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Key Points:12

• Historical magnetic superstorms (minimum Dst ≤ –500 nT) occurred before CHAMP’s13

and GRACE’s operation times14
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• Interplay between storm-time duration and minimum Dst and Dst-like values de-17
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Abstract19

Understanding extreme space weather events is of paramount importance in efforts20

to protect technological systems in space and on the ground. Particularly in the ther-21

mosphere, the subsequent extreme magnetic storms can pose serious threats to low-Earth22

orbit (LEO) spacecraft by intensifying errors in orbit predictions. Extreme magnetic storms23

(minimum Dst ≤ –250 nT) are extremely rare: only 7 events occurred during the era of24

spacecraft with high-level accelerometers such as CHAMP (CHAllenge Mini-satellite Pay-25

load) and GRACE (Gravity Recovery And Climate experiment), and none with mini-26

mum Dst ≤ –500 nT, here termed magnetic superstorms. Therefore, current knowledge27

of thermospheric mass density response to magnetic superstorms is very limited. Thus,28

in order to advance this knowledge, 4 historical magnetic superstorms, i.e., events oc-29

curring before CHAMPs and GRACEs commission times, are used to empirically esti-30

mate density enhancements and subsequent orbital drag. The November 2003 magnetic31

storm (minimum Dst = –422 nT), the most extreme event observed by both satellites,32

is used as the benchmark event. Results show that, as expected, orbital degradation is33

more severe for the most intense storms. Additionally, results clearly point out that the34

time duration of the storm is strongly associated with storm-time orbital drag effects,35

being as important as or even more important than storm intensity itself. The most ex-36

treme storm-time decays during CHAMP/GRACE-like sample satellite orbits estimated37

for the March 1989 magnetic superstorm show that long-lasting superstorms can have38

highly detrimental consequences for the orbital dynamics of satellites in LEO.39

Plain Language Summary40

We investigate drag effects on satellites orbiting Earth in its upper atmosphere dur-41

ing magnetic storms caused by the impacts of solar superstorms. During magnetic storms,42

the upper atmosphere is heated and expands upwards, resulting in increased drag forces43

on satellites flying in those regions. Enhanced drag effects directly impact operations of44

such spacecraft, for instance, orbital tracking and predictions, maneuvers, and lifetime45

maintenance. The U.S. Federal Government has recognized space weather phenomena46

as natural hazards, and the understanding of their consequences, particularly during ex-47

treme circumstances, is of paramount importance. The very extreme events, here termed48

magnetic superstorms, occurred before the space era when no in-situ observations of the49

atmospheric density are available. Therefore, we use an empirical model to estimate drag50

from these historical events. Results generally show that the most extreme events drive51

the most severe effects. Additionally, we show that another storm feature, its time du-52

ration, can play a significant role in enhancing drag. Therefore, we argue that space weather53

forecasters should be aware of events with long duration, particularly the ones caused54

by sequential impacts of solar disturbances on the Earths magnetic field, when predict-55

ing and forecasting the subsequent drag effects on satellites in the upper atmosphere.56

1 Introduction57

Magnetic storms are global phenomena that occur due to the interaction of solar58

perturbations with the Earth’s magnetosphere (Gonzalez et al., 1994). The most intense59

and severe magnetic storms are commonly caused by coronal mass ejections (CMEs) (Gonzalez60

et al., 1994; Daglis et al., 1999; Balan et al., 2014). CMEs usually have a shock at their61

leading edge that is promptly followed by a sheath and a magnetic cloud (Gonzalez et62

al., 1994; Balan et al., 2014; Kilpua et al., 2019). Extreme magnetic storms are caused63

by the impact of extremely fast CMEs on the Earth’s magnetosphere (Tsurutani & Lakhina,64

2014), usually associated with highly depressed values of the southward component of65

the interplanetary magnetic field (Gonzalez et al., 1994; Daglis et al., 1999; Balan et al.,66

