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Abstract 13 

Identifying the main environmental drivers of SARS-CoV-2 transmissibility in the population is crucial 14 

for understanding current and potential future outbursts of COVID-19 and other infectious diseases. 15 

To address this problem, we concentrate on basic reproduction number R0, which is not sensitive to 16 

testing coverage and represents transmissibility in an absence of social distancing and in a completely 17 

susceptible population. While many variables may potentially influence R0, a high correlation between 18 

these variables may obscure the result interpretation. Consequently, we combine Principal Component 19 

Analysis with feature selection methods from several regression-based approaches to identify the main 20 

demographic and meteorological drivers behind R0. We robustly obtain that country’s 21 

wealth/development (GDP per capita or Human Development Index) is by far the most important R0 22 

predictor, probably being a good proxy for the overall contact frequency in a population. This main 23 

effect is modulated by built-up area per capita (crowdedness in indoor space), onset of infection (likely 24 

related to increased awareness of infection risks), net migration, unhealthy living lifestyle/conditions 25 

including pollution, seasonality, and possibly BCG vaccination prevalence. Also, we show that several 26 

variables that significantly correlate with transmissibility do not directly influence R0 or affect it 27 

differently than suggested by naïve analysis.  28 
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1 Introduction 29 

Despite the unprecedented worldwide campaign of mass immunization, due to the relatively slow 30 

vaccine rollout and to the appearance of new, more contagious (Tegally et al., 2020), and maybe even 31 

more deadly SARS-CoV-2 strains (Mallapaty, 2021), COVID-19 still takes its toll on human lives, 32 

stifles the world economy, and forces the majority of countries to keep unpopular lockdowns. In the 33 

absence of a prompt solution to the first pandemic of the century, the goal to identify the main 34 

environmental and demographic parameters that influence the dynamics of infection transmission 35 

remains as important as ever. 36 

We recently published a comprehensive study of the correlation of 42 different demographic and 37 

weather parameters with COVID-19 basic reproduction number R0 across 118 world countries (Salom 38 

et al., 2021). R0 is a well-established epidemiological measure of virus transmissibility, which has a 39 

major advantage of being independent on the testing policy/capacity, and on the intervention measures 40 

that can be highly variable (and almost impossible to consistently control) between different countries 41 

(Salom et al., 2021). In (Salom et al., 2021), we selected all the countries that exhibited regular 42 

exponential growth in the case numbers before the introduction of intervention measures (Djordjevic 43 

et al., 2021), from which their R0 values can be reliably extracted. Tracking a wide range of countries 44 

allows achieving a maximal variability in the dataset, i.e., a maximal possible range in the values of 45 

analyzed variables, as another advantage of this study. This generated dataset will be used as a starting 46 

point in this work. 47 

While (Salom et al., 2021) covered a broad scope of variables and countries, it focused on establishing 48 

pairwise correlations between R0 and each of the studied factors, ignoring the fact that many of these 49 

variables are highly mutually correlated. This is most obvious in the case of the weather parameters 50 

such as e.g. temperature and UV radiation (which both reflect the local climate in a similar way and 51 

follow comparable seasonal trends), but also in the case of many demographic parameters, e.g. the 52 

strong positive correlation between the Human Development Index (HDI) and cholesterol levels. Based 53 

on pairwise correlations alone, it is thus hard to estimate which of these variables might be truly 54 

influencing the spread of the disease, to what extent, and in which direction. To achieve this, the 55 

number of variables necessary to explain the virus transmissibility needs to be reduced to only a few 56 

without losing predictiveness. However, this is not the only challenge, because of variable redundancy. 57 

In particular, one may select different combinations of variables accounting together for a similar 58 

proportion of variance in the virus transmissibility, which seems to be a dead-end (Notari and Torrieri, 59 

2020). There is consequently a challenge to narrow down the possibilities and illuminate important 60 

contributions of the seemingly small differences between highly correlated variables. Noticeably, while 61 

numerous studies examined the correlations of several selected (Lin et al., 2020; Ran et al., 2020; Xie 62 

et al., 2020) or many different (Li et al., 2020; Hassan et al., 2021; Salom et al., 2021) 63 

sociodemographic and meteorological factors with the magnitude of the COVID-19 epidemic, only 64 

few studies tried to select a handful of key factors whose combination can explain a large portion of 65 

the variance between regions (Allel et al., 2020; Coccia, 2020; Gupta and Gharehgozli, 2020; Notari 66 

and Torrieri, 2020). Even a smaller number of studies included data from multiple countries (Allel et 67 

al., 2020; Notari and Torrieri, 2020). 68 

The main idea of this study is to develop a novel approach to robustly identify the most important 69 

predictors of R0. The development of such an approach will i) provide a straightforward solution to the 70 

known problem of selecting important among the highly correlated variables, ii) enable a better 71 

understanding of which environmental and demographic variables may dominantly and/or 72 
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independently influence the progression of the COVID-19 epidemics, and what is the direction of this 73 

influence. To achieve these goals, the study is organized as follows: 74 

1. The variables are first naturally split into two groups. The first group comprises 6 meteorological 75 

parameters, sampled and averaged (for each country) during the initial stage of the local epidemic 76 

outbreak: air temperature (T), precipitation (PC), specific humidity (H), ultra-violet radiation index 77 

(UV), air pressure (P), and wind speed (WS). Eighteen (broadly-speaking) demographic parameters 78 

form the second group: human development index (HDI), percentage of the urban population (UP), 79 

gross domestic product per capita (GDP), amount of the built-up area per person (BUAPC), 80 

percentage of refugees (RE), net migration (i.e., the number of immigrants minus emigrants, I-E), 81 

infant mortality (IM), median age (MA), long-term average of PM2.5 pollution (PM), prevalence 82 

and severity of COVID-19 relevant chronic diseases in the population (CD), average blood 83 

cholesterol level (CH), the prevalence of raised blood pressure (RBP), the prevalence of obesity 84 

