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Key points 31 

 32 

 33 

The hydrological model HYPERstreamHS was used to simulate natural streamflow series in 34 

100 bio-assessment sites across a large Alpine basin. 35 

 36 

Three flow-regime classes were identified, representing typical nivo-glacial, nivo-pluvial, and 37 

pluvial streams. 38 

 39 

 40 

Spatial stream-network models identified distinct flow-ecology relationships and relevant 41 

spatial autocorrelation across classified regimes, which aid implementing targeted water 42 

management schemes. 43 
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Abstract 64 

 65 

Flow regimes profoundly influence river organisms and ecosystem functions, but regulatory 66 

approaches often lack the scientific basis to support sustainable water allocation. In part, this 67 

reflects the challenge of understanding the ecological effects of flow variability over different 68 

temporal and spatial domains. 69 

 70 

Here, we use a process-based distributed hydrological model to simulate 23 years of natural 71 

flow regime in 100 target  bioassessment sites across the Adige River network (NE Italy), and 72 

to identify typical nivo-glacial, nivo-pluvial, and pluvial reaches.  We then applied spatial 73 

stream-network models (SSN) to investigate the relationships between hydrologic and 74 

macroinvertebrate metrics while accounting for network spatial autocorrelation and local 75 

habitat conditions. 76 

 77 

Macroinvertebrate metrics correlated most strongly with maximum, minimum and temporal 78 

variation in streamflow, but effects varied across flow regime types.  For example:  79 

i) taxon richness appeared limited by high summer flows and high winter flows in nivo-80 

glacial and pluvial streams, respectively; ii) invertebrate grazers increased proportionally 81 

with the annual coefficient of flow variation in nivo-glacial streams but tended to decline 82 

with flow variation in pluvial streams. SSN models revealed that most variation in 83 

macroinvertebrate metrics was accounted for by spatial autocorrelation, although local land-84 

use and water quality also affected benthic invertebrate communities, particularly at lower 85 

elevations. 86 

 87 

These findings highlight the importance of developing environmental flow management 88 

policies in ways that reflect specific hydro-ecological and land use contexts.  Our analyses 89 

also illustrate the importance of spatially-explicit approaches that account for auto-correlation 90 

when quantifying flow-ecology relationships. 91 

 92 
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1. Introduction  98 

 99 

The flow regime of streams and rivers has been modified by human activities at the global 100 

scale (Grill et al., 2019; Tonkin et al., 2019). As human population continues to grow, the 101 

increasing demand for water supply, flood protection and energy production has prompted 102 

the widespread adoption of  engineering solutions such as the construction of dams, levees 103 

and other hydraulic infrastructures (Couto & Olden, 2018; Shumilova et al., 2018; Zarfl et al., 104 

2015). As a result, streams and rivers are under increasing anthropogenic pressure and are 105 

among the most threatened ecosystems worldwide, with particularly high rates of species 106 

extinctions (Tickner et al., 2020). The ongoing global climate change is expected to further 107 

exacerbate this situation by increasing the frequency of extreme hydrologic events such as 108 

floods and droughts that act synergistically with other stressors affecting aquatic ecosystems 109 

(e.g. Navarro-Ortega et al., 2015). This is of particular concern since freshwater ecosystems 110 

support about 10% of all known species (Strayer & Dudgeon, 2010) and are essential for 111 

human well-being, providing a wealth of ecosystem services (Green et al., 2015). 112 

Understanding and limiting the ecological effects of flow alteration is therefore fundamental 113 

for a sustainable use of water resources.  114 

The Natural Flow Regime Paradigm (Poff et al. 1997) is at the heart of environmental flow 115 

definition and specifically acknowledges that river biota are adapted to seasonal and 116 

interannual variations of river flow. In order to mitigate the ecological impacts associated 117 

with  human infrastructures while maintaining their functioning, environmental flows (termed 118 

e-flows hereafter) should mimic the natural streamflow variability in terms of magnitude, 119 

frequency, duration, timing and rate of change (Arthington et al., 2018). However, given the 120 

limits in  the ability to mimic natural regimes in regulated rivers,  e-flows policy must be 121 

informed by a clear understanding of the relation between river ecology and flow 122 

characteristics (i.e., flow-ecology relationships), which is, however, hampered  by several 123 

practical challenges. These include, among others: i) the paucity of stream and river locations 124 

for which ecological information can be paired with long term hydrologic records (e.g. 125 

Patrick & Yuan, 2017a); ii) the natural variation in flow regime among rivers and sub-126 



 

catchments, whereby ecological responses could vary significantly among individual flow 127 

regime types (Poff et al., 2010); and iii) the spatial configuration of river ecosystems, which 128 

requires statistical approaches able to account for the complex autocorrelation associated with 129 

network topology and flow directionality (Peterson et al., 2013). 130 

 131 

Several approaches have been used to address these challenges. Matching flow and 132 

ecological data is a prerequisite for quantifying flow-ecology relationships, and yet the spatial 133 

and temporal overlap between observed hydrologic and biological data is often poor (e.g. 134 

Mazor et al., 2018). To mitigate such limitations, either statistical or process-based 135 

hydrological models have been used. Statistical hydrological models aim to predict flow 136 

metrics at ungauged locations from the observed relation between available streamflow series 137 

and catchment characteristics (Booker et al., 2015; Patrick & Yuan, 2017b), or by means of 138 

geostatistical interpolation (Skøien et al., 2006). Process-based hydrologic models, on the 139 

other hand, directly simulate streamflow time series at specific network locations by 140 

integrating the hydrological processes acting within the drainage area: i.e., precipitation, 141 

snowmelt, interception, evapotranspiration, infiltration, surface and sub-surface flow, as well 142 

as their interactions (see e.g., Beven, 2012).  143 

The second challenge is related to the heterogeneity of river basins where the natural 144 

streamflow regime and river biota differ markedly across the network. Therefore, it is 145 

necessary to classify flow regimes into distinct and easily interpretable classes in order to 146 

define reference flow conditions and implement targeted e-flows schemes, while also 147 

minimising the effects of other co-varying environmental factors (Belmar et al., 2011; Booker 148 

et al., 2015).  As a result, e-flows can be transferred among similar flow regimes at regional 149 

scales. For instance, the identification and classification of reference hydrographs are two key 150 

steps (i.e, “Hydrological foundation” and “River classification”) in the assessment of the 151 