2014; Tsurutani & Lakhina, 2014; Kilpua et al., 2019).67
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Extreme space weather events like severe magnetic storms have been recognized68

by the U.S. Federal Government through the National Space Weather Strategy and Ac-69

tion Plan (National Science and Technology Council, 2015b, 2015a) as a natural hazard,70

and the need to establish benchmarks for extreme space weather events has also been71

recognized by the scientific community (e.g., Lanzerotti, 2015; Jonas et al., 2017; Riley72

et al., 2018). The intensity of magnetic storms is usually measured by depletions of the73

ground horizontal magnetic field component recorded by magnetometers located at mid-74

and low-latitudes by means of the disturbance storm time (Dst) index (section 2.1). Ex-75

tremely severe events, here termed magnetic superstorms, with minimum Dst ≤ –50076

nT, are notably rare (Cliver & Dietrich, 2013; Riley et al., 2018; Vennerstrøm et al., 2016;77

Hayakawa, Ebihara, Willis, et al., 2019; Chapman et al., 2020). For instance, the March78

1989 event, the only superstorm occurring during the space age (Meng et al., 2019), is79

well-known for the occurrence of low-latitude aurorae (Allen et al., 1989; Rich & Denig,80

1992; Pulkkinen et al., 2012) and intense geomagnetically induced currents (GICs) which81

caused the blackout of the Hydro-Québec system in Canada for several hours, leading82

to serious economic losses (Bolduc, 2002; Kappenman, 2006; Pulkkinen et al., 2017). How-83

ever, though arguably, the most extreme ground horizontal magnetic field perturbation84

(∼ –1600 nT) on record was recorded by the Colaba station during the Carrington event85

of September 1859 (Tsurutani et al., 2003; Siscoe et al., 2006; Hayakawa, Ebihara, Willis,86

et al., 2019). Since that is the only known low-latitude data set available to date, a global87

analysis of that storm cannot be performed (Siscoe et al., 2006; Cliver & Dietrich, 2013;88

Hayakawa, Ebihara, Willis, et al., 2019; Blake et al., 2019). For this reason, the Carring-89

ton event is not addressed in this paper.90

During active times, large amounts of electromagnetic energy enter the ionosphere-91

thermosphere system causing the prompt thermosphere heating and upward extension92

due to mechanical collisions between ions and neutrals (e.g., Prölss, 2011; Emmert, 2015).93

This energy has access to the thermosphere primarily through high latitudes (Fuller-Rowell94

et al., 1994; Liu & Lühr, 2005; Huang et al., 2014; Connor et al., 2016; Lu et al., 2016;95

Kalafatoglu Eyiguler et al., 2018), and propagates equatorward due to the occurrence96

of gravity waves and wind surges (Fuller-Rowell et al., 1994; Hocke & Schlegel, 1996; Bru-97

insma & Forbes, 2007; Sutton et al., 2009). Therefore, the heating and upwelling of the98

thermosphere are global phenomena (Richmond & Lu, 2000; Liu et al., 2005; Sutton et99

al., 2009). As a result, satellites that happen to fly in those regions experience increased100

effects of drag forces leading to their subsequent orbital degradation (Prölss, 2011; Pri-101

eto et al., 2014; Zesta & Huang, 2016). The understanding and control of orbital drag102

effects during active times can enhance predictability and forecasting of satellite track-103

ing, reentry processes, and maintenance of satellite life times (Prölss, 2011; Zesta & Huang,104

2016; Berger et al., 2020), particularly during extreme magnetic storms (Oliveira & Zesta,105

2019). Most of these studies have used data obtained from state-of-the-art accelerom-106

eters onboard two low-Earth orbit (LEO) satellites, namely CHAMP (CHAllenge Min-107

isatellite Payload; Reigber et al., 2002) and GRACE (Gravity Recovery And Climate Ex-108

periment; Tapley et al., 2004). These spacecraft were launched after 2001 (section 2.2).109

The most extreme magnetic storm experienced by CHAMP and GRACE took place110

in November 2003 with minimum Dst = –422 nT. Consequently, there are no assessments111

of satellite drag in LEO during magnetic superstorms inferred from high-accuracy ac-112

celerometer data. The orbital degradations of CHAMP and GRACE associated with the113

November 2003 event during stormy times were, respectively, ∼ –285 m and ∼ –71 m114

