References
Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K., Kupiainen-Määttä, O., Praplan, A. P., et al. (2013). Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere. Nature , 502, 359– 363. DOI: 10.1038/nature12663
Cape, J. N., Cornell, S. E., Jickells, T. D., and Nemitz, E. (2011). Organic nitrogen in the atmosphere — Where does it come from? A review of sources and methods. Atmospheric Research , 102, 30–48. DOI: 10.1016/j.atmosres.2011.07.009
Chan, L. P. and Chan, C. K. (2012). Displacement of Ammonium from Aerosol Particles by Uptake of Triethylamine. Aerosol Science and Technology , 46(2), 236-247. DOI: 10.1080/02786826.2011.618815
Chee, S., Myllys, N., Barsanti, K. C., Wong, B. M., and Smith, J. N. (2019). An Experimental and Modeling Study of Nanoparticle Formation and Growth from Dimethylamine and Nitric Acid. The Journal of Physical Chemistry A , 123, 5640–5648. DOI: 10.1021/acs.jpca.9b03326
Clegg, S., Qiu, C., Zhang, R., (2013), The deliquescence behaviour, solubilities, and densities of aqueous solutions of five methyl- and ethyl-aminium sulphate salts, Atmospheric Environment , 73, 145–158. DOI: 10.1016/j.atmosenv.2013.02.036
Elm, J., Kubečka, J., Besel, V., Jääskeläinen, M. J., Halonen, R., Kurtén, T., Vehkamäki, H. (2020). Modeling the formation and growth of atmospheric molecular clusters: A review. Journal of Aerosol Science , 149, 105621. DOI: 10.1016/j.jaerosci.2020.105621
Fang, X., Hu, M., Shang, D., Tang, R., Shi, L., Olenius, T., et al. (2020). Observational Evidence for the Involvement of Dicarboxylic Acids in Particle Nucleation.Environmental Science& Technology Letters , 7, 388–394. DOI: 10.1021/acs.estlett.0c00270
Ge, X., Wexler, A. S., and Clegg, S. L. (2011a). Atmospheric amines — Part I. A review. Atmospheric Environment , 45, 524–546. DOI: 10.1016/j.atmosenv.2010. 10.012
Ge, X., Wexler, A. S., and Clegg, S. L. (2011b). Atmospheric amines — Part II. Thermodynamic properties and gas/particle partitioning.Atmospheric Environment , 45, 561–577. DOI: 10.1016/j.atmosenv.2010.10.013
Gonzalez, J., & Anglada, J. M. (2010). Gas Phase Reaction of Nitric Acid with Hydroxyl Radical without and with Water. A Theoretical Investigation. The Journal of Physical Chemistry A , 114, 9151–9162. DOI: 10.1021/jp102935d
Hunter, E. P. L. and Lias, S. G. (1998). Evaluated Gas Phase Basicities and Proton Affinities of Molecules. Journal of Physical and Chemical Reference Data , 27, 413–656. DOI: 10.1063/1.556018
Hsiao, T. C., Young, L. Y, Tai, Y. C., Chen, K. C. (2016). Aqueous film formation on irregularly shaped inorganic nanoparticles before deliquescence, as revealed by a hygroscopic differential mobility analyzer-aerosol particle mass system. Aerosol Science and Technology , 50, 568–577. DOI: 10.1080/02786826.2016.1168512
Kolb, C. E., Williams, L. R., Jayne, J. T., Worsnop, D. R. (2011). Mass accommodation and chemical reactions at gas-liquid interfaces.Chemical Reviews , 111, 76–109. DOI: 10.1021/cr040366k
Lavi, A., Bluvshtein, N., Segre, E., Segev, L., Flores, M., et al. (2013). Thermochemical, cloud condensation nucleation ability, and optical properties of alkyl aminium sulfate aerosols. The Journal of Physical Chemistry A , 117, 22412–22421. DOI: 10.1021/jp403180s
Linstrom, P. J. and Mallard, W. G. (eds.). (2018). NIST Chemistry WebBook, NIST Standard Reference Database Number 69 , National Institute of Standards and Technology, Gaithersburg (MD), http://webbook.nist.gov (retrieved August, 2021).
