References
Almeida, J., Schobesberger, S.,
Kürten, A., Ortega, I. K., Kupiainen-Määttä, O., Praplan, A. P., et al.
(2013). Molecular understanding of sulphuric acid-amine particle
nucleation in the atmosphere. Nature , 502, 359– 363. DOI:
10.1038/nature12663
Cape, J. N., Cornell, S. E., Jickells, T. D., and Nemitz, E. (2011).
Organic nitrogen in the atmosphere — Where does it come from? A review
of sources and methods. Atmospheric Research , 102, 30–48. DOI:
10.1016/j.atmosres.2011.07.009
Chan, L. P. and Chan, C. K. (2012). Displacement of Ammonium from
Aerosol Particles by Uptake of Triethylamine. Aerosol Science and
Technology , 46(2), 236-247. DOI: 10.1080/02786826.2011.618815
Chee, S., Myllys, N., Barsanti, K. C., Wong, B. M., and Smith, J. N.
(2019). An Experimental and Modeling Study of Nanoparticle Formation and
Growth from Dimethylamine and Nitric Acid. The Journal of Physical
Chemistry A , 123, 5640–5648. DOI: 10.1021/acs.jpca.9b03326
Clegg, S., Qiu, C., Zhang, R., (2013), The deliquescence behaviour,
solubilities, and densities of aqueous solutions of five methyl- and
ethyl-aminium sulphate salts, Atmospheric Environment , 73,
145–158. DOI: 10.1016/j.atmosenv.2013.02.036
Elm, J., Kubečka, J., Besel, V., Jääskeläinen, M. J., Halonen, R.,
Kurtén, T., Vehkamäki, H. (2020). Modeling the formation and growth of
atmospheric molecular clusters: A review. Journal of Aerosol
Science , 149, 105621. DOI: 10.1016/j.jaerosci.2020.105621
Fang, X., Hu, M., Shang, D., Tang, R.,
Shi, L., Olenius, T., et al. (2020). Observational Evidence for the
Involvement of Dicarboxylic Acids in Particle Nucleation.Environmental Science& Technology Letters , 7, 388–394. DOI:
10.1021/acs.estlett.0c00270
Ge, X., Wexler, A. S., and Clegg, S. L. (2011a). Atmospheric amines —
Part I. A review. Atmospheric Environment , 45, 524–546. DOI:
10.1016/j.atmosenv.2010. 10.012
Ge, X., Wexler, A. S., and Clegg, S. L. (2011b). Atmospheric amines —
Part II. Thermodynamic properties and gas/particle partitioning.Atmospheric Environment , 45, 561–577. DOI:
10.1016/j.atmosenv.2010.10.013
Gonzalez, J., & Anglada, J. M.
(2010). Gas Phase Reaction of Nitric Acid with Hydroxyl Radical without
and with Water. A Theoretical Investigation. The Journal of
Physical Chemistry A , 114, 9151–9162. DOI: 10.1021/jp102935d
Hunter, E. P. L. and Lias, S. G. (1998). Evaluated Gas Phase Basicities
and Proton Affinities of Molecules. Journal of Physical and
Chemical Reference Data , 27, 413–656. DOI: 10.1063/1.556018
Hsiao, T. C., Young, L. Y, Tai, Y. C., Chen, K. C. (2016). Aqueous film
formation on irregularly shaped inorganic nanoparticles before
deliquescence, as revealed by a hygroscopic differential mobility
analyzer-aerosol particle mass system. Aerosol Science and
Technology , 50, 568–577. DOI: 10.1080/02786826.2016.1168512
Kolb, C. E., Williams, L. R., Jayne, J. T., Worsnop, D. R. (2011). Mass
accommodation and chemical reactions at gas-liquid interfaces.Chemical Reviews , 111, 76–109. DOI: 10.1021/cr040366k
Lavi, A., Bluvshtein, N., Segre, E., Segev, L., Flores, M., et al.
(2013). Thermochemical, cloud condensation nucleation ability, and
optical properties of alkyl aminium sulfate aerosols. The Journal
of Physical Chemistry A , 117, 22412–22421. DOI: 10.1021/jp403180s
Linstrom, P. J. and Mallard, W. G. (eds.). (2018). NIST Chemistry
WebBook, NIST Standard Reference Database Number 69 , National Institute
of Standards and Technology, Gaithersburg (MD), http://webbook.nist.gov
(retrieved August, 2021).
Liu,
L., Li, H., Zhang, H., Zhong, J., Bai, Y., Ge, M., et al. (2018). The
role of nitric acid in atmospheric new particle formation.Physical Chemistry Chemical Physics , 20, 17406–17414. DOI:
10.1039/c8cp02719f
Long, B., Zhang, W., Tan, X., Long, Z., Wang, Y., & Ren, D., et al.
(2011). Theoretical Study on the Gas Phase Reaction of Sulfuric Acid
with Hydroxyl Radical in the Presence of Water. The Journal of
Physical Chemistry A , 115, 1350–1357. DOI: 10.1021/jp107550w
Ma, F., Xie, H.-B., Elm, J., Shen, J., Chen, J., Vehkamäki, H., et al.