“Ecological Limits of Hydrologic Alteration” (ELOHA), the holistic framework increasingly 152 

adopted to define regional flow standards (Poff et al., 2010).  153 

The third challenge is not strictly associated with flow-ecology research, but it is related to 154 

the spatial structure of river networks. The topology of branching river networks implies that 155 

classical statistical methods are unable to account for the spatial autocorrelation due to the 156 

connectivity and directionality of water flow within the network. Failing to account for such 157 

spatial patterns may lead to spurious correlations (Isaak et al., 2014). However, recent 158 

advances in the field of fluvial variography (i.e. spatial statistics applied to river networks) 159 

have provided the tools to model these spatial dependencies over the Euclidean and 160 



 

watercourse dimension, while also accounting for flow directionality (Carrara et al., 2012; 161 

Ver Hoef & Peterson, 2010; Zimmerman & Ver Hoef, 2017). Such stream-network models 162 

have been used to derive spatially-explicit estimates of water quality and population 163 

abundance across river basins (Isaak et al., 2017; McGuire et al., 2014), but applications to 164 

flow-ecology research are surprisingly scarce (Bruckerhoff et al., 2019).  165 

In this paper we develop and discuss a framework that addresses these challenges using the 166 

Adige River basin (northeastern Italy) as case study. In doing so, we aim to contribute to the 167 

understanding of flow-ecology relationships at the regional scale and evaluate potential flow-168 

sensitive indicators, since recent works in the Italian Alps showed the poor sensitivity of 169 

some of the current Water Framework Directive (WFD) biological indicators to flow 170 

parameters (Larsen et al., 2019; Quadroni et al., 2017). Specifically, we focused on benthic 171 

macroinvertebrates as model organisms because of their essential role in the functioning of 172 

lotic systems, their widespread use as biological indicators and the availability of monitoring 173 

data in the region (De Pauw et al., 2006; Friberg, 2014; Larsen et al., 2019). We included 174 

both taxonomic and functional (traits-based) metrics, as these provide independent and 175 

complementary information that could be valid across biogeographic zones (Heino et al., 176 

2013). 177 

To achieve the above-mentioned  goals, first we used the process-based HYPERstreamHS 178 

hydrological model (Avesani et al., 2020) to simulate the natural streamflow series of one-179 

hundred stream reaches throughout the Adige River basin where biological information was 180 

available. Then, we classified distinct flow regimes representing the natural hydrological 181 

conditions of the streams in the basin. Subsequently, we used spatial stream-network models 182 

(SSN) to correlate the macroinvertebrate taxonomic and functional metrics with the 183 

streamflow characteristics and habitat conditions within each flow regime, while also 184 

accounting for spatial autocorrelation.  185 

 186 

 187 

2. Data and Methods 188 

 189 

2.1 Study area 190 

The study area is the Adige River basin, an Alpine catchment in northeastern Italy (Fig. 1), 191 

closed at ‘Vo Destro’ gauging station (drainage area 10600 km
2
). The Adige River is the 192 

second longest Italian river, with the typical natural streamflow regime of the Alpine region 193 



 

showing two seasonal maxima, one occurring in spring-summer due to snow and glacial 194 

melt, and the other in autumn triggered by cyclonic storms (Chiogna et al., 2016; Mallucci et 195 

al., 2019). Recent analyses of historical hydro-climatic trends revealed that the basin is 196 

sensitive to climate change with ongoing reduction of winter snowfall and anticipation of 197 

snow-melting season (Diamantini et al., 2018; Lutz et al., 2016; Mallucci et al., 2019), 198 

which are likely to alter its flow regime by the second half of 21
st
 century (Majone et al., 199 

2016). Such modifications may have relevant socio-economic consequences in the 200 

catchment, where more than 80% of licensed withdrawn water is allocated to large 201 

hydropower plants, and about 6% to agriculture (Bellin et al., 2016; Zolezzi et al., 2009). 202 

We selected 100 headwater stream reaches (Fig.1) throughout the catchment for which 203 

biological information was available and with an almost pristine streamflow regime  (i.e. no 204 

major in-stream hydraulic infrastructure or impoundments upstream). The selected reaches 205 

were mostly 1
st
 and 2

nd
 order streams, with elevation and drainage area ranging from 170 to 206 

1900 m a.s.l. and from 10 to 434 km
2
, respectively. 207 

 208 

2.2 Observational datasets 209 

2.2.1 Flow data 210 

The regional precipitation and temperature dataset ADIGE (Mallucci et al., 2019) was used 211 

as meteorological forcing for hydrological modelling. This dataset provides daily 212 

precipitations and temperatures for the time interval 1956-2013 at the spatial resolution of 1 213 

km. The dataset was developed by interpolating the measurements available at the 214 

meteorological stations within and nearby the river basin by means of kriging with external 215 

drift (Goovaerts, 1997; Mallucci et al., 2019). To comply with the computational grid 216 

adopted in the hydrologic modeling, the ADIGE dataset was aggregated to 5-km grid 217 

spacing. 218 

Daily streamflow data collected at 9 gauging stations (Fig.1) were provided by the 219 

Hydrological Office of the Autonomous Provinces of Trento (www.floods.it) and Bolzano 220 

(www.provincia.bz.it/hydro). Stations were selected according to the following criteria: i) 221 

observational period including the 1989–2013 time-frame used for calibration  and validation 222 

of the hydrological model; ii) limited gaps in records; iii) large distance from upstream 223 

reservoirs if present; and, iv) broad spatial coverage including the major tributaries of the 224 

Adige River. The gauging stations were distributed in sub-catchments of different sizes, 225 



 

elevation, geology and land-cover, and were therefore representative of the hydrological 226 

regimes of  the Adige  basin. 227 

 228 

2.2.2 Macroinvertebrate data 229 

Macroinvertebrate data were collected by the Environmental Protection Agencies of the 230 