(OB), the prevalence of insufficient physical activity among adults (IN), BCG immunization 85 

coverage (BCG), alcohol consumption per capita (ALC), smoking prevalence (SM), and the delay 86 

of the epidemic onset (ON). 87 

2. Due to strong mutual correlations between parameters within each group (as well as across the 88 

groups, but at a lower extent), the principal component analysis (PCA) will be performed on each 89 

of the groups (Jolliffe, 2002). This step will allow us to notably reduce the dimensionality of the 90 

problem, i.e., proceed to work with a smaller number of (mostly) uncorrelated variables. Such 91 

dimensionality reduction will significantly simplify the further analysis and improve the reliability 92 

of the results.  93 

3. The linear regression analysis will next be performed in four independent ways, ranging from our 94 

custom-developed to more formal regression-based approaches, to select important variables. In 95 

our custom-developed approach, multiple linear regressions are applied, first separately to 96 

demographic and meteorological principal components (PCs), to narrow down the number of 97 

relevant PCs within each of the two groups, before doing overall linear regression with the 98 

remaining PCs to assess their importance in explaining R0. A major advantage of such analysis is 99 

in an intuitive understanding of the data structure and its relation to R0. This analysis is next 100 

independently redone by more formal feature selection methods, commonly employed in 101 

bioinformatics and systems biology: Stepwise regression and regressions utilizing both 102 

regularization and variable selection - LASSO (Least Absolute Selection and Shrinkage Operator) 103 

and Elastic net (Tibshirani, 1996; Zou and Hastie, 2005; Hastie et al., 2009). Such comprehensive 104 

analysis will ensure the consistency and robustness of the reported results.  105 

4. Finally, an intuitive interpretation of the obtained results will be presented. This will permit a much 106 

more specific understanding of COVID-19 transmissibility, by focusing on the main driving factors 107 

behind the disease spread in the population. 108 

2 Methods 109 

2.1 Data collection 110 

Data for demographic and meteorological parameters were assembled as described in (Salom et al., 111 

2021). Briefly, the data correspond to six meteorological and eighteen demographic variables outlined 112 

above. The differences between this dataset and the one used in (Salom et al., 2021) is the following: 113 

IMS (Social security and health insurance coverage), Prevalence of ABO and Rhesus blood groups, 114 

and Ambient levels of different pollutants (NO2, SO2, CO, PM2.5, PM10) are not used in this analysis, 115 

as they contain too many missing values. Instead of the pollutant levels measured from air pollution 116 

monitoring stations during the epidemic’s exponential growth (available for only ~40 countries) we 117 
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use the yearly average PM2.5 pollutant levels in 2017 (World Bank, 2020b). Also, we consider GDP 118 

per capita (GDPpc), taken from (World Bank, 2020a) as a more direct (average) indicator of a country's 119 

economic wealth/productivity.  120 

Basic reproduction number (R0), i.e., a measure of SARS-CoV-2 transmissibility in a fully susceptible 121 

population and in the absence of intervention measures (social distancing, quarantine), was also taken 122 

from (Salom et al., 2021), where it was inferred from non-linear dynamics modeling. Overall, 123 

demographic data, meteorological data, and basic reproductive numbers were assembled for 118 124 

different countries from which we could reliably infer R0. Missing values in the demographic data 125 

(which were sparse for the used variables) were substituted by median values of the respective 126 

variables; there are no missing values in the meteorological data. 127 

2.2 Data preparation 128 

Several variables, particularly among demographic data, show a significant deviation from normality 129 

when visually inspected. Such deviations generate large outliers and would significantly impact the 130 

necessary normality of the model error residuals. We consequently transform the data where necessary, 131 

to make the resulting distributions closer to normal, by using standard transformations that reduce the 132 

right and left skewness. The strength of the applied transformations (e.g., square root, cubic root, or 133 

log) is chosen so that skewness of the transformed distribution is as close to zero as possible. The table 134 

with all applied transformations is provided below: 135 

Variable Transformation 

BUAPC (𝑥 − min(𝑥))1/3 
UP 𝑥2 
IM log(𝑥) 

GDPpc log(𝑥) 

HDI (max(𝑥) − 𝑥)1/2 
I-E (max(𝑥) − 𝑥)1/2 
RE log(𝑥) 

CH (max(𝑥) − 𝑥)1/2 
OB (max(𝑥) − 𝑥)1/2 
CD 𝑥1/3 
IN log(max(𝑥) − 𝑥) 

BCG (max(𝑥) − 𝑥)1/2 
ON log(𝑥) 

PL log(𝑥) 

WS  log(𝑥) 

P 𝑥1/3 
R0 log(𝑥) 

After transformations, the remaining (now sparse) outliers were removed by substituting them with the 136 

median of each variable; the outliers were identified as having more than three scaled median absolute 137 

deviation (MAD) from the (transformed) variable median. Each transformed variable whose direction 138 

was changed by the transformation was taken with a minus sign, so that the original and the transformed 139 

variable are oriented in the same direction, allowing for easier result interpretation.  140 

 141 
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2.3 Principal components analysis 142 

The dimensionality of the transformed data was reduced and the data decorrelated through PCA 143 

(Jolliffe, 2002). PCA was done separately for demographic and meteorological variables to allow for 144 

a more straightforward interpretation of the obtained PCs. Since different variables are expressed in 145 

different units and correspond to diverse scales, each variable in the dataset was standardized (the mean 146 

subtracted and divided by the standard deviation) before PCA. For both datasets, we retained as many 147 