Liu, L., Li, H., Zhang, H., Zhong, J., Bai, Y., Ge, M., et al. (2018). The role of nitric acid in atmospheric new particle formation.Physical Chemistry Chemical Physics , 20, 17406–17414. DOI: 10.1039/c8cp02719f
Long, B., Zhang, W., Tan, X., Long, Z., Wang, Y., & Ren, D., et al. (2011). Theoretical Study on the Gas Phase Reaction of Sulfuric Acid with Hydroxyl Radical in the Presence of Water. The Journal of Physical Chemistry A , 115, 1350–1357. DOI: 10.1021/jp107550w
Ma, F., Xie, H.-B., Elm, J., Shen, J., Chen, J., Vehkamäki, H., et al. (2019). Piperazine Enhancing Sulfuric Acid-Based New Particle Formation: Implications for the Atmospheric Fate of Piperazine. Environmental Science& Technology , 53, 8785–8795. DOI: 10.1021/acs.est.9b02117
Nielsen, C. J., Herrmann, H., and Weller, C. (2012). Atmospheric chemistry and environmental impact of the use of amine in carbon capture and storage (CCS). Chemical Society Reviews , 41, 6684–6704. DOI: 10.1039/C2CS35059A
Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., and Roberts, G. (2017). Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature , 544 , 637–641. DOI: 10.1038/nature22806
Qiu, C. and Zhang, R. (2012). Physicochemical properties of alkylaminium sulfate: Hygroscopicity, thermostability and density.Environmental Science& Technology , 46 , 4474–4480. DOI: 10.1021/es3004377
Qiu, C. and Zhang, R. (2013). Multiphase chemistry of atmospheric amines. Physical Chemistry Chemical Physics , 15, 5738–5752; DOI: 10.1039/C3CP43446J
Rossignol, S., Tinel, L., Bianco, A., Passananti, M., Brigante, M., et al. (2016). Atmospheric photochemistry at a fatty acid-coated air-water interface. Science , 353, 699–702. DOI: 10.1126/science.aaf3617
Rovelli, G., Miles, R. E. H., Reid, J. P., and Clegg, S. L. (2017). Hygroscopic properties of aminium sulfate aerosols. Atmospheric Chemistry and Physics , 17, 4369–4385. DOI: 10.5194/acp-17-4369-2017
Salo, K.; Westerlund, J.; Andersson, P. U.; Nielsen, C.; D’Anna, B. et al. (2011). Thermal characterization of aminium nitrate nanoparticles.The Journal of Physical Chemistry A , 115, 11671–11677. DOI: 10.1021/jp204957k
Scottish Environment Protection Agency (SEPA). (2015). Review of amine emissions from carbon capture systems, v2.01. Retrieved from https://www.sepa.org.uk/ media/155585/review-of-amine-emissions-from-carbon-capture-systems.pdf
Seinfeld, J. H., and Pandis, S. N. (2016). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change . 3rd ed. New York: Wiley.
Shiraiwa, M., Ammann, M., Koop, T., and Pöschl, U. (2011). Gas uptake and chemical aging of semisolid organic aerosol particles.Proceedings of the National Academy of Sciences of the United States of America , 108, 11,003–11,008. DOI: 10.1073/pnas.1103045108
Smith, J. N., Danielle, C. D., Sabrina, C., Michelia, D., Hayley, G., Deanna, M., et al. (2020). Atmospheric clusters to nanoparticles: Recent progress and challenges in closing the gap in chemical composition.Journal of Aerosol Science , 153, 105733. DOI: 10.1016/j.jaerosci.2020. 105733
Stocker, T.F., Qin, D, Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., et al. (Eds.). (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change . United Kingdom and New York, NY, USA: Cambridge University Press.
Wang, L.; Khalizov, A. F.; Zheng, J.; Xu, W.; Ma, Y., et al. (2010). Atmospheric nanoparticles formed from heterogeneous reactions of organics. Nature Geoscience , 3, 238–242. DOI: 10.1038/ngeo778
Wang, M., Kong, W., Marten, R., He, X.-C., Chen, D., Pfeifer, J., et al. (2020). Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature , 581, 184–189. DOI: 10.1038/s41586-020-2270-4
Wexler, A. S. and Clegg, S. L. (2002). Atmospheric aerosol models for systems including the ions H+, NH4+, Na+, SO42−, NO3, Cl, Br and H2O. Journal of Geophysics Research , 107, D14. DOI: 10.1029/2001JD000451
Xie, H.-B., Elm, J., Halonen, R., Myllys, N., Kurtén, T., Kumala, M., et al. (2017). Atmospheric Fate of Monoethanolamine: Enhancing New Particle Formation of Sulfuric Acid as an Important Removal Process.Environmental Science& Technology , 51, 8422–8431. DOI: 10.1021/acs.est.7b02294
Yao, L., Garmash, O.; Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., et al. (2018). Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science , 361, 278–281. DOI: 10.1126/science.aao4839
Yli-Juuti, T., Barsanti, K., Hildebrandt Ruiz, L., Kieloaho, A.-J., Makkonen, U., Petäjä, T., et al. (2013). Model for acid-base chemistry in nanoparticle growth (MABNAG). Atmospheric Chemistry and Physics , 13, 12,507–12,524. DOI: 10.5194/acp-13-12507-2013
Zhang, R.; Suh, I.; Zhao, J.; Zhang, D.; Fortner, E. C., et al. (2004). Atmospheric new particle formation enhanced by organic acids.Science , 304, 1487–1490. DOI: 10.1126/science.1095139
Zhang, R. Y., Khalizov, A., Wang, L., Hu, M., and Xu, W. (2012). Nucleation and growth of nanoparticles in the atmosphere. Chemical Reviews , 112, 1957–2011. DOI: 10.1021/cr2001756