Provinces of Trento and Bolzano as part of their institutional monitoring programmes (Larsen 231 

et al., 2019). Sampling was performed according to the multi-habitat sampling approach 232 

defined in the AQEM (http://www.aqem.de/) protocol: 10-replicate Surber samples were 233 

collected within a 20-50 m reach in proportion to the micro-habitats present (Hering et al., 234 

2004).  Samples were collected in the period 2009-2015, and sites were visited several times 235 

per year (median = 3), primarily in spring and autumn. Macroinvertebrate densities were 236 

averaged over all samples to remove seasonal effects, thereby obtaining a representative 237 

community composition of each site.  238 

2.2.3 Reach-scale environmental data 239 

Two additional reach-scale environmental variables were included in the analyses besides 240 

streamflow regime: the proportion of agricultural land-use (“Agr.landuse”), calculated within 241 

1-km buffer around each sampling location, and the physico-chemical water quality, as 242 

expressed by the “LIMeco” index (Livello di Inquinamento da Macrodescrittori per lo stato 243 

ecologico), one of the official WFD water quality indicators used to assess the ecological 244 

status of running water in Italy (European Commission, 2000). This is a multi-metric 245 

indicator assigning quality scores based on threshold levels for concentration of oxygen, 246 

ammonia, nitrate and total phosphorus in freshwater (see Azzellino et al., 2015). These 247 

environmental descriptors were included as covariates in the quantification of flow-ecology 248 

relationship because of their proven influence on the composition of benthic invertebrates in 249 

the area (Larsen et al., 2019). 250 

 251 

 252 

2.3 Hydrologic simulations 253 

Hydrological simulations were performed at the daily time scale with the HYPERstreamHS 254 

model (Avesani et al., 2020; Laiti et al., 2018), which couples the HYPERstream routing 255 

scheme (recently proposed by Piccolroaz et al., 2016) with a continuous Soil Conservation 256 

Service (SCS) module for surface flow generation (Michel et al., 2005). Subsurface return 257 

flow was modelled by a nonlinear reservoir (Majone et al, 2010). The HYPERstream routing 258 



 

scheme is specifically designed to couple with climate models and, in general, with gridded 259 

meteorological datasets. HYPERstream inherits the computational grid of the climatic model, 260 

or of the gridded product providing the meteorological forcing, and preserves 261 

geomorphological dispersion due to the structure of the river network (Rinaldo et al., 1991), 262 

regardless of  grid resolution. In previous studies, the SCS runoff module was successfully 263 

applied to two tributaries of the Adige River (Bellin et al., 2016; Piccolroaz et al., 2015). For 264 

a detailed description of the hydrologic modelling framework see Laiti et al., (2018) and 265 

Avesani et al. (2020). 266 

The hydrological model was calibrated against daily streamflow observations in the time 267 

window 1989-2013 using the ADIGE dataset as input meteorological forcing. The parameters 268 

space was explored for optimality, according to the Nash-Sutcliffe efficiency index (NSE; 269 

Nash & Sutcliffe, 1970), by using the Particle Swarming Optimization algorithm (Kennedy & 270 

Eberhart, 1995). NSE was selected because of its effectiveness in assessing the performance 271 

of hydrologic models in reproducing observed streamflows. NSE is satisfactory when larger 272 

than 0.5 (Moriasi et al., 2007). Because hydrologic modelling was tailored to reproduce 273 

streamflow at unimpacted headwater locations (see Sect. Study area), four headwater gauging 274 

stations (Vermiglio, Rio Funes, Aurino and Gadera in Fig.1) were calibrated simultaneously 275 

(i.e. NSE was defined as the average of individual efficiencies from the four stations). 276 

Successively, other five stations distributed across the basin (Saltusio, Vipiteno, Anterselva, 277 

Trento and Bronzolo in Fig.1; drainage area ranging from 60 to 9000 km
2
) were used for 278 

validation, in order to assess how the model reproduced streamflow at all the relevant scales. 279 

The first two years of the time series, i.e., 1989 and 1990, were used as spin-up for the 280 

simulations and therefore were excluded from the computation of NSE. Finally, we used the 281 

calibrated hydrologic model to simulate streamflow time series (1991-2013) at the 100 282 

gauged and ungauged locations where biological data were available. 283 

As additional validation of the hydrologic model, we compared patterns of flow-ecology 284 

relationships obtained from the observed and simulated streamflow using nine locations for 285 

which measured streamflow time series were also available. 286 

2.4 Hydrologic classification 287 

Simulated streamflow time series at the 100 locations were first normalised by their mean 288 

annual discharge (MAD) to allow comparison across streams and develop flow-ecology 289 

relationships independent of stream size (e.g. Rosenfeld, 2017). In the following step, 290 



 

streamflow regimes were classified  according to their typical seasonality as follows: first, we 291 

calculated the mean monthly hydrographs for each location from the MAD-normalised daily 292 

streamflow time series (Fig. S1 in SM); then we performed a Principal Component Analysis 293 

(PCA) on the resulting  hydrographs to synthesize similarities among locations using the first 294 

two PC axes. Location scores on the two axes were then weighted by the proportion of 295 

variance explained in the PCs and used as synthetic variables in order to cluster the locations 296 

based on their flow regime (see e.g. Belmar et al., 2011). A flexible-beta hierarchical 297 

clustering approach was used, with the recommended value of beta= - 0.25 (Belmar et al., 298 

2011; Legendre & Legendre, 2012; Mazor et al., 2018), which provides an intermediate 299 

solution between chaining obtained via single linkage, and space dilation deriving from 300 

complete linkage. To further validate the degree of separation among the classified regimes, 301 

we ran a Permutational Multivariate Analysis of Variance (PERMANOVA; Anderson, 2017) 302 

based on the Euclidean distance matrix of the weighted PCA scores.   303 

 304 

2.5 Hydrologic metrics 305 

We used the 23 years MAD-normalised daily streamflow values to calculate 34 hydrologic 306 

metrics following the Indicator of Hydrologic Alteration (IHA; Richter et al., 1997) approach 307 

(Tab. 1), implemented in R software with the “IHA” package (R Core Team, 2019). These 308 

metrics were averaged over the years to quantify ecologically-relevant components of the 309 

long-term flow regime related to magnitude, duration, frequency, timing and rate of change. 310 