PCs (starting from the most dominant one) as needed to (cumulatively) explain >85% of the data 148 

variance. It was inspected that PCs reasonably follow a normal distribution (as expected, based on the 149 

transformation of the original variables). Few remaining outliers for PCs were then substituted by 150 

medians. For easier interpretation of PCs and their contribution to R0, each PC was oriented in the same 151 

direction as the variable with which it has a maximal magnitude of Pearson correlation (i.e., the sign 152 

of the PC was flipped when needed, to render the positive sign of this correlation).  153 

2.4 Custom regression analysis 154 

Multiple linear regression (PC regression) was done first with only demographic PCs (Hastie et al., 155 

2009). Only linear terms were included in the regression to allow straightforward interpretation, i.e., 156 

selection of PCs that significantly affect R0. Significant PCs were selected as those appearing in the 157 

regression with P<0.05, where the significance in the regression was estimated in the standard way 158 

(through F-statistics) (Alexopoulos, 2010). The same, regression was then repeated with only 159 

meteorological PCs, and those significant in explaining R0 were retained. Finally, multiple linear 160 

regression was performed with all retained demographic and meteorological PCs. The significant PCs 161 

from this last step were recognized as PCs relevant for R0 explanation. Before regression, each PC was 162 

standardized so that coefficients obtained in the regression provided a measure of the variable 163 

importance in explaining R0. For both the custom analysis and stepwise regression, OLS (Ordinary 164 

Least Squares) were used as the regression metrics.  165 

2.5 Stepwise regression  166 

Stepwise regression was used to select PCs that significantly affect R0. In Stepwise regression, as well 167 

as in LASSO and Elastic net described below, all PCs (demographic and meteorological) were included 168 

in the regression. Briefly, starting from a constant model, at each step a term is added to the model if 169 

its significance (calculated with F-statistics) meets the condition P<0.05 (Pope and Webster, 1972). 170 

Only linear terms are added to the model (i.e., interaction and quadratic terms are not considered) to 171 

allow for straightforward interpretation which PCs significantly affect R0. All PCs are standardized 172 

before regression so that contributions of the terms (PCs) in the model can be assessed by the magnitude 173 

of the regression coefficient.  174 

2.6 LASSO regression  175 

L1 regularization was implemented through LASSO (Least Absolute Shrinkage and Selection 176 

Operator) (Tibshirani, 1996; Hastie et al., 2009). As needed with the LASSO regularization, all PCs 177 

were standardized before regression, which also allowed direct comparison of the coefficients obtained 178 

by the regression. The value 𝜆 in LASSO was treated as the hyperparameter, i.e., 𝜆min value was 179 

determined through cross-validation, so that MSE (Mean Squared Error) on the testing set was 180 

minimal. A total of 100 𝜆 values were put on the grid, corresponding to the geometric sequence, where 181 

the largest value produces all zero terms. Note that larger 𝜆 corresponds to sparser model, i.e., a smaller 182 

number of non-zero components in the regression, while the small 𝜆 limit corresponds to OLS 183 

regression. To obtain the maximally sparse model, 𝜆1SE = 𝜆min + 1SE, where 1SE corresponds to the 184 
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standard error of MSE obtained by cross-validation, was used. 1000 cross-validations were performed, 185 

where in each repetition 20% of the data were randomly selected for the testing set, with the remainder 186 

used for training. All non-zero terms and the corresponding coefficients obtained through LASSO were 187 

reported.  188 

2.7 Elastic net regression 189 

A combination of L1 and L2 regularization was implemented through Elastic net regression (Zou and 190 

Hastie, 2005). Analogously to our LASSO analysis, i.e., as needed due to regularization, all PCs were 191 

standardized. In the regression, both 𝛼 and 𝜆 were treated as hyperparameters, i.e., their optimal values 192 

were found by cross-validation. Cross-validation was repeated 1000 times, wherein each repetition 193 

testing and training sets were formed in the same way as for LASSO. 𝛼 and 𝜆 values were put on a grid 194 

consisting of 100 𝛼 and 100 𝜆 values. 𝛼 values on the grid were chosen uniformly in the range [0,1] - 195 

𝛼 approaching zero corresponds to Ridge (L2) regression, and 1 corresponds to LASSO regression. 196 

For each 𝛼 value, 𝜆 values were chosen as described for the LASSO regression. For each repetition of 197 

cross-validation, 𝛼 and 𝜆 combination which leads to the minimal MSE was chosen. 𝛼 and 𝜆 values in 198 

(𝛼, 𝜆) pairs from each cross-validation run were then standardized so that 𝛼 and 𝜆 values are on the 199 

same scale and centered to the origin of the 𝛼 − 𝜆 plane. (𝛼min, 𝜆min) was then chosen as the (𝛼, 𝜆) 200 

point closest to the origin. With this (𝛼min, 𝜆min) value the model was then retrained on the entire 201 

dataset. Similarly to LASSO, all non-zero terms and the corresponding regression coefficients were 202 

reported. 203 

3 Results 204 

3.1 Dimensionality reduction of the demographic dataset 205 

PCA was first applied to the dataset consisting of 18 demographic and health factors for 118 countries. 206 

Cumulative data variance that is explained jointly by the first n PCs is shown in Figure 1A (with n 207 

represented on the x-axis). In particular, Figure 1A shows the first PC alone already accounts for 45% 208 

of the variance, while the first 9 PCs (PC1 – PC9), which we retain in further analysis, explain more 209 

than 85% (precisely, 89%). 210 

To obtain a basic interpretation of these nine PCs, we related each PC with the original (transformed) 211 

variable it is most correlated with. The corresponding associations – with the values of correlations 212 

coefficients presented on the y-axis – are shown in Figure 1B (however, one should have in mind that 213 

some PCs are highly correlated with more than one original variable, as we discuss in more detail 214 

below). Among all principal components, the PC1 and the PC5 have the highest correlation coefficients 215 

