant expansion of the dataset, these371

are remarkably consistent with those determined from the spot data alone. Only the order372

parameter ν changes appreciably. However, Fig. 2 illustrates that this has minimal effect373

on the form of the covariance function.374

A residual topography model derived from the full dataset is shown in Fig. 5. Unsur-375

prisingly, given the ten-fold increase in the number of measurements used to construct the376

model, we see fine-scale detail that is not visible using the spot data alone. Uncertainties377

are markedly reduced throughout the oceans, particularly in the North Atlantic. As ex-378

pected, the data is informative throughout the oceans, but the lack of onshore data results379

in significant uncertainties within continental interiors.380

4.2 Power spectra381

Having obtained residual topography models based on the three data subsets, we382

next express each in terms of spherical harmonics and compute power spectra. These are383

shown in Fig. 6, presented in a format consistent with Hoggard et al. (2016) and Davies384
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Figure 4. Residual topography determined from spot data, including the 1160 high-accuracy

points and a further 870 measurements lacking a crustal correction, for which an additional un-

certainty has been estimated. As in Fig. 3, we show (a) the mean residual topography, (b) the

standard deviation in this estimate, and (c) the pointwise information gain.
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Figure 5. Residual topography determined from all available data, including both spot- and

shiptrack-derived measurements. As in Figs 3 and 4, we show (a) the mean residual topography,

(b) the standard deviation in this estimate, and (c) the pointwise information gain. The use of

shiptrack-derived data substantially expands the area in which the model is informative.
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Figure 6. The power spectrum of residual topography: (a) spectrum obtained using high-

accuracy spot measurements only; (b) spectrum obtained using all spot measurements; and (c)

spectrum obtained using spot and shiptrack data. All panels also show results from Davies et

al. (2019) (derived from spot and shiptrack data) for comparison. Solid lines represent the power

spectrum of the mean spherical harmonic coefficients; coloured bands represent the ranges spanned

by the central 50% and 99% of spectra computed for 100,000 random samples from the distribution

of spherical harmonic coefficients. In general, the results obtained in this paper are in agreement

with those of Davies et al. (2019).
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Figure 7. Uncertainties in the power spectrum of residual topography. An alternative repre-

sentation of the data in Fig. 6: histograms of the power per degree for 100,000 random samples

from the posterior distribution of spherical harmonic coefficients obtained using each dataset. Note

that the vertical (power) scale here is linear, whereas in Fig. 6 a logarithmic scale is used, to match

figures elsewhere in the literature. Beyond l = 22 differences between the two datasets are negligible

on the scale of this figure.
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et al. (2019), allowing for straightforward comparison. To represent the (non-Gaussian)385

uncertainties associated with these spectra, we generate power spectra for 100,000 samples386

from the posterior residual topography models, and Fig. 6 depicts the ranges spanned by387

the central 99% and 50% of samples. An alternative presentation of the same data is shown388

in Fig. 7, allowing direct comparison between the three data sets at each spherical harmonic389

degree, and some representative numerical values are provided in Table 2.390

In general, all three datasets tell a similar story, which is consistent with that reported391

by Davies et al. (2019) (results also shown in Fig. 6). The spectrum of residual topography392

is relatively flat, peaking at or around degree-2 (wavelength ∼ 16000 km), with steadily-393

declining power at shorter length scales. Based on the high-accuracy spot data, the most-394

probable model has degree-2 power 0.53 km2, although the data could support power up to395

∼ 1.3 km2. By degree-10 (wavelength ∼ 4000 km) and degree-20 (∼ 2000 km), the power is396

likely in the ranges 0.12–0.18 km2 and 0.04–0.06 km2, respectively. In general, the additional397

information available in the expanded datasets (all spot data; all spot and shiptrack data)398

enables a modest reduction in the spectral uncertainty, but does not substantially alter the399

most-probable power. Based on our random samples, we find that degrees 1–3 account400

for about 85% of the total power in the residual topography field below degree-30 (high401

accuracy spot data only: 85.9%; all spot data: 83.9%; spot and shiptrack data: 84.2%).402

By generating random models consistent with the data, we can also quantify the403

typical height variations associated with residual topography. Some representative figures404

are given in Table 3. Based on the high-accuracy data, we see that the maximum amplitude405

of residual topography is likely to be in the range 2.12–2.39 km, with an upper limit of406

around 3 km. This is consistent with the range of measurements depicted in Fig. 1. When407

filtered at the longest wavelengths (spherical harmonic degrees 1–3), models consistent with408

the data typically have maximum amplitudes in the range 680–850 m, with an upper limit of409