As an exploratory step, and to visualise and further validate the separation of the hydrologic 311 

classes in the multidimensional space defined by the hydrologic metrics, we plotted the 312 

streams on the first two PCA axes derived from the correlation matrix of the IHA metrics 313 

(Fig. 4). However, our main interest was to quantify flow-ecology relationships within the 314 

distinct hydrologic regimes considered as management units. Therefore, we ran additional 315 

PCA analyses for each classified regime to identify the most relevant metrics in each group. 316 

We then selected a set of  non-redundant flow metrics showing high correlation (>0.8) with 317 

the 1
st
 or 2

nd
 PC axes (see Tab. S1 and Results), which reflected the key flow components. 318 

These flow metrics were subsequently used as predictors in stream-network models for 319 

quantifying interpretable flow-ecology relationships.  320 

 321 

 322 

2.6 Data analysis 323 



 

We derived a set of taxonomic and functional metrics from the macroinvertebrate community 324 

data. Our aim was to examine the sensitivity of different metrics to streamflow conditions to 325 

derive valid alternatives to those currently implemented under the WFD. We included metrics 326 

related to the diversity of the community, such as taxonomic richness, Shannon diversity (as 327 

effective number of species of order q=1; Jost, 2006), Functional Dispersion (FDis, which is 328 

minimally influenced by taxonomic richness), as these have been shown to reflect flow 329 

alterations elsewhere (e.g. Kennedy et al 2016). We additionally included metrics describing 330 

the proportion of different feeding groups (i.e. grazers, shredders, gatherers, filterers and 331 

predators) and the proportion of relatively small and large sized (range 0.25-0.5 mm and 20-332 

40 mm, respectively) invertebrates. We focused on feeding traits as they convey information 333 

about the functional role of organisms in the ecosystems and on size traits that are a proxy of 334 

multiple life-history characteristics like e.g. life cycle duration, longevity (Poff et al., 2006) 335 

and may respond to variation in shear stress (e.g. Merigoux & Doledec, 2004). Finally, we 336 

also examined how the WFD Star_ICMi index responded to flow characteristics. The 337 

Star_ICMi is the official Biological Quality Element used in Italy to classify the status of 338 

running water in line with the WFD requirements (Buffagni et al., 2006; Buffagni & Erba, 339 

2007). The index is formulated combining six normalised and weighted metrics, including 340 

richness, diversity and taxa sensitivity to organic pollution (Buffagni et al., 2006). 341 

Information for functional traits of the taxa was gathered from the online database of 342 

freshwater ecology (www.freshwaterecology.info; Schmidt-Kloiber & Hering, 2015). For the 343 

calculation of FDis, we included 13 traits (Tab. S2) in order to provide an inclusive measure 344 

of functional diversity. Feeding information was available for all taxa included in the 345 

analysis, whereas size traits were available for about 50% of the taxa. As such, taxa with no 346 

information for a given trait, were not considered in the analyses. 347 

 348 

2.6.1 Spatial stream-network models 349 

Spatial stream-network models (SSN; Ver Hoef et al., 2014; Ver Hoef & Peterson, 2010) 350 

were run separately for each flow regime to quantify the relation between the biotic and 351 

hydrologic metrics, while accounting for the autocorrelation structures of the dendritic 352 

network. The LIMeco index and Agr.landuse indicator were included as additional covariates 353 

in the models. ArcMap 10.5 and the STARS toolset (Peterson & Hoef, 2014) were used to 354 

generate the spatial data necessary to analyse stream-network models. The full set of 355 

autocovariance functions were used to model spatial autocorrelation, including Euclidean, in-356 

stream flow-connected (locations in which water flows from one to the other) and flow-357 



 

unconnected (connected within the network, but not reflecting the directionality of the water 358 

flow) functions. This approach allows accounting simultaneously for the along-channel and 359 

across-basin (flow-unconnected and Euclidean, respectively) patterns of autocorrelation, 360 

while also distinguishing locations linked by direct water flow (i.e. flow-connected). In 361 

particular, SSN models take the form: 362 

 363 

y = X β + zTU + zTD + zEU + ε        (1) 364 

 365 

where y is the response variable (i.e., macroinvertebrate metrics in this study), X is the matrix 366 

of predictors (flow metrics, LIMeco, and Agr.landuse) with associated β regression 367 

parameters, while zTU + zTD + zEU  are zero-mean random variables with autocorrelation 368 

structure based on tail-up (TU), tail-down (TD) and Euclidean (EU) functions, respectively,  369 

and ε is the random independent error. The TU and TD functions are moving-averages 370 

functions autocorrelated in an upstream and downstream direction, respectively.  Tail-up 371 

function assigns different weights to locations upstream of a given site according to the  372 

catchment area, used here as a proxy of streamflow. In this way, the moving-average 373 

autocorrelation is split at confluences so that upstream locations with larger catchments have 374 

a stronger influence on downstream communities. The reader can refer to Peterson et al. 375 

(2013) and Ver Hoef et al. (2010) for a detailed description of the SSN framework.  376 

 377 

Biotic metrics expressed as proportions (i.e. feeding and size traits) were logit-transformed as 378 

recommended (Warton & Hui, 2011), and maximum-likelihood was used for parameter 379 

estimation in all SSN models. For each biotic metric, the most supported model was selected 380 

based on the root mean-square prediction errors (RMSPE), which focus on model predictive 381 

power (Ver Hoef et al. 2014). The model was developed in a stepwise fashion, following 382 

guidelines provided in Ver Hoef et al. (2014). We first included all predictors (the selected 383 

flow metrics, LIMeco, Agr.landuse), and the full set of autocovariance functions (i.e. tail-up, 384 

tail-down and Euclidean). Then we manually removed non significant predictors and 385 

subsequently refined the spatial components. These can be defined by considering different 386 

autocovariance functions, including e.g. exponential, Mariah, spherical, linear-with sill, 387 

though spatial stream-network models appear little influenced by their mis-specification 388 

(Garreta et al. 2009; Isaak et al. 2014). We compared or removed different functions for the 389 