(close to 1) with individual demographic factors – the HDI and the BCG immunization coverage, 216 

respectively. Moderately high correlation coefficients (~0.75) characterize the relations between the 217 

PC2 and the prevalence of smokers, and the PC3 and the percentage of refugees, while the coefficient 218 

values of ~0.5 were obtained for the correlations of the PC4, the PC6, the PC7, the PC8 and the PC9 219 

with, respectively, the prevalence of obesity, the prevalence of insufficient physical activity, the 220 

amount of the built-up area per person, the percentage of refugees, and the epidemic onset. 221 

In particular, the first PC, accounting alone for the largest portion of the variance in the demographic 222 

data, is almost perfectly correlated with the Human Development Index (Fig. 1C). On the other hand, 223 

the HDI variable itself strongly correlates with several other demographic variables (Fig. 1D), most 224 

prominently with per capita GDP, infant mortality, and cholesterol levels. As elaborated in the 225 

Discussion section, such extremely high correlations will eventually preclude us from differentiating 226 

between the separate effects of each of these variables on R0. On the other hand, the prevalence of 227 
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obesity, the built-up area per person, and the epidemic onset are significantly correlated with the HDI 228 

(Fig. 1D), and thereby the PC1 (Fig. 1C), but they are markedly featured also in separate principal 229 

components (Fig. 1B), namely – the PCs 4, 7 and 9. This will help us to infer whether their specific, 230 

additional contributions to the variance in the data (apart from that along the PC1) impact the virus 231 

transmissibility. 232 

 233 

Figure 1. PCA for demographic data. A) Cumulative explained variance. B) Variables best correlated with demographic 234 
PCs. The label above and below each bar present, respectively, the demographic PC and the variable with which this PC 235 
has the highest correlation. C) Scatter plot PC1 vs HDI. D) Correlations of selected demographic variables with HDI. 236 

3.2 Dimensionality reduction of the meteorological dataset 237 

The dimensionality of the dataset consisting of 6 meteorological factors for 118 countries was reduced 238 

similarly as for the demographic dataset. PCA generated 6 uncorrelated, orthogonal principal 239 

components. Thereby, the first PC alone explains 62% of the variance, while the first three PCs (PC1-240 

PC3) capture 95%, which is significantly above the targeted 85% of the total variance (Fig. 2A). 241 

Pairwise correlations showed that the retained three PCs have the highest correlations with the 242 

temperature, the wind speed, and the air pressure, respectively (Fig. 2B), where the correlation of PC1 243 

with the temperature is close to 1 (Figs. 2B and 2C). There are also notable correlations of the 244 

temperature with humidity, the levels of UV radiation, and precipitation (Fig. 2D). PC1, therefore, 245 

presents seasonality, i.e. a set of mutually correlated meteorological variables which can be related to 246 

yearly weather changes. Consequently, PCA effectively separated the impacts of seasonality (PC1), 247 

the wind speed (through the PC2), and the air pressure (through the PC3). The variables determining 248 

the PC1 are also correlated with the HDI. These inter-dataset correlations are not resolved at this level 249 
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by our PCA and represent the trade-off that allows interpreting the PCs more easily within each of the 250 

two smaller, thematic groups of factors. 251 

 252 

Figure 2. PCA for meteorological data. A) Cumulative explained variance. B) Variables best correlated with meteorological 253 
PCs. C) Scatter plot meteo PC1 vs temperature. D) Correlation of meteorological variables with temperature. 254 

3.3 Linear regressions 255 

After PCA, we applied the linear regression analysis using four different methods, as explained in 256 

Methods. The first, “custom” method included the additional step of “preselecting”, i.e. further 257 

narrowing down the number of PCs that will enter the final regression analysis. The multiple linear 258 

regression, applied on the group of 9 demographic principal components, selected 1st, 4th, 7th and 9th 259 

component as the most relevant predictors of R0 (the remaining 5 components appeared in the linear 260 

regression with p values above 0.05 threshold, and were consequently excluded from the further 261 

analysis). Analogously, the “preselection” of meteorological principal components singled out the 1st 262 

component as the only statistically relevant predictor of R0 from this group. The multiple linear 263 

regression was then applied on these 5 selected PCs (4 demographical and 1 meteorological) and 264 

yielded a regression model with the corresponding linear coefficients represented in Figure 3A. Meteo 265 

PC1 component does not appear in the results of the custom method, due to the lack of statistical 266 

significance (p>0.305) in the final regression, so that according to our custom regression methodology, 267 

weather parameters do not significantly influence R0. R0 in this model is therefore determined by a 268 
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combination of demographic PC1, PC4, PC7, and PC9, where coefficients multiplying PC1 and PC4 269 

are positive, while for PC7 and PC9 are negative. As can be inferred from the values represented in 270 

Fig 3A, the demographic PC1 has the most dominant influence on R0 – a robustly obtained result 271 

throughout all 4 methods (see below). 272 

 273 

Figure 3. Results of: A) multiple linear regression (“custom”) method, B) Stepwise regression, C) LASSO regression and 274 
D) Elastic net regression. Bar charts represent the values of regression coefficients for each of the PCs selected by the 275 
method. 276 

We have already related each of these four PCs with the dominantly correlated variable (Figure 1B), 277 

but a more detailed interpretation of the results is obtained if all significant correlations (not just the 278 

dominant one) are taken into account. In addition to the very high correlation with HDI, demographic 279 

PC1 is also highly positively correlated with GDP, cholesterol levels, median age, and percentage of 280 

the urban population, while it is highly negatively correlated with infant mortality and the prevalence 281 

of chronic diseases (Figure 4A). Such strong correlations with HDI, GDP, IM, MA, and UP show that 282 

this component indeed expresses an overall, both social and financial, prosperity of the country (which 283 

seemingly also goes hand in hand with high average cholesterol levels and low prevalence of COVID-284 