∼ 1.2 km. The expanded datasets reduce these ranges somewhat: the full spot and shiptrack410

data suggests maximum amplitudes at these wavelengths of 740–820 m, and an upper limit411

of ∼ 1 km.412

4.3 The future: obtaining new measurements413

Although the first order characteristics of the power spectra obtained here are consis-414

tent across all data sets, there is no doubt that tighter constraints on the exact spatial pat-415

tern, wavelength and amplitude of residual topography require extending the high-accuracy416

spot measurements across the globe: our knowledge of residual topography is limited by the417

amount of data available to us. However, obtaining high-quality observations is expensive418

and time-consuming. A pertinent question is therefore: where would new data be most419

useful? This question takes us into the field of ‘optimal experimental design’ (e.g. Curtis,420

1999), and the Gaussian Process approach allows it to be addressed straightforwardly.421

As discussed in Section 3.1, our knowledge of residual topography after seeing the data422

is given by h̃(x) ∼ GP(µ̃(x), k̃(x,x′)). Suppose we subsequently obtain one more data point423

at some location x0, measuring value d0±σd. Incorporating this additional information into424

our model results in an updated estimate of topography, h̄(x) ∼ GP(µ̄(x), k̄(x,x′)), where425

µ̄(x) = µ̃(x) + α(x0)k̃(x,x0) [d0 − µ̃(x0)] (21a)

k̄(x,x′) = k̃(x,x′)− α(x0)k̃(x,x0)k̃(x′,x0) (21b)

and where we have introduced426

α(x0) =
1

k̃(x0,x0) + σ2
d

. (21c)
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Figure 8. Where should data collection efforts be focused? Map of information gained by

collecting one additional sample at that point, broken down by spherical harmonic degree, for the

1160-point high-accuracy spot dataset. Each map is normalised by its maximum value, given in

the lower-right corner. Compare with Fig. 3: unsurprisingly, the most-useful places to collect new

information correspond to regions of high uncertainty in the recovered topography model.

We can then express this updated model in terms of spherical harmonics, as before. This427

yields a new distribution for the coefficients, c̄ ∼ N (ȳ, Σ̄), where428

ȳi = yi + α(x0)zi(x0) [d0 − µ̃(x0)] (22a)

Σ̄ij = Σij − α(x0)zi(x0)zj(x0) (22b)

with429

zi(x) = flimi
(x)−

∑
pq

flimi
(x̂p)

[(
K̂ + Cd̂

)−1]
pq

k(x, x̂q) . (22c)

430

Using the Kullback-Leibler divergence (cf. eq. 20), we can now quantify how much the431

single additional observation has revealed about the spherical harmonic coefficients, given432

by433

DKL =
1

2

[
Tr(Σ̄

−1
Σ)−D + log

det Σ̄

det Σ

]
+

1

2
α2(x0)z(x0)TΣ̄

−1
z(x0) [d− µ̃(x0)]

2
, (23)
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where D represents the dimension of the vector c̄. We therefore see that the amount we learn434

depends on the value of d: if our additional observation happens to match what we predicted435

based on the original dataset (µ̃(x0)) we learn less than if the observation reveals unexpected436

new features. Using h̃(x), we can determine that the expected value (in a statistical sense)437

of (d − µ̃)2 is k̃(x0,x0) and, hence, we can quantify the expected information gain due to438

an additional observation at x0 by439

G(x0) =
1

2

[
Tr(Σ̄

−1
Σ)−D + log

det Σ̄

det Σ

]
+

1

2
α2(x0)k̃(x0,x0)z(x0)TΣ̄

−1
z(x0) . (24)

This quantity is straightforward to compute, and it is therefore possible to produce maps440

showing the expected value of one additional sample at any point on the globe. Alternatively,441

for a more conservative perspective, one might map only the first, parenthesised term in442

eq. (24): this would represent the minimum information gain from a sample at any point.443

In particular, one can make such maps considering only the spherical harmonic coefficients444

corresponding to a particular angular order l, to yield an understanding of how samples in445

different regions might help constrain different aspects of the residual topography spectrum.446

Such maps, based on the high-accuracy spot data alone, are shown in Fig. 8. We447

assume that the one additional data point is measured with an uncertainty of σd = 0.1 km.448

We clearly see that our knowledge of the low-degree spherical harmonic components can be449

improved through addition of samples at a relatively small number of locations: continental450

interiors (especially in Russia), the Southern Ocean, and the South and West Pacific. To451

constrain shorter wavelengths, our analysis indicates that the most useful sampling locations452

are in regions close to existing data points: this makes sense, as our approach is predicated453

on collecting only a single sample.454

5 Discussion and Conclusions455

In this paper, we have successfully demonstrated a new approach for obtaining a con-456

tinuous, global model for residual topography given a finite set of point-wise measurements.457

Our method is based upon the statistical theory of Gaussian Processes (Valentine & Sam-458

bridge, 2020a, 2020b), and has a number of important advantages over those employed459

in previous studies, particularly: (i) it does not presuppose that the residual topography460

field is well-represented using a particular set of basis functions, avoiding potential issues461

such as ‘spectral leakage’; (ii) prior information (i.e. the covariance function) is defined462

within physical space, rather than in an abstract ‘model space’ where its effects may be463

poorly-understood; and (iii) the method remains robust for even the smallest datasets.464