(Krauss et al., 2015; Oliveira & Zesta, 2019), much more severe than the natural drag115

caused by the quiet-time backgorund density estimated by Oliveira and Zesta (2019),116

namely –34.45 m and –6.86 m, respectively. Hence, these are the most extreme orbital117

decays measured with high-quality accelerometer data. In order to empirically estimate118

drag effects during magnetic superstorms, standard Dst data and ground magnetome-119

ter data of historical superstorms reconstructed from historical archives are used by a120

thermospheric empirical model (section 2.3) for density computations (section 2.4). These121
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events occurred in March 1989 (Allen et al., 1989; Boteler, 2019), with the traditional122

Dst index available, September 1909 (Silverman, 1995; Hayakawa, Ebihara, Cliver, et al.,123

2019), May 1921 (Silverman & Cliver, 2001; Hapgood, 2019), and October/November124

1903 (Lockyer, 1903; Ribeiro et al., 2016), with an alternative version to the Dst index125

available. Effects of storm time duration associated with minimum values of Dst and Dst-126

like data will be estimated and compared. As a result, this effort will improve our un-127

derstanding of severe satellite orbital drag effects in LEO caused by magnetic superstorms.128

2 Data, model, and a framework for orbital drag estimations129

2.1 Disturbance storm time indices130

In this study, magnetic activity is represented by the Dst index provided by the131

World Data Center for Geomagnetism, Kyoto et al. (2015). This 1-hr-resolution index132

was defined in 1957, the International Geophysical Year (IGY), as described by Sugiura133

(1964). Specifically, Dst is computed by averaging latitudinally weighted horizontal mag-134

netic field perturbations, with a background removal scheme, recorded by mid- and low-135

latitude stations with reasonably even longitudinal separation according to the expres-136

sion137

Dst =
1

4

4
∑

i=1

∆Hi

cosΛi
, i in [HON, SJG, HER, KAK] (1)

where ∆Hi is the horizontal magnetic perturbation of the i-th station, and Λi is the con-138

temporary magnetic latitude of the i-th station. The colored stars in Figure 1 show the139

stations, with their corresponding names, abbreviations, and geographic locations, used140

to compute standard Dst after the IGY.141

Additionally, recent efforts have been undertaken to provide alternative (but sim-142

ilar) versions to the standard Dst index for historical magnetic superstorms with archival143

material. The events took place in October/November 1903 (Hayakawa et al., 2020), Septem-144

ber 1909 (Love et al., 2019b), and May 1921 (Love et al., 2019a). This alternative in-145

dex, also with resolution of 1 hr, was reconstructed with data obtained from 4 low/mid-146

latitude stations, with the best possible longitudinal separation, and is represented here147

by Dst†. The corresponding contemporary magnetic latitudes were computed by the au-148

thors. A background removal scheme similar to the one used to calculate Dst is used in149

the source papers as well. The stations used to compute Dst† used in this study are shown150

by the colored crosses in Figure 1. Therefore, the Dst† index is given by151

Dst† =
1

4

4
∑

j=1

∆Hj

cosΛj
, j in











[CLA, COI, CUA, ZKW] for Oct/Nov 1903

[API, MRI, SFS, VQS] for Sep 1909

[API, SFS, VSS, WAT] for May 1921

(2)

The Dst† data for the magnetic superstorms used here are available as supporting152

information provided by the respective references (Hayakawa et al., 2020; Love et al., 2019b,153

2019a). Details of individual stations and magnetograms for each corresponding Dst†154

network is provided in the source articles.155

2.2 Neutral mass density data156

CHAMP and GRACE neutral mass density (ρ) data obtained from their respec-157

tive high-accuracy accelerometers are used in this work. CHAMP was launched in 2001158

at the initial altitude 456 km and orbital inclination 87.25◦. It covered each 1 hr local159

time in 5.5 days with orbital period 90 min. The GRACE-A and -B spacecraft were launched160
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Figure 1. Geographic locations of the ground magnetometer stations that compose the stan-

dard Dst network that has been used by the World Data Center for Geomagnetism, Kyoto et

al. (2015) since 1957 (colored stars), and the alternative Dst† network used by Hayakawa et al.