19 relevant chronic diseases). Similarly, by considering the correlations of demo PC4 with all 285 
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demographic variables, we see that this component is significantly positively correlated not only with 286 

obesity but also with smoking, physical inactivity, and air pollution (Figure 4B) – in other words, with 287 

major indicators of an unhealthy lifestyle and living conditions. Apart from its correlation with the 288 

BUAPC parameter, the component demo PC7 is also significantly positively correlated with net 289 

migration (Figure 4C). In the case of the demo PC9 component, its only significant correlation is with 290 

the onset variable. Results of the custom method can therefore be summarized as follows: the country's 291 

prosperity, as well as unhealthy living conditions and lifestyle, tend to increase the value of R0, while 292 

the larger built-up area per person and the later epidemic outbreak tend to slow the spread of the disease. 293 

Also, the results seem to indicate – via demo PC7 component – a surprising diminishing effect of the 294 

net migration on the rate of epidemic progress (though the sign of this variable may not be easy to 295 

interpret, as the net migration is a difference of two quantities). 296 

 297 

Figure 4: Pearson correlation coefficients between principal components and demographic variables for A) demo PC1, B) 298 
demo PC4, and C) demo PC7.   299 

Equivalently to Figure 3A, Figures 3B, 3C, and 3D represent the results of, respectively, Stepwise, 300 

LASSO, and Elastic net regression. Results (and the corresponding graph) of the Stepwise method 301 

almost coincide with the results of our custom method – in spite that in the Stepwise regression (as 302 

well as in LASSO and Elastic net methods) there is no intermediate “preselection” step.  303 
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LASSO results, shown in Figure 3C, find two additional PCs as relevant: demo PC5 and meteo PC1 304 

(in addition to demo PC1, demo PC4, demo PC7, and demo PC9). The component demo PC5, 305 

appearing in LASSO results with a small negative coefficient, is significantly correlated only with the 306 

BCG variable, hinting at possible beneficial effects of BCG vaccination. Meteorological principal 307 

component meteo PC1 reflects seasonality (see above). Thus, overall, in addition to supporting the 308 

conclusions of the custom and stepwise methods, the LASSO method also implicates a significance of 309 

seasonality changes, and to some extent BCG vaccination, in reducing the rate of SARS-CoV2 spread. 310 

The results of the Elastic net method, shown in Figure 3D, are again a bit more restrictive. While further 311 

bolstering our confidence in the importance of demo PC1, demo PC7, and demo PC9, these results also 312 

reinforce that the seasonal weather variables influence the COVID-19 epidemic (in agreement with the 313 

LASSO method) but, for the first time, we do not find an indication of the relevance of the unhealthy 314 

lifestyle and living conditions – as revealed by the absence of demo PC4 component in Figure 3D. 315 

Finally, as much as the PCs appearing in Figure 3 are important, the absence of the remaining PCs in 316 

the results can be of comparative significance for some of our conclusions. For example, we note that 317 

PCs highly correlated with the urban population, alcohol consumption, and chronic diseases do not 318 

show up as relevant in any of the methods used. While it is true that these variables are moderately 319 

correlated with demo PC1, absence in the results of additional PCs tied with these variables supports 320 

the view that these variables are not directly influencing R0 value, but only via indirect relation to the 321 

country’s prosperity.  322 

4 Discussion 323 

Our goal was to identify the most predictive factors influencing the risk of the SARS-CoV-2 virus 324 

spreading in a population in the absence of any epidemic mitigation measures. Since many potentially 325 

relevant factors strongly correlate with each other, we divided them into two groups –meteorological 326 

and sociodemographic – and applied the Principal Component Analysis to the variables in each group. 327 

In this way, we were able to decorrelate variables within each group, while still retaining intuitive 328 

interpretation for the new variables (demographic and meteorological PCs) used in further analysis. 329 

Dimensionality reduction and predictor decorrelation through PCA was then combined with different 330 

variable selection and regularization techniques, to select PCs that are most predictive of R0 for 331 

COVID-19 epidemics. Examining correlations of these PCs with the original variables allowed 332 

pinpointing the main drivers of COVID-19 transmissibility. This approach is to our knowledge unique 333 

in the COVID-19 research literature, and reminiscent of the analysis of complex data in systems 334 

biology and bioinformatics. 335 

Three principal components are robustly selected as the most important predictors by all the methods. 336 

Of these, the prosperity of the country has the most significant influence on R0: the spread of the 337 

epidemic is faster in economically more developed countries. Specifically, this is the most dominant 338 

PC from the demographic group of variables, which is by far most important in explaining R0, and very 339 

strongly correlated with HDI (Pearson's correlation coefficient r=0.95) and GDP (r= 0.94) – therefore 340 

effectively reflecting prosperity and wealth. The second PC is dominantly related to the built-up area 341 

per person (BUAPC), and the third with the epidemic onset, where the increase of these reduces the 342 

infection spread. We also robustly obtained (by three out of four methods) that unhealthy living 343 

conditions and lifestyle – i.e., the PC dominantly (and consistently positively) correlated with obesity, 344 

physical inactivity, smoking, and air pollution – is another important factor that exacerbates the 345 

epidemic. Seasonality, represented by the group of four weather conditions all significantly correlated 346 

with temperature, was selected by two independent methods including, importantly the Elastic net, 347 

which is well adapted to selecting among correlated variables (Zou and Hastie, 2005; Hastie et al., 348 
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2009) - note that correlations between meteorological and demographic PCs were not abolished by our 349 

approach. The PC dominantly correlated with BCG immunization appears only in LASSO regression. 350 