Euclidean, tail-up and tail-down components and selected the final model with the lowest 390 

RMSPE. If different models had identical RMPSE values, the most parsimonious solution 391 



 

was selected based on Akaike Information Criterion (AIC). The spatial autocovariance 392 

functions were refined after the selection of the model predictors, since the model accounts 393 

for spatial correlation in the error term after the effects of the covariates is removed (Frieden 394 

et al. 2014). 395 

 396 

The SSN package (Ver Hoef et al. 2014) for R software (R Core Team, 2019) was used to run 397 

the stream-network models.  398 

 399 

 400 

3. Results 401 

 402 

3.1 Hydrologic simulations and classification 403 

The capability of HYPERstreamHS hydrological model to reproduce the observed daily 404 

streamflow time series in the Adige River was validated in  the period 1991- 2013 by 405 

computing NSE at the 9 gauging stations described in Sect. 2.4 (Fig. 1). The parameters of 406 

the hydrologic model were inferred by maximizing the average NSE at Vermiglio, Rio Funes, 407 

Aurino and Gadera gauging stations. Calibration produced a satisfactory mean NSE of 0.623 408 

(range: 0.58-0.70; Figs. S2 and S3). At the validation stations, mean NSE was 0.620 (range: 409 

0.48-0.79), with lower values in the smaller subcatchments (Saltusio, Isarco, Anterselva; Fig. 410 

S2), and higher values at the larger downstream subcatchments of Trento and Bronzolo (0.74 411 

and 0.79, respectively; Figs. S2 and S3). Remarkably, average value and range of variation of 412 

NSE efficiency did not deteriorate from calibration to validation sites, suggesting that the 413 

model parameters are representative of the entire river basin. The limited reduction of NSE 414 

efficiency at Saltusio, Vipiteno, and Anterselva gauging stations is in line with the general 415 

understanding that an accurate reproduction of observed streamflows in small catchments 416 

would require accurate and spatially well-resolved precipitation and temperature fields at 417 

small spatial scales (e.g., Heistermann & Kneis, 2011). A further validation of the hydrologic 418 

model emerged from the consistent relationship between taxon richness and the IHA flow 419 

metrics across observed and simulated flow data, for the locations where measured 420 

streamflow series were available (Fig. S4). 421 

The calibrated model was subsequently used to simulate flow time series for the period 1991-422 

2013 in the 100 reference locations for which biological data were available, and to perform 423 

the flow regime classification. Three hydrologic classes with distinct flow regimes were 424 



 

identified by the flexible beta-clustering of the first two weighted PC scores (explaining 92% 425 

of the variation) derived from the scaled monthly hydrographs (Fig. 2). The first hierarchical 426 

division separated typical “pluvial” streams (n=38), with peak flow in autumn, from those 427 

with spring and summer peaks. The second division further distinguished streams with “nivo-428 

glacial” regime (n=30) with summer peak flows and winter low flows, from intermediate 429 

“nivo-pluvial” streams (n=32), with earlier spring peak flows and relatively higher autumn 430 

flows. A PERMANOVA based on Euclidean distances further validated the separation 431 

among the three groups with R
2
 = 0.85. Fig. 1 shows the distribution of the flow regime 432 

classes in the Adige River network. The three flow regimes were distributed along an 433 

altitudinal gradient, which reflects also the gradient of anthropogenic influence in the 434 

catchment (Fig. 3). Indeed, pluvial streams at lower altitude were characterised by more 435 

eutrophic (higher LIMeco scores) waters and higher proportion of agricultural land-use in the 436 

adjacent area.  437 

 438 

The three hydrologic classes identified in the previous step formed three groups in the first 439 

PCA factorial plane (i.e., the first two PCs) derived from IHA metrics, explaining about 80% 440 

of the total variation (Fig. 4). This analysis provided additional evidence of the separation 441 

among the flow regimes, and allowed identifying the metrics that differed the most among 442 

them. For instance, as also evident from the annual hydrographs shown in Fig. 2, nivo-glacial 443 

streams displayed higher flow maxima during summer months (June, July; Figs. 4 and S5) as 444 

well as faster fall and rise rates. Conversely, streams with pluvial regime showed higher flow 445 

minima (e.g. 30 Day Min) and Base index, but more frequent low flow events (Fig. S5). 446 

Nivo-pluvial streams systematically showed flow metrics that were intermediate between the 447 

nivo-glacial and pluvial regimes. 448 

The first two PCA axes extracted separately within each flow regime, accounted for 75%, 449 

81% and 76% of variation in IHA metrics across the nivo-glacial, nivo-pluvial and pluvial 450 

regime, respectively. The loadings of the IHA metrics on the PC axes are shown in Tab. S1, 451 

and were used for a parsimonious selection of non-redundant flow metrics to include in the 452 

SSN models. After removing  correlated metrics, the selection included: February and July 453 

streamflow, Low pulse number, Fall rate and annual CV (y.CV). These metrics are included 454 

in the first, fourth and fifth flow components of the IHA classification, respectively (Tab.1). 455 

However, February and July flow magnitude were strongly correlated with minimum and 456 

maximum flows as well as with the Base index, and thus represented a proxy for the second 457 

flow component of the IHA classification, which is related to the magnitude of extreme 458 



 

events. Metrics describing the timing of extreme flows (third component) were not included 459 

as they were not particularly relevant within each flow regime, but rather differed among 460 

regimes. 461 

 462 

3.2 Flow-ecology relationship 463 

A total of 64 invertebrate taxa were identified, mostly at family and genus level (see Tab. 464 

S3). The SSN models identified several significant relationships between biotic and 465 

hydrologic metrics and the covariates related to water quality and land-use (Fig. 5; Tab. S4). 466 

The relations differed among the flow regimes both in terms of explained variance and 467 

selected covariates. Overall, the influence of water quality (LIMeco index) and agricultural 468 

land-use on macroinvertebrate communities was also evident, especially for pluvial streams 469 

at lower altitude. 470 

Few response variables responded consistently to the hydrologic metrics across flow regimes, 471 

and rather, flow-ecology relationships often displayed divergent patterns (Fig. 6). For 472 

instance, while taxon richness declined significantly with February flow magnitude in pluvial 473 

streams, it tended to increase in the nivo-glacial streams, where instead it declined 474 

significantly with increasing July flow. Similarly, while Shannon diversity increased with the 475 