(2020), Love et al. (2019b), and Love et al. (2019a) for the historic events of October/November

1903, September 1909 and May 1921 (colored crosses), respectively. Magnetic latitudes (solid

cyan lines) and magnetic equator (solid orange line) were computed by the Altitude-Adjusted

Corrected Geomagnetic Coordinates Model (Shepherd, 2014) for 1957. Note that the SJG and

VQS stations are very close to each other.

in 2002 at the initial altitude 500 km and orbital inclination 89.5◦. The GRACE con-161

stellation covered each 1 hr local time in 6.7 days with orbital period 95 min. GRACE-162

A flew ∼220 km ahead of GRACE-B. As discussed in Oliveira and Zesta (2019), only163

GRACE-A data are used, henceforth GRACE data, because GRACE-A data show higher164

quality than GRACE-B data. CHAMP re-entered in 2010, while GRACE re-entered in165

2018. Uncertainties and calibration techniques of both missions have been discussed by166

many papers (e.g., Bruinsma et al., 2004; Doornbos & Klinkrad, 2006; Flury et al., 2008).167

The density data used in this study are normalized and intercalibrated as described168

in Oliveira et al. (2017) and Zesta and Oliveira (2019). Basically, the Jacchia-Bowman169

2008 (hereafter JB2008, Bowman et al., 2008, see below) empirical model computes quiet-170

time densities (ρ0) in order to obtain the background state for the quiet thermosphere.171

This approach ensures that the ratio and the difference between the storm-time and quiet-172

time densities are as close to one (ρ/ρ0 ≈ 1) and zero (ρ – ρ0 ≈ 0) as possible, respec-173

tively. As a result, storm-time density enhancements can be extracted more effectively174

(Oliveira et al., 2017; Oliveira & Zesta, 2019; Zesta & Oliveira, 2019).175

2.3 The Jacchia-Bowman 2008 (JB2008) empirical model176

The JB2008 empirical model computes thermospheric density from a single param-177

eter, the exospheric temperature (see equation 2 in Oliveira & Zesta, 2019). This tem-178

perature depends on several satellite parameters such as latitude, local time, and alti-179

tude. Additionally, this model uses the solar radio flux at wavelength 10.7 cm, indicated180

by the F10.7 index, to account for thermospheric heating due to solar UV radiation (Bowman181

et al., 2008). Finally, a term that depends on Dst in the exospheric temperature repre-182

sents the magnetic activity contribution. Dst and Dst† data of the historical magnetic183

superstorms recorded by the stations shown in Figure 1 will be used along with LEO satel-184

lite orbital data during the event of November 2003 to estimate drag effects. A descrip-185

tion of the JB2008 model along with other popular thermospheric empirical models has186

recently been provided by He et al. (2018).187

2.4 Orbital drag computations188

Neutral mass densities are derived by high-accuracy accelerometers according to189

the drag equation (Prieto et al., 2014):190

ad = −
1

2
ρCD

S

m
V 2 V = |~Vs/c − ~Vwind| , (3)

where ad is the spacecraft acceleration caused by drag forces; ρ is the local ther-191

mospheric neutral mass density; CD is the drag coefficient; S/m is the area-to-mass ra-192

tio; and V is the relative velocity between the spacecraft velocity (~Vs/c) and the ambi-193
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Figure 2. CHAMP (left-hand-side column) and GRACE (right-hand-side column) orbits, in

magnetic coordinates, for the northern hemisphere (top row) and southern hemisphere (bottom

row). The colorbars represent the corresponding altitudes during the time interval 19-23 Novem-

ber 2003, the benchmark event chosen for this study. The grey arrows in all panels indicate

CHAMP’s and GRACE’s trajectories in both hemispheres.

ent neutral wind velocity (~Vwind). In this equation, all quantities are presumably known,194

and therefore it is solved for ρ in order to yield density. However, these parameters (par-195

ticularly CD) can introduce significant errors in density computations (Moe & Moe, 2005;196