4.1 High economic development as the main predictor of COVID-19 transmissibility  351 

As noted above, we consistently obtained that the first demographic PC is the most important predictor 352 

of R0. HDI (alternatively, GDPpc) shows the highest correlation with this PC, which singles out this 353 

variable as the main index quantifying the virus transmissibility risk. Higher HDI leads to a higher rate 354 

of social contacts and more intense population mixing, as high HDI is strongly associated with high 355 

GDPpc implying intensive economic activity, trade, and transportation, including large-distance flights 356 

(Allel et al., 2020; Gangemi et al., 2020). Thus, much higher contact frequency in societies with higher 357 

HDI is likely the main cause behind the dominant role of the first demographic PC in explaining R0. 358 

An important advantage of our approach is that it is based on the analysis of R0, rather than other 359 

measures used as transmissibility proxies. The most commonly used measure, confirmed case counts, 360 

strongly depends on the number of performed tests, which is generally much higher in high-GDPpc 361 

countries, so the analysis would become strongly influenced by testing policies. For example, in (Allel 362 

et al., 2020) the importance of HDI for predicting cumulative case counts was noted. However, this 363 

perceived effect may be due to the lack of testing in lower-income countries (Notari, 2021), rather than 364 

genuine HDI influence. Our results are, on the other hand, insensitive to the testing capacity 365 

differences, since our R0 estimation procedure relies on the slope of the case growth curve in the distinct 366 

early exponential phase (Djordjevic et al., 2021), which requires only that the testing is performed 367 

consistently during the relatively short examined period (Salom et al., 2021). Therefore, our analysis 368 

indeed strongly suggests that HDI/GDPpc are the main/genuine predictors of COVID-19 spread in the 369 

population. 370 

4.2 Demographic factors significantly correlated with HDI  371 

Many correlations previously reported between SARS-CoV-2 transmissibility and various weather, 372 

sociodemographic, and health factors [see e.g. (Li et al., 2020; Salom et al., 2021)] may be captured 373 

by HDI. From our results, one can note that several demographic factors significantly correlate with 374 

both HDI/GDPpc and the first demographic PC, but are not noticeably related with other demographic 375 

PCs (4,5,7,9) that significantly contribute to R0. These demographic factors can be further divided into 376 

two groups using the correlation of BUAPC with HDI as the reference. The percentage of the urban 377 

population, the prevalence of alcohol consumption, and chronic diseases, which have similar (just 378 

somewhat higher) correlations with HDI compared to BUAPC, comprise the first group. Their absence 379 

from the independent PCs significantly related with R0, in contrast to BUAPC which prominently 380 

appears in the demographic PC7, indicates that they do not have independent effects on R0. 381 

Consequently, their significant correlation with R0 (Salom et al., 2021) is very likely due to their 382 

generic correlation with HDI, rather than a consequence of the independent effect that they exhibit on 383 

R0. This result is especially interesting for the percentage of the urban population, whose relation with 384 

R0 is sometimes taken for granted (Carozzi, 2020). It also explains the previously obtained negative 385 

correlation of the prevalence of chronic diseases with R0, where one might expect the opposite, as it is 386 

generally known that people with chronic diseases are seriously affected by COVID-19 (Zheng et al., 387 

2020). We can now claim that this result is due to a generically lower incidence of chronic diseases in 388 

more developed countries (i.e., due to their significant negative correlation with HDI), rather than a 389 

direct effect on R0.  390 
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The net economic immigration (the difference between immigrants and emigrants), population median 391 

age, infant mortality, and the average blood cholesterol level, comprising the second group, also have 392 

a significant positive correlation with the first demographic PC. However, in distinction to the 393 

aforementioned three factors, their correlation with HDI is very high, i.e., visibly higher compared to 394 

the correlation of BUAPC with HDI. So, even though they do not appear in demographic PCs that 395 

significantly contribute to R0 other than PC1, we cannot make any reliable conclusion about their direct 396 

effect on R0 based on our analysis. It is therefore relevant to discuss evidence from other sources, i.e., 397 

possible mechanisms that can distinguish their direct influence on R0. Regarding infant mortality, a 398 

mechanism of its direct contribution to R0 is hard to imagine, so its involvement in PC1, and high 399 

negative correlation with R0, is almost certainly an indirect consequence of this variable being a proxy 400 

of HDI (Ruiz et al., 2015). On the other hand, the median age and the blood cholesterol level are real 401 

contenders for direct R0 modifiers, as mechanisms for their contribution to COVID-19 transmissibility 402 

have been proposed. Aging is generally associated with the weakening of the immune response to 403 

infectious diseases making the elderly more susceptible to the viruses like the SARS-CoV-2 (Pawelec 404 

and Larbi, 2008). Additionally, many of them due to some chronic diseases take ACE inhibitors and 405 

angiotensin-receptor blockers which cause an increased expression of ACE2 serving as a receptor for 406 

the SARS-CoV-2 virus entry (Shahid et al., 2020). Their residing in care-homes, which is particularly 407 

common in high-income countries, also well suits the spreading of the infection (Kapitsinis, 2020). 408 

Similarly, high cholesterol levels can increase susceptibility to the infection by SARS-CoV-2 through 409 

systemic adverse effects on the immune and inflammatory responses, but also through direct 410 

implication in the virus life cycle, especially at the level of its endocytosis. To that end, statins, blocking 411 

cholesterol synthesis, were proposed for usage in COVID-19 treatment, which is supported by studies 412 

showing that previous statin usage is associated with a milder pneumonia outcome in the case of several 413 

other viral infections (Frost et al., 2007; Schmidt et al., 2020).  414 

4.3 Independent COVID-19 transmissibility predictors 415 

All the demographic variables discussed in the previous subsection show a rather strong correlation 416 

with the first demographic PC but are not involved with other significant demographic PCs (4,5,7,9). 417 

These PCs are by construction independent (decorrelated) from PC1. Variables associated with these 418 