(2019). Piperazine Enhancing Sulfuric Acid-Based New Particle Formation:
Implications for the Atmospheric Fate of Piperazine. Environmental
Science& Technology , 53, 8785–8795. DOI: 10.1021/acs.est.9b02117
Nielsen, C. J., Herrmann, H., and Weller, C. (2012). Atmospheric
chemistry and environmental impact of the use of amine in carbon capture
and storage (CCS). Chemical Society Reviews , 41, 6684–6704. DOI:
10.1039/C2CS35059A
Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., and Roberts,
G. (2017). Surface tension prevails over solute effect in
organic-influenced cloud droplet activation. Nature , 544 ,
637–641. DOI: 10.1038/nature22806
Qiu, C. and Zhang, R. (2012). Physicochemical properties of alkylaminium
sulfate: Hygroscopicity, thermostability and density.Environmental Science& Technology , 46 , 4474–4480. DOI:
10.1021/es3004377
Qiu, C. and Zhang, R. (2013). Multiphase chemistry of atmospheric
amines. Physical Chemistry Chemical Physics , 15, 5738–5752; DOI:
10.1039/C3CP43446J
Rossignol, S., Tinel, L., Bianco, A., Passananti, M., Brigante, M., et
al. (2016). Atmospheric photochemistry at a fatty acid-coated air-water
interface. Science , 353, 699–702. DOI: 10.1126/science.aaf3617
Rovelli, G., Miles, R. E. H., Reid, J. P., and Clegg, S. L. (2017).
Hygroscopic properties of aminium sulfate aerosols. Atmospheric
Chemistry and Physics , 17, 4369–4385. DOI: 10.5194/acp-17-4369-2017
Salo, K.; Westerlund, J.; Andersson, P. U.; Nielsen, C.; D’Anna, B. et
al. (2011). Thermal characterization of aminium nitrate nanoparticles.The Journal of Physical Chemistry A , 115, 11671–11677. DOI:
10.1021/jp204957k
Scottish Environment Protection Agency (SEPA). (2015). Review of amine
emissions from carbon capture systems, v2.01. Retrieved from
https://www.sepa.org.uk/
media/155585/review-of-amine-emissions-from-carbon-capture-systems.pdf
Seinfeld, J. H., and Pandis, S. N. (2016). Atmospheric Chemistry
and Physics: From Air Pollution to Climate Change . 3rd ed. New York:
Wiley.
Shiraiwa, M., Ammann, M., Koop, T., and Pöschl, U. (2011). Gas uptake
and chemical aging of semisolid organic aerosol particles.Proceedings of the National Academy of Sciences of the United
States of America , 108, 11,003–11,008. DOI: 10.1073/pnas.1103045108
Smith,
J. N., Danielle, C. D., Sabrina, C., Michelia, D., Hayley, G., Deanna,
M., et al. (2020). Atmospheric clusters to nanoparticles: Recent
progress and challenges in closing the gap in chemical composition.Journal of Aerosol Science , 153, 105733. DOI:
10.1016/j.jaerosci.2020. 105733
Stocker, T.F., Qin, D, Plattner, G.-K., Tignor, M., Allen, S.K.,
Boschung, J., et al. (Eds.). (2013). Climate Change 2013: The
Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change .
United Kingdom and New York, NY, USA: Cambridge University Press.
Wang, L.; Khalizov, A. F.; Zheng, J.;
Xu, W.; Ma, Y., et al. (2010). Atmospheric nanoparticles formed from
heterogeneous reactions of organics. Nature Geoscience , 3,
238–242. DOI: 10.1038/ngeo778
Wang, M., Kong, W., Marten, R., He, X.-C., Chen, D., Pfeifer, J., et al.
(2020). Rapid growth of new atmospheric particles by nitric acid and
ammonia condensation. Nature , 581, 184–189. DOI:
10.1038/s41586-020-2270-4
Wexler, A. S. and Clegg, S. L. (2002). Atmospheric aerosol models for
systems including the ions H+, NH4+,
Na+, SO42−,
NO3−, Cl−,
Br− and H2O. Journal of
Geophysics Research , 107, D14. DOI: 10.1029/2001JD000451
Xie, H.-B., Elm, J., Halonen, R., Myllys, N., Kurtén, T., Kumala, M., et
al. (2017). Atmospheric Fate of Monoethanolamine: Enhancing New Particle
Formation of Sulfuric Acid as an Important Removal Process.Environmental Science& Technology , 51, 8422–8431. DOI:
10.1021/acs.est.7b02294
Yao, L., Garmash, O.; Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., et
al. (2018). Atmospheric new particle formation from sulfuric acid and
amines in a Chinese megacity. Science , 361, 278–281. DOI:
10.1126/science.aao4839
Yli-Juuti, T., Barsanti, K., Hildebrandt Ruiz, L., Kieloaho, A.-J.,
Makkonen, U., Petäjä, T., et al. (2013). Model for acid-base chemistry
in nanoparticle growth (MABNAG). Atmospheric Chemistry and
Physics , 13, 12,507–12,524. DOI: 10.5194/acp-13-12507-2013
Zhang, R.; Suh, I.; Zhao, J.; Zhang, D.; Fortner, E. C., et al. (2004).
Atmospheric new particle formation enhanced by organic acids.Science , 304, 1487–1490. DOI: 10.1126/science.1095139
Zhang, R. Y., Khalizov, A., Wang, L., Hu, M., and Xu, W. (2012).
Nucleation and growth of nanoparticles in the atmosphere. Chemical
Reviews , 112, 1957–2011. DOI: 10.1021/cr2001756