Prieto et al., 2014; Zesta & Huang, 2016). In this study, drag coefficients computed with197

error mitigation methods by Sutton (2009) were used.198

Chen et al. (2012) provide the following expression for the computation of storm-199

time orbital decay rate:200

da

dt
= −CD

S

m

√

GM〈a〉∆ρ , (4)

with a being the semi-major axis of the satellite orbit (temporal Earth’s radius plus201

satellite altitude, Oliveira & Zesta, 2019), G = 6.67×10−11 m3·kg−1·s−2 the gravita-202

tional constant, M = 5.972×1024 kg the Earth’s mass, and ∆ρ the difference between203

the modeled storm-time and quiet-time densities. The daily average of the semi-major204

axis a is represented by 〈a〉.205

Finally, the storm-time orbital decay is computed by the sum over all da/dt val-206

ues along the satellite’s path for any (t1, t2) interval:207

d(t) =

t2
∫

t1

a(t)dt (5)

3 Results208

3.1 The selected magnetic superstorms209

The benchmark event for the current study occurred in November 2003. That storm210

had minimum Dst = –422 nT, the most intense magnetic storm event with both CHAMP211

and GRACE neutral mass density data available. Ground magnetometer data and neu-212

tral mass density data for the GRACE satellite are shown in Figure 1 of Zesta and Oliveira213

(2019). The solar flux F10.7 index increased from 151 sfu (solar flux units) on 19 Novem-214

ber to 175 sfu on 23 November (Liu & Lühr, 2005).215

Figure 2 documents the orbits of CHAMP and GRACE in the time interval from216

19 to 23 November 2003. The dial plots show orbits as a function of magnetic latitudes217

(MLATs) and magnetic local times (MLTs). The left column shows altitudes for CHAMP,218

while the right column shows altitudes for GRACE. The top row indicates data for the219

northern hemisphere, while the bottom row indicates data for the southern hemisphere.220

The colorbars indicate altitudes for both satellites in the same periods.221

CHAMP is in a near noon-midnight orbit. The orbit altitudes of CHAMP increased222

at high latitudes and at the poles of both hemispheres and decreased at mid- and low-223

latitudes. Similar behavior is shown by GRACE whose orbits were confined within the224
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Figure 3. Ground magnetometer Dst and Dst† time series, with resolution of 1 hr, for the

storms of (a) October/November 1903 (Dst†, Hayakawa et al., 2020); (b) May 1921 (Dst†, Love

et al., 2019a); (c) March 1989 (Dst, World Data Center for Geomagnetism, Kyoto et al., 2015);

and (d) September 1909 (Dst†, Love et al., 2019b). The highlighted regions correspond to the

time span between storm sudden commencement (SSC, vertical dashed lines) and the beginning

of the storm recovery phases (minimum Dst or Dst†), or time duration of storm development.

mid-noon/dusk and mid-midnight/dawn sectors. Therefore, both spacecraft provide rea-225

sonable coverage between the day and night sectors. The altitude variations shown in226

Figure 2 caused by density variations at different MLATs and MLTs are mitigated by227

the density intercalibration method introduced by Oliveira et al. (2017).228

CME leading edges are usually associated with the occurrence of positive jumps229

in the Dst index, while its sudden depression is associated with the arrival of CME mag-230

netic material or sheaths (e.g., Gonzalez et al., 1994; Kilpua et al., 2019). The first per-231

turbation, termed storm sudden commencement (SSC), is caused by the shock compres-232

sion (e.g., Oliveira et al., 2018; Shi et al., 2019), while the second event, termed storm233

main phase, is associated with strong driving of the magnetosphere via magnetic recon-234

nection (e.g., Gonzalez et al., 1994; Daglis et al., 1999; Kilpua et al., 2019). Examples235

of SSCs and storm main phases represented by the Dst and Dst† indices during magnetic236

superstorms caused by fast CMEs are illustrated in Figure 3.237

Figure 3 shows ground magnetometer time series for the magnetic superstorms of238

(a) October/November 1903 (Dst†); (b) May 1921 (Dst†); (c) March 1989 (Dst); and (d)239

September 1909 (Dst†). Data are plotted 12 hr and 72 hr around each respective SSC240

(dashed vertical black lines). Times are shown as Greenwich Mean Time (GMT) for all241

events, except as Universal Time (UT) for the 1989 event because UTs were introduced242

only in 1928 (Hapgood, 2019). Given the similarities of UTs and GMTs, here they will243

be used interchangeably (Hapgood, 2019). The highlighted areas of each panel correspond244

to the time interval between SSC and minimum Dst/Dst† occurrences, which also marks245

the beginning of the storm recovery phase. This time interval will henceforth be referred246

to as the storm development duration time in this paper.247

Panels (a) and (b) show that the 1903 event is the weakest (minimum Dst† = –513248

nT), whilst the 1921 event is the strongest (minimum Dst† = –907 nT) amongst all events.249