PCs can be interpreted as effects on R0 independent from those related to PC1. These variables then 419 

importantly identify corrections to the main effect of HDI/GDPpc. Specifically, these are indoor area 420 

available to an individual and the net immigration (demographic PC7), the delay in the epidemic onset 421 

with respect to February 15th associated with more awareness of the virus threat (demographic PC9), 422 

the prevalence of unhealthy lifestyle and environment (demographic PC4), and the weather seasonality 423 

(meteorological PC1). 424 

The slower spread of the virus with a larger built-up area per capita, as an independent and significant 425 

R0 predictor, is an interesting and new result, though intuitively plausible. It can be understood as 426 

having a less crowded indoor space (where the virus transmission dominantly happens) so that people 427 

are less exposed to each other and the virus. For example, both the population density and R0 on the 428 

Diamond Princess cruise ship were estimated as four times greater than those in Wuhan (Rocklöv and 429 

Sjödin, 2020). On the other hand, a correlation of the virus transmissibility with the large territory 430 

population density is weakly established in the literature, whereby it seems that one should rather seek 431 

a correlation with a local population density, directly determining the number of contacts that an 432 

individual can make (Garland et al., 2020).  433 

A positive contribution to the transmissibility is also made by the principal component strongly 434 

correlated with the onset variable, representing the number of days from February 15th to the 435 
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epidemic's start in a particular country. The importance of the delay in the epidemic onset may be due 436 

to the psychological effect of hearing the news about the spread of COVID-19 in other countries 437 

(Khajanchi et al., 2020). Namely, the longer the epidemic was growing outside of a particular country, 438 

the larger impact this had on its people to change their usual behavior to prevent the infection, which 439 

could slow down the virus transmission even before the introduction of the official intervention 440 

measures (Salom et al., 2021).  441 

Another distinguished principal component appears to encompass multiple indicators of an unhealthy 442 

lifestyle and environment – specifically, the prevalence of obesity, physical inactivity, and smoking, 443 

together with the level of air pollution. We obtained that all these factors promote virus transmission. 444 

It is well established that they can impair immune function and adversely affect different organ 445 

systems. Furthermore, their association with mechanisms specifically facilitating the infection by the 446 

SARS-CoV-2 virus has been proposed (Domingo and Rovira, 2020; Heidari-Beni and Kelishadi, 2020; 447 

Haddad et al., 2021). 448 

Two more PCs are strongly determined by temperature (and/or three other highly related weather 449 

factors) and the prevalence of BCG vaccinated children, respectively. Although not selected by all the 450 

methods, the weather component seems important as it was chosen by the Elastic net algorithm (in 451 

addition to LASSO), which is specifically designed to deal with (highly) correlated variables, and yet 452 

it did not exclude this PC despite its correlation with the first demographic PC. Moreover, a decrease 453 

of the transmissibility with the temperature increase appears as a robust result in COVID-19 literature, 454 

although conflicting conclusions are also present (Srivastava, 2021). Higher temperatures may shorten 455 

the period of virus viability in aerosols, enhance the immune system functioning, and/or impact the 456 

time that people spend together in poorly ventilated indoor spaces (Notari, 2021). Since temperature is 457 

highly positively correlated with the intensity of UV radiation, humidity, and the level of precipitation, 458 

we cannot exclude the possibility that some of these other factors are in a significant causal relationship 459 

with virus transmissibility. Importantly, some experimental findings support the inactivating effects of 460 

high temperature, humidity, and UV radiation on SARS-CoV-2 and related viruses (Casanova et al., 461 

2010; Chan et al., 2011; Heilingloh et al., 2020; Sagripanti and Lytle, 2020; van Doremalen et al., 462 

2020). Anyhow, our results suggest the dependence of virus transmissibility on seasonal weather 463 

variations.  464 

Regarding the last demographic principal component, it occurred as important only in LASSO 465 

regression, but it closely follows the extent of BCG vaccination, which is known to provide some 466 

protection against various respiratory tract infections through the induction of the trained immunity 467 

(O’Neill and Netea, 2020), so BCG immunization may significantly influence the SARS-CoV-2 468 

spread, although, according to our results, to a lesser extent than the other discussed factors. 469 

4.4 Differences to pairwise correlation analysis 470 

Our study is also an example of how assessing the effect of one factor while controlling for the presence 471 

of other relevant variables can change the obtained conclusions. We will illustrate this with four 472 

examples, where we obtained qualitatively different conclusions, compared to single-variable 473 

correlation analysis (Salom et al., 2021): built-up area per capita (BUAPC), net migration, air pollution, 474 

and raised blood pressure.  475 

BUAPC showed an absence of a significant correlation with R0 (Salom et al., 2021), which is due to 476 

the canceling of two effects. The first is its direct effect on R0, exhibited through demographic PC7, 477 

which is in the direction of slowing COVID-19 spread in a population. The other effect is through 478 

collinearity with PC1, which reflects a generic correlation of BUAPC with GDPpc, caused by more 479 
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construction (higher built-up area) per capita with the increase in GDPpc. Our combination of PC and 480 

regression analysis revealed this non-trivial conclusion, which cannot (even qualitatively) be obtained 481 

from the pairwise correlation analysis. 482 

Similar reasoning, though perhaps harder to understand intuitively, applies to net migration. Net 483 

migration is also significantly (and positively) correlated with HDI, and consequently also with PC1, 484 

reflecting a generic tendency of immigrants to flow to countries with higher GDPpc. The direct effect 485 

of net immigration, exhibited through PC7 is however harder to intuitively understand, as I-E 486 

negatively contribute to R0, so that faster spread (at least in the initial phase of the epidemic) appears 487 

to be associated with a higher number of emigrants. As these are economic migrations (to be 488 

distinguished from the movement of refugees), possibly the part of the emigrants returned to their 489 