LIMeco index consistently across flow regimes, it showed a positive association with the 476 

number of low pulses, but only in the pluvial streams. Trait-based metrics also displayed 477 

rather unique patterns for each flow regime. The proportion of grazers displayed different 478 

relations with February flows across the three regimes. In addition,  grazers increased 479 

significantly with annual flow variation (y.CV) only in nivo-glacial streams, while the 480 

proportion of filter feeders declined with increasing February flow, but only in the pluvial 481 

streams (Fig. 6). 482 

Overall, spatial autocorrelation, considering the flow-connected, flow-unconnected and 483 

Euclidean dimensions (i.e. zTU , zTD , zEU  in equation 1), explained a larger proportion of 484 

variance (respectively 50%, 77% and 44% in the nivo-glacial, nivo-pluvial and pluvial 485 

streams) than the model predictors (X β in equation 1), which explained 13-26% of the 486 

variance (Fig. 7).  The tail-up and tail-down components (reflecting autocorrelation along the 487 

watercourse dimension) explained more residual variance (mean across flow regime: 35.3%) 488 

than the Euclidean spatial component (mean: 21.5%). 489 

 490 

 491 

 492 



 

4. Discussion 493 

 494 

In this study we developed and applied a framework to assess the relationship between river 495 

ecology and flow characteristics, while overcoming some of the challenges typically 496 

associated with flow-ecology research. By employing the HYPERSstreamHS hydrological 497 

model, we were able to reproduce natural streamflow time series at 100 ungauged biological 498 

sampling stations throughout the Adige River basin. An important validation of the model 499 

stems from the consistent patterns of flow-ecology relationships obtained from the observed 500 

and simulated streamflow. This is key when hydrological models are used to investigate 501 

ecological responses (Kiesel et al., 2020), as the uncertainty associated with modelled 502 

streamflow is a fundamental limitation hampering the study of flow-ecology relationship at 503 

the pan-European scale (Vigiak et al., 2018). We subsequently identified three distinct flow 504 

regime classes within which flow-ecology relationships were examined using spatially-505 

explicit geostatistical approaches. This allowed us to account for the natural variability of 506 

flow regimes, while also controlling for the spatial autocorrelation patterns of dendritic river 507 

networks. 508 

The three identified flow regimes represent typical hydrologic patterns of the  Alpine region. 509 

Low-order streams at higher elevation are fed primarily by glacial melt, snowmelt and 510 

associated groundwater flow; streams at intermediate elevations by snowmelt and rain, and 511 

those at lower elevation mirror rainfall timing. While realistically representing a gradient of 512 

conditions, the three regimes were distinct enough to form separate groups according to both 513 

mean annual flow series and flow metrics. As such, they showed distinct flow-ecology 514 

relationships, especially dependent on high and low streamflow conditions and interannual 515 

variability in discharge. 516 

The three flow regimes were also well-separated along a gradient of anthropogenic influence 517 

represented by water quality and riparian land-use. This further highlights how classifying 518 

regimes can help minimise the effect of confounding factors in flow-ecology research: as 519 

streams with different flow regimes often occupy separate sections of the catchment, 520 

systematic difference in elevation, anthropogenic land-use and underlying geology may 521 

confound the influence of streamflow characteristics, hindering the robust identification of 522 

flow-ecology relationships. 523 



 

Surprisingly, while the classification of flow regimes is a common endeavour in hydrologic 524 

research (e.g. Belmar et al., 2011; Di Prinzio et al. 2011; McManamay et al., 2012; Snelder & 525 

Booker, 2013), its applications in flow-ecology studies remains relatively rare.  526 

The few studies that have compared flow-ecology relations across classified flow regimes 527 

(e.g. Bruckerhoff et al., 2019; Mims & Olden, 2012), indeed showed that ecological 528 

responses can often diverge. The three streamflow typology analyzed here, in fact, are 529 

characterized by different levels of environmental harshness, which declines with decreasing 530 

glacial influence (Brighenti et al 2020). Had we combined all streams in the same analysis, 531 

we would have drawn different conclusions regarding the response of some biotic metrics, 532 

such as taxon richness and the proportion of grazers (cfr grey dashed line with individual fits 533 

in Fig. 6). Richness, for instance, appeared limited by different flow characteristics; it 534 

declined with increasing July flows in the nivo-glacial streams (representing the summer peak 535 

of snow- and glacial-melt), while in the pluvial regime, richness declined with increasing 536 

February flows (representing the winter low rainfall periods). Summer discharge is high in 537 

nivo-glacial streams, where increasing flows could cause higher drift rates and thus lower the 538 

observed benthic richness (e.g. Brittain & Eikeland, 1988, Naman e al., 2015). It is known 539 

that in glacial-fed streams at high elevation, invertebrate abundances can be greatly reduced 540 

in summer due to the increased environmental harshness (Robinson et al., 2004; Ilg et al., 541 

2001). Conversely, in temperate streams characterized by pluvial regimes, minimum densities 542 

often occur in winter (Brittain & Eikland, 1988), when higher-than-average flows could 543 

further decrease benthic richness. In the nivo-pluvial and pluvial streams, in fact,  the 544 

magnitude of February flows appeared to limit the biotic metrics mainly related to 545 

community diversity (i.e. richness, Star_ICMi, Fdis).  On the other hand, the number of low 546 

flow pulses displayed mainly positive association with both diversity and trait based metrics 547 

across flow regimes. Low flow pulses can increase local diversity by preventing excessive 548 

drift while also favoring the deposition of fine organic matter, as suggested by the positive 549 

response of gatherers. Together with the positive association of both grazers and gatherers 550 

with the annual coefficient of variation in nivo-glacial streams, these results indicate how 551 

natural flow variation is fundamental for sustaining aquatic biodiversity. 552 

 553 

The SSN models revealed how the STAR_ICMi index mostly responded to streams' physico-554 

chemical parameters and riparian land-use. In agreement with recent investigations (Larsen et 555 

al., 2019; Quadroni et al., 2017), these results provide additional evidence of the limited 556 

sensitivity of WFD biological quality indicators, such as the Star_ICMi index, to stream 557 