In contrast, the development duration times of both events are almost the same, ∼ 14250

hr and ∼ 12 hr, respectively. Storm strengths can be estimated by computing how fast251

Dst (or Dst†) is depressed during storm development. The average slope of Dst/Dst† dur-252

ing the development phase is quantified by the difference of Dst/Dst† minimum minus253

Dst/Dst† peak at SSC compression by the development time. This provides a quantifi-254

able measure of the impactfulness of the storm, meaning that storms with very low am-255

plitude rates are commonly associated with high geomagnetic activity (e.g., Gonzalez256

et al., 1994). The estimated amplitude rates are –44.8 nT/hr and –80.0 nT/hr for the257

October/November 1903 and May 1921 events, respectively. These numbers explain why258

the effects of the 1921 event, such as equatorial extent of low-latitude aurorae (Chree,259

1921; Silverman & Cliver, 2001), and GIC impacts on telegraph systems (Kappenman,260

2006; Hapgood, 2019) were more severe than the effects of the 1903 event, mostly rep-261

resented by mid-latitude aurorae (Page, 1903; Hayakawa et al., 2020), and local GIC im-262

pacts on contemporary telegraph systems in the United States and in the Iberian Penin-263

sula (Ribeiro et al., 2016; Hayakawa et al., 2020).264

On the other hand, the superstorms of March 1989 and September 1909 (panels265

c and d) had very similar minimum values for Dst and Dst†, around –590 nT. However,266

–7–



manuscript submitted to Space Weather

Figure 4. JB2008 satellite orbital drag estimating results for the selected events for

CHAMP’s orbit (a1-d1) and GRACE’s orbit (a2-d2) during the November 2003 event, but with

hypothetical Dst/Dst† values. Panels a1/b1 and a2/b2: da/dt and d for the events in Octo-

ber/November 1903 (yellow lines) and May 1921 (green lines). Panels c1/d1 and c2/d2 indicate

the same, but for the events in March 1989 (red lines) and September 1909 (blue lines). The

highlighted areas correspond to the storm development duration, or the time interval between

SSC occurrence and the end of the storm main phase (minimum Dst or Dst† occurrence).

the storm development duration of the 1989 event (24 hr) was 3 times longer than that267

of the 1909 event (8 hr). Consequently, the development amplitude rates of both super-268

storms were –23.8 nT/hr and –75.0 nT/hr, respectively. With respect to the aurorae of269

these events, Hayakawa, Ebihara, Cliver, et al. (2019) estimated, based on contempo-270

rary observations, that their equatorward extent reached ∼ 32◦ MLAT during the 1909271

superstorm, as opposed to 40◦ MLAT estimated from particle precipitation measurements272

by satellites during the 1989 superstorm (Rich & Denig, 1992; Pulkkinen et al., 2012).273

Intense GICs occurred during both events, with several reports of geophysical disturbances274

on telegraph systems in 1909 (Silverman, 1995; Hayakawa, Ebihara, Cliver, et al., 2019;275

Hapgood, 2019; Love et al., 2019b), and on power transmission lines in 1989, particu-276

larly the power blackout in Québec, Canada (Allen et al., 1989; Kappenman, 2006; Oliveira277

& Ngwira, 2017; Boteler, 2019). During the 1989 event, the only event with satellite-based278

data amongst the four superstorms, the number of space objects “lost” in LEO increased279

dramatically around periods of maximum intensity due to errors introduced by storm280

heating effects into tracking systems (Allen et al., 1989; Joselyn, 1990; Burke, 2018). The281

left part of Table 1 summarizes these storm properties.282

A comprehensive comparison of GIC effects caused by the superstorms on the con-283

temporary ground infrastructure, i.e., telegraph systems and power grids, is a difficult284

task to be accomplished. However, the comparisons above show that the latitudinal ex-285

tent of the auroral oval was more equatorward for the events with lower amplitude rates286