countries with the pandemic's start. In any case, the significant effect of net immigration on R0 inferred 490 

through our analysis is again highly non-trivial, and in the opposite direction from the positive pairwise 491 

correlation of R0 with I-E. For refuges (i.e., percentage of refugee population by country), it exhibits 492 

high correlations with only PC3 and PC8, neither of which significantly contribute to R0. There is also 493 

no significant pairwise correlation of refugees with R0, which robustly shows that this variable does 494 

not significantly affect transmissibility.  495 

Regarding pollution, it contributes negatively to demographic PC1 (with the corresponding negative 496 

correlation with HDI), while it has a positive contribution to demographic PC4. The pairwise 497 

correlation of the pollution with R0 is negative (-0.31), which is counterintuitive, as it is generally 498 

expected that higher pollution should increase COVID-19 transmissibility. This negative correlation 499 

with R0 is however an artifact of the generic negative correlation of the pollution with HDI, while its 500 

genuine (direct) effect is reflected through PC4. Our analysis, therefore, revealed the direct effect of 501 

long-term air pollution on transmissibility, which is consistent with previously published observations 502 

that it can damage the respiratory system and reduce resistance to infections (Domingo and Rovira, 503 

2020; Fattorini and Regoli, 2020), but opposite to naive pairwise correlation analysis.  504 

Raised blood pressure also shows a statistically significant, but counterintuitively negative, correlation 505 

with R0. However, in addition to PC1, raised blood pressure shows a notable correlation only with PC2, 506 

which does not significantly affect R0. This indicates that the negative correlation of this variable with 507 

R0 is a consequence of its generically negative correlation with HDI, instead of a direct effect on 508 

COVID-19 transmissibility.   509 

5 Conclusion and Outlook 510 

Numerous studies tried to assess the correlations of different factors with the SARS-CoV-2 virus 511 

transmissibility (Li et al., 2020; Notari and Torrieri, 2020; Salom et al., 2021), but the next step should 512 

be predicting the environmental risk of the high spreadability in a certain population (Allel et al., 2020; 513 

Coccia, 2020; Gupta and Gharehgozli, 2020). Specifically, a relatively small number of the most 514 

influential meteorological and demographic factors should be selected for a predictive risk measure 515 

that is accurate enough and practical for use. Such risk assessment is very useful in guiding the future 516 

strategies of imposing epidemic mitigation measures.  517 

We here demonstrated that taking into account joint effects of different factors can point to qualitatively 518 

different conclusions about their influence on the virus transmissibility than considering them 519 

individually (as in (Salom et al., 2021)). Utilizing a combination of PCA and feature selection 520 

techniques, we were able to disentangle with high confidence which variables independently (and 521 

significantly) influence the rate of the infection spread, and which have an only indirect influence or 522 
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no influence at all (here found for alcohol consumption, chronic diseases, percentage of the urban 523 

population, raised blood pressure and refugees).  524 

While PCA brings clear advantages to regression analysis such as working with a smaller number of 525 

variables and abolishing collinearity, the main disadvantage is harder interpretation in terms of original 526 

variables. In this case, we were, however, able to unequivocally interpret PCs that significantly affect 527 

R0, so that the main driving factors (i.e., PCs) behind COVID-19 transmissibility are the country’s 528 

wealth/development level corrected by the available indoor space per person and net immigration; 529 

pollution levels, and some of the unhealthy living factors; spontaneous behavior change due to 530 

developing epidemics; weather seasonality; possibly (marginally) BCG vaccination. These 531 

conclusions, and the direction of the corresponding effects, crucially depend on the more complex 532 

analysis performed here.  533 

However, when the alignment between certain variables is too high, even the analysis performed here 534 

cannot differentiate between the factors genuinely affecting R0 and mere accidental correlations. In 535 

such cases, further, specifically designed (such as targeted epidemiological) studies are needed. For 536 

example, based on this analysis alone and due to the very high correlation between the cholesterol 537 

levels and HDI/GDP it cannot be excluded that cholesterol is a contributing factor to the observed 538 

significance of the PC1 component, in addition to the country’s prosperity that mimics the contact rate 539 

in population (as a crucial disease transmission property). For this reason, our research suggests that a 540 

separate study of cholesterol levels in the COVID-19 context (e.g. by measuring cholesterol blood 541 

levels along with PCR tests) could be, potentially, of high value since a hypothetical unexpected 542 

discovery of inherent cholesterol importance could potentially lead to novel treatments of SARS-CoV-543 

2 infection. Similarly, studies that disentangle the effect of the overall country's prosperity from the 544 

intrinsic effects of median age on R0 would be also quite welcome. 545 

Our conclusions about the importance of HDI as a predictor of R0 could be further tested by studies of 546 

epidemiological relevance of higher resolution HDI-analogs, such as Subnational HDI (SHDI) or City 547 

Development Index (CDI). And if HDI and GDP parameters are confirmed to dominantly influence 548 

R0 values simply since they highly and naturally correlate with the frequency of social contacts (as we 549 

anticipate to be the case), identifying this as one of the major factors is not without implications. While 550 

it is certainly not reasonable to intentionally reduce HDI levels to curb the COVID-19 epidemic, 551 

recognizing the importance of this parameter can help us make better predictions of the disease 552 

dynamic and locate in advance high-risk spots/areas. The BUAPC variable, which surfaced as another 553 

significant factor in our analysis, can have a similar predictive value. As for the PC4 component, 554 

reflecting the healthy lifestyle and living conditions, we could and certainly should try to influence the 555 

underlying variables - by attempting to reduce obesity, smoking prevalence, physical inactivity, and 556 

air pollution. All the more so now that our study indicates the corresponding improvements would also 557 

be beneficial to combat the COVID-19 pandemic. 558 
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