 

hydrologic conditions. As most present bioindicators (Friberg, 2014), the Star_ICMi is 558 

designed to reflect organic pollution and habitat degradation, and should be used for 559 

hydrologic assessment or guide e-flows with great caution. Indeed, one of the aims of the 560 

present study was to evaluate alternative metrics that could serve as flow-sensitive indicators 561 

to be included in assessment schemes like the one of the European WFD. To this end, species 562 

life-history traits can provide the mechanistic link between river biota and flow conditions 563 

that could be valid across large spatial scales (Heino et al., 2013; Mims & Olden, 2012). In 564 

the Adige River basin, the relative proportion of different feeding habits and body size 565 

structure appeared relatively sensitive to hydrologic conditions across flow regimes and thus 566 

deserve further investigation. The sensitivity of grazers to flow conditions, for example, can 567 

derive from their reliance on attached algae, which can be scoured during high flows or 568 

buried by fines during low flows  (Buchanan et al., 2013; Doretto et al., 2020; Kennen et al., 569 

2010). Nonetheless, our results suggest that their response to flow conditions can differ 570 

substantially across flow regimes. The response of body size structure to the magnitude of 571 

high and low flows may reflect the sensitivity of different developmental stages to shear 572 

stress, especially for insect larvae (e.g. Merigoux & Doledec, 2004), but detailed information 573 

on body size was not available for many taxa, and this response requires further examination. 574 

 575 

Overall the SSN modelling revealed rather idiosyncratic responses of the biotic metrics to 576 

flow conditions. On the other hand, the effect of water quality and local land-use appeared 577 

generally consistent with a positive and negative effect of LIMeco and agricultural land-use, 578 

respectively. This has both practical and fundamental implications. From an applied 579 

perspective, it implies that ecological responses to flow alterations can be contingent on local 580 

eco-hydrologic conditions, a caveat which must be considered when setting regional flow 581 

standards. In the Adige Basin, for instance, sustaining invertebrate richness, or specific 582 

feeding groups, would require a distinct management of high and low flows among the 583 

identified flow regimes.  584 

On a more fundamental level, it indicates that the often observed nonlinear flow-ecology 585 

relationships (Rosenfeld, 2017) can reflect the distinct response of multiple flow regimes in 586 

the basin. More generally, the “shape” of flow-ecology relationships is likely to be scale-587 

dependent and determined by the range of hydrologic conditions in the region and the size of 588 

the species pool included. 589 

 590 



 

The three identified flow regimes formed geographically separated clusters along a north-591 

south axis, reflecting the orography of the basin. While this further validated our flow regime 592 

classification, it also introduced possible autocorrelation issues. The SSN models revealed 593 

that most variation in macroinvertebrate metrics was in fact associated with spatial patterns. 594 

This is typical for communities dwelling in complex habitats, such as river networks, whose 595 

geometry and flow directionality influence environmental and eco-evolutionary dynamics 596 

(Frieden et al., 2014; Isaak et al., 2014; Larsen et al., 2019). For some biotic metrics, the 597 

spatial autocorrelation was by far the most important component, explaining more than 80% 598 

of the  variation (e.g. Shannon diversity and gatherers in both nivo-glacial and nivo-pluvial 599 

streams). Not surprisingly, given the dendritic configuration of river networks and the 600 

directionality of water flow, autocorrelation along the watercourse dimension (i.e. tail-up and 601 

tail-down) appeared stronger than over the isometric Euclidean dimension. However, the 602 

influence of autocorrelation differed across regimes, being particularly large in the nivo-603 

pluvial streams, where the tail-up flow-connected component accounted for more than 40% 604 

of the residual variance. This could be due to the distribution of multiple sampling sites along 605 

the same river segments, as occurred in the eastern section of the basin. However, the 606 

Euclidean component, which reflects large scale variability across the basin, also accounted 607 

for more than 35% of the variance in nivo-pluvial streams. This may be due to the fact that 608 

streams with nivo-pluvial regimes were relatively more widely distributed throughout the 609 

basin.   610 

These findings are in line with a recent study from the US where SSN models were used to 611 

examine variation in fish community traits (Bruckerhoff et al., 2018). However, comparison 612 

across studies is challenging as the effects of spatial autocorrelation in a given model depend 613 

on the response variable and the covariates included, as well as on the spatial relationship of 614 

samples. Therefore, spatial effects may vary substantially across regions, but they are likely 615 

relevant for flow-ecology studies when these are paralleled with flow regime classification in 616 

which sites might be spatially structured (e.g. Bruckerhoff et al., 2019; Snelder & Booker, 617 

2013). Ignoring such spatial dependency could lead to increased Type I error rates (“false 618 

positive”; Legendre & Legendre, 2012), with important implications for the success of e-619 

flows design. 620 

An additional issue to consider is that, although we selected streams with no evident 621 

alteration of flow regime, the influence of other factors on stream invertebrates was evident. 622 

The negative effect of agricultural land-use on multiple biotic metrics was evident (e.g. 623 

(richness, Star_ICMi), especially in the nivo-glacial and nivo-pluvial streams, while water 624 



 

quality had the strongest (positive) influence on the lower gradient pluvial streams (e.g. 625 

increasing diversity, shredders, predators). These results are not surprising and in line with a 626 

recent study that included a larger sample of locations throughout the basin (Larsen et al., 627 

2019). However, this highlights how defining a baseline flow-ecology relationship under 628 

natural conditions might become increasingly difficult as river catchments are modified 629 

globally (Tickner et al., 2020). In addition, alteration of flow regimes is often accompanied 630 

by changes in water temperature and in-stream habitat structure (e.g. Zolezzi et al., 2011). 631 

Therefore, non-hydrologic factors must be incorporated in e-flow frameworks to identify 632 

circumstances that might limit the desired outcome of flow management (Poff, 2018).  633 

 634 

At the management level of e-flows setting, the present work represents the first data-driven 635 

classification of natural flow regimes in Italy that is paralleled by an ecological assessment. 636 