(May 1921 and September 1909 events). Next, the effects of these amplitude rates on287

storm-time orbital drag will be evaluated and compared for the 4 historical magnetic su-288

perstorms studied in this paper.289

3.2 Storm-time orbital drag effects290

Figure 4 shows results of storm-time satellite orbital drag effects estimated accord-291

ing to the framework presented in section 2.4. The computations are performed for the292

orbits of CHAMP and GRACE (Figure 2), with the orbital parameters the satellites had293

during the November 2003 storm. The sample CHAMP- and GRACE-like satellites are294

flown through an upper atmosphere produced by the JB2008 model for Dst/Dst† of the295

superstorms of Figure 3. All solar indices are kept the same, as those of the benchmark296

storm. For the sake of comparisons, results are plotted as a function of arbitrary times297

(GMT/UT) 12 hr before and 72 hr after the SSC onset as seen in Figure 3. The dashed298

vertical black lines (t = 0) indicate the times of SSC occurrence, while the highlighted299

areas correspond to the storm development duration as shown in Figure 3 for each cor-300

responding storm.301

The top 4 panels of Figure 4 (a1-d1) show results for CHAMP’s orbit, while the302

bottom 4 panels (a2-d2) show results for GRACE’s orbit. Panels a1 and a2 show storm-303

time orbital decay rates (equation 4) computed for the October/November 1903 super-304

storm (yellow line) and May 1921 superstorm (green line) for CHAMP and GRACE, re-305

spectively. Both events had approximately the same development times and very differ-306
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Table 1. Summary of the properties of the magnetic superstorms and subsequent orbital drag

results shown in Figures 3 and 4, respectively.

Magnetic superstorm properties Orbital drag effects

Storm SSC Min Development Amplitude Satellite Min Min

Month GMT/UT Dst/Dst† durationb Ratec Name da/dt d

and year (Day)a [nT] [hr] [nT/hr] [m/day] [m]

Oct/Nov 1903 0100(31) –513 14 –44.8
CHAMP –252.67 –102.65

GRACE –171.33 –65.39

May 1921 2300(14) –907 12 –80.0
CHAMP –432.98 –196.24

GRACE –319.43 –142.09

Mar 1989 0200(13) –589 24 –23.8
CHAMP –621.29 –388.59

GRACE –469.95 –305.58

Sep 1909 1200(25) –595 8 –75.0
CHAMP –285.14 –96.61

GRACE –191.25 –62.14
a Greenwich Mean Time or Universal Time and Day of Storm Sudden Commencement (SSC).
b Time between SSC and minimum Dst/Dst† occurrence.
c d(Dst/Dst†)/dt

ent intensities (Table 1). The same is shown in panels c1 (CHAMP) and c2 (GRACE)307

for the superstorms of March 1989 (red line) and September 1909 (blue line). In this case,308

the storms had very similar intensities, but different development durations (Table 1).309

The storm-time orbital degradation (equation 5), is shown for CHAMP (panels b1 and310

d1) and GRACE (panels b2 and d2). The same colors used to represent da/dt results311

in panels a1/c1 and a1/c2 above are used to represent d results in panels b1/d1 and b2/d2.312

Figure 4a1 shows that da/dt values during October/November 1903 for CHAMP313

were very close to zero before CME impact. On the other hand, da/dt values preceding314

the stormy period of May 1921 shows some oscillatory behavior, presumably linked to315

a similar behavior shown by ground magnetometer data during the same pre-storm pe-316

riod (Love et al., 2019b; Hapgood, 2019). CHAMP da/dt values for the 1921 event de-317

creased faster in comparison to minimum da/dt values for the 1903 event. Similar or-318

bital drag dynamics is observed for GRACE (a2), but the absolute values of the drag319

response are smaller (Table 1) because GRACE operated at higher altitudes in compar-320

ison to CHAMP (Krauss et al., 2018; Oliveira & Zesta, 2019). The da/dt results for CHAMP321

and GRACE are summarized in Table 1.322

For the same pair of storms, the storm-time orbital degradations of CHAMP (panel323

b1) at the end of 72 hr after CME impact were –102.65 m and –196.24 m for both events,324

respectively. The same estimated results for GRACE (b2) are –65.39 m (1903) and –142.09325

m (1921). Comparatively, the percentual difference between drag effects during both su-326