These properties enable us to construct a residual topography model that is based465

only on the 1160 high-accuracy spot measurements in the database compiled by Hoggard et466

al. (2017). These points are believed to be particularly robust, since they are obtained via467

bespoke analysis of seismic and other datasets, and incorporate location-specific information468

about crustal properties. The resulting model is broadly in agreement with those reported in469

earlier studies, which have typically relied on a much larger dataset derived from automated470

processing of shiptrack bathymetry. Applying our method to this larger dataset continues471

to yield self-consistent results.472

The global pattern of residual topography is dominated by broad topographic highs473

in the North Atlantic, African and central Pacific regions, with the largest amplitudes adja-474

cent to Iceland. These are separated by broad topographic lows, extending from Antarctica,475

through the Americas, beneath the Eurasian continent and to the south of Australia. Based476

on just the 1160 high-accuracy measurements, the associated spherical harmonic power spec-477

trum peaks at l = 2, with power likely to lie in the range 0.46–0.76 km2. This decreases by478

over an order of magnitude to the range 0.02 km2 at l = 30. The overall form of the spectrum479

is consistent across all data subsets analysed. In light of the sensitivity kernels linking topo-480

graphic deflections to density anomalies within the mantle at different depths and spherical481
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(a)

-0.48/0.66

(b)

-0.65/0.69

(c)

-0.68/0.74

0.8 0.4 0.0 0.4 0.8

Residual topography at degrees 1-3, km

Figure 9. Long-wavelength residual topography. Models (as in Figs. 3–5) filtered to include

only spherical harmonic degrees 1–3. We see consistent patterns across all three datasets: (a)

high-accuracy spot measurements; (b) all spot measurements; and (c) all spot and shiptrack mea-

surements. Contours are drawn at 200 m intervals, and the amplitude range in each plot is shown,

bottom right. Negative contours are dashed. Zero contour is in grey.
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harmonic degree (e.g. Richards & Hager, 1984; Colli et al., 2016), and as discussed in detail482

by Davies et al. (2019), generating this spectrum requires Earth’s topographic response to be483

driven by multi-scale convective processes. The long-wavelength portion of the spectrum is484

primarily attributable to deep mantle flow, while shorter-wavelength features are supported485

by flow associated with structural heterogeneity in the shallow mantle and lithosphere.486

Given the link between the long-wavelength components of residual topography and487

deep mantle flow, the patterns and amplitudes associated with low-order spherical harmonics488

provide an independent constraint on the long-wavelength components of global seismic489

tomography images and the dynamical interpretation of these images. Accordingly, in Fig. 9,490

we show our best-fitting models for each data set, filtered to contain only degrees 1–3. The491

spatial pattern is fairly consistent across all three datasets, with highs centred off South-East492

Africa that extend into the North Atlantic, and in the central and western Pacific Ocean.493

As set out in Table 3, models consistent with the observations may have maximum residual494

topography heights up to around 1.2 km at these wavelengths, although a figure in the range495

680–850 m is most likely. The residual topography highs strongly resemble the shape and496

extent of the large low velocity provinces that have been consistently imaged in the deep497

mantle across a number of global seismic tomography studies (e.g. Becker & Boschi, 2002;498

Ritsema et al., 2011; Bozdağ et al., 2016), and likely represent concentrations of hot (and499

potentially chemically-distinct) material that drives upwelling flow towards Earth’s surface500

(e.g. McNamara & Zhong, 2005; Schuberth et al., 2009; Bull et al., 2009; Davies et al.,501

2012; Flament et al., 2013; Davies, Goes, & Sambridge, 2015; Garnero et al., 2016). These502

long-wavelength residual topography highs are separated by a band of residual topography503

lows, extending from Antarctica, through the Americas, the Arctic, Eurasia and Australia.504

These are likely related to downwelling slabs, associated with former subduction zones (e.g.505

Richards & Engebretson, 1992; Bunge et al., 2002; Flament et al., 2013; Davies, Goes, &506

Lau, 2015; Rubey et al., 2017).507

Finally, from a methodological perspective, the Gaussian Process-based approach for508

inferring global models from point data appears attractive. It is mathematically-elegant and,509

as we have demonstrated, produces results that are consistent with basis-function expansion510

strategies. Indeed, as discussed in detail in Valentine and Sambridge (2020b), the two have511

close links, becoming equivalent under certain conditions as the number of basis functions512

tends to infinity. We highlight that our approach can be straightforwardly translated to the513

analysis of other datasets and problems, and suggest that it may prove powerful in cases514

where models must be constrained using spatially-sparse data.515
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