Previous catchment regionalisation schemes were produced at the national scale (Di Prinzio 637 

et al., 2011), but they focused primarily on estimating streamflow at ungauged sites. Results 638 

demonstrated that flow-ecology relationships can substantially vary among flow regimes, 639 

highlighting the importance of developing e-flows tailored to specific eco-hydrologic 640 

contexts. Moreover, although analyses were conducted within a single river basin, and thus 641 

minimized the influence of larger-scale confounding factors, spatial patterns accounted for 642 

most of the variance in the data. The importance of using spatially-explicit approaches to 643 

model empirical data in river networks is increasingly recognised (Frieden et al., 2014; Isaak 644 

et al., 2017; Larsen et al., 2019), and our results further support their application in flow-645 

ecology research (Bruckerhoff et al., 2019).  646 

In conclusion, we addressed three main challenges of flow-ecology research derived from: 647 

i) the limited availability of streamflow time series at sampling sites, ii) the natural variability 648 

of flow regimes and iii) the spatial autocorrelation unique to dendritic river networks. In 649 

doing so we also completed the first two steps of the ELOHA framework (Poff et al., 2010), 650 

namely developing the hydrological foundation and classifying natural flow regimes across 651 

the catchment; to our best knowledge, it is the first time that this is applied to a very 652 

heterogeneous Alpine river catchment.   653 

Future developments should address the challenge of incorporating hydrologic variability 654 

when setting environmental flows, and of assessing the ecological effects of specific flow 655 

events or sequence of events without relying on stationary long-term flow records as baseline 656 

reference (Horne et al., 2019; Poff, 2018). The framework presented in this paper could thus 657 

be extended to include future climate scenarios to feed the hydrologic model. Simulated 658 



 

projections of streamflow could then be used to estimate future ecological responses to flow 659 

alteration.  660 
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Tables 964 

 965 

 966 

Table 1- List of the  IHA flow metrics computed from the 23 years simulated streamflow 967 

time series. Metrics in bold were selected for the examination of flow-ecology relationship in 968 

the SSN models. 969 

 970 

 971 

 972 

 973 

 974 

 975 

 976 

 977 

Flow component IHA flow metric name Description

Mean flow for January, …, December

1, 3, 7, 30, 90 Day Min Minimum flow, 1, 3, 7, 30, 90 day mean

1, 3, 7, 30, 90 Day Max Maximum flow, 1, 3, 7, 30, 90 day mean

Base index 7 days minimum / mean flow

min Julian Mean Julian data of annual 1-day maximum

max Julian Mean Julian data of annual 1-day minimum

Low pulse number Number of flow events below 25th percentile

High pulse number Number of flow events above 75th percentile

Low pulse length Number of days below 25th percentile

High pulse length Number of days above 75th percentile

Rise rate

Fall rate

Reversals

y.CV Average annual coefficient of variation (SD/mean)

m.CV Average monthly coefficient of variation (SD/mean)

1 - Magnitude of monthly   flow 
conditions

 (12 parameters)

January, February, March, April, May 
June, July, August, September, 
October, November, December

2 - Magnitude and duration of 
extreme conditions
 (11 parameters)

3 - Timing of extreme flow 
conditions

 (2 parameters)

4 - Frequency and duration of 
high and low pulses

 (4 parameters)

5 – Rate of change and 
variation

 (5 parameters)

Median of all positive differences between 
consecutive values

Median of all negative differences between 
consecutive values

Number of times flow period switches from rising to 
falling and vice-versa



 

 978 

 979 

Figures captions 980 

 981 

 982 

Figure 1 - Map of the Adige River network (northeast Italy) showing the locations of the 100 983 

biological monitoring sites for which 25 years of natural streamflow time series were 984 

simulated. Colours define the distribution of the three identified flow regime classes (see 985 

Sect. 2.4).  Location of the gauging stations providing observed streamflow series are also 986 

shown, including those used for calibration (c) and validation (d) of the hydrological model.  987 

 988 

 989 

Figure 2 - Dendrogram of the study reaches based on flexible beta-clustering of the first two 990 

weighted Principal Components (explaining 92% of variation) of the MAD-normalised 991 

monthly hydrography (expressed as proportion of mean annual discharge). Lower panels 992 

show the mean across sites (± SD) of MAD-normalised hydrographs for each identified 993 

streamflow regime. 994 

 995 

 996 

Figure 3- Boxplot of selected environmental descriptors for each identified streamflow 997 

regime. The following  boxplot representation is adopted: horizontal line for median; box for 998 

the inter-quartile range; whiskers for 1.5 times the inter-quartile range; dots for outliers. The 999 

LIMeco index and the percentage of local agricultural land-use (Agr.landuse) were included 1000 

as covariates in the SSN models. 1001 

 1002 

 1003 

Figure 4 - Biplot of the PCA based on 34 IHA flow metrics (direction and loading indicated 1004 

by the blue arrows) derived from the 23 years streamflow series for the 100 investigated 1005 

study sites. The sites are grouped according to the streamflow regime previously determined 1006 

by the flexible beta-clustering approach.  1007 

 1008 

 1009 



 

 1010 

 1011 

Figure 5 – Heatmap showing the standardized SSN coefficients (β) of the covariates included 1012 

in the most supported models for each biotic metric in the three flow regimes, according to 1013 

the RMSPE. 'NS' indicates a non-significant predictor (p > 0.05).  1014 

 1015 

  1016 

Figure 6 – Scatterplot of selected flow-ecology relationships within each flow regime. 1017 

Continuous and dashed fit lines respectively indicate significant and non-significant 1018 

relationships according to the SSN models. Grey dashed line indicates the overall relationship 1019 

observed combining all three flow regimes. 1020 

 1021 

 1022 

Figure 7 – Proportion of variance of each biotic metric explained by the covariates (i.e. flow 1023 

metrics, water quality and local land-use) and by the spatial components modelled with tail-1024 

up, tail-down and Euclidean autocovariance functions across the three flow regimes. The 1025 

nugget represents the residual variance. 1026 

 1027 

 1028 

 1029 

 1030 

 1031 

 1032 

 1033 
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Figure 5.
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Figure 6.
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Figure 7.
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