perstorms for CHAMP (91.17%) are higher than the percentual difference of the super-327

storm intensites (76.80%) most likely because the magnetosphere was hit by another CME328

on 16 May 1921 (Figure 3; Love et al., 2019a), leading to an additional magnetosphere329

energization during its recovery, which in turn impacted drag effects. Similarly, the or-330

bital drag relative difference is higher in the case of GRACE (117.30%), when compared331

with the case of CHAMP. As suggested by Oliveira and Zesta (2019, Figure 10), this is332

presumably due to the interplay between heating propagation from auroral-to-equatorial333

latitudes and (possibly) the direct uplift of neutrals at low and equatorial latitudes more334

evident at altitudes higher than 400 km (Tsurutani et al., 2007).335

In summary, the main features that arise from the comparison between these events336

are: (i) CHAMP and GRACE decayed faster during the most intense event (1921) due337

to its sharper negative excursion of the Dst† index and lower amplitude rate (Figure 3a338
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Table 2. Comparisons between magnetic superstorm intensity and satellite orbital drag sever-

ity for the magnetic superstorms in this study.

Magnetic Comparisons between Relative differences of drag effects [%]

Superstorm Superstorm CHAMP GRACE

Month/Year intensities and durations da/dt d da/dt d

Oct/Nov 1903 May 1921 is 76.80% stronger
71.36 91.17 86.44 117.30

May 1921 Nearly the same durations

Sep 1909 March 1989 is 3 times longer
117.30 302.22 145.73 391.76

Mar 1989 Nearly the same intensities

May 1921 March 1989 is 2 times longer
43.49a 98.02 47.12 115.06

Mar 1989 May 1921 is 53.98% stronger
a Percentual differences between more severe (March 1989) with respect to less severe

(May 1921) drag effects

and b; Table 1); and (ii) the relative differences between d for both events do not closely339

follow the relative differences between minimum Dst† values. This is likely the case be-340

cause the magnetosphere was struck by another CME during its recovery, increasing the341

magnetospheric activity which in turn affected the subsequent orbital drag effects. Ta-342

bles 1 and 2 summarize these results.343

The comparisons between estimated drag effects for the March 1989 and Septem-344

ber 1909 superstorms are remarkably different. These events had very similar strengths345

(similar minimum Dst and Dst† values), but their development times were quite distinct.346

Figure 4c1 shows that 1909 CHAMP da/dt values had a very sharp negative excursion347

after CME impact, which follows very closely the same feature in the Dst† index (Fig-348

ure 3d). The minimum da/dt value (–285.14 m/day) for the September 1909 superstorm349

was reached shortly before minimum Dst†. On the other hand, the March 1989 drag ef-350

fects are quite different, since da/dt decreased more slowly in comparison to the former351

case due to the differences in storm development amplitude rates. This is explained by352

the fact that the magnetosphere was most likely struck by multiple CMEs while the storm353

main phase was developing (Fujii et al., 1992; Lakhina & Tsurutani, 2016; Boteler, 2019).354

Similarly to the 1909 case, the minimum da/dt value (–621.29 m/day) occurred shortly355

before minimum Dst occurrence. The thermosphere recovery of the 1989 superstorm took356

longer than the thermosphere recovery of the 1909 superstorm, most likely because the357

magnetosphere was yet hit by more CMEs shortly after the beginning of the magneto-358

sphere recovery (Figure 3c). A similar behavior is shown by the GRACE results, panel359

c2, but with smaller absolute values due to higher GRACE altitudes. The relative dif-360

ferences between da/dt peak values of CHAMP and GRACE for both superstorms are361

117.30% and 145.73%, even though both events had approximately the same minimum362

Dst and Dst† values and very different storm development durations and amplitude rates.363

Now the storm-time orbital degradations in both cases are evaluated. Figure 4d1364

shows that CHAMP d decreased faster during the main phase of the 1909 event, reach-365

ing values near its minimum value around the beginning of storm recovery. This is a typ-366

ical feature of drag effects triggered by a storm caused by an isolated CME (Krauss et367

al., 2015, 2018; Oliveira & Zesta, 2019). Conversely, CHAMP’s orbital degradation de-368

creased more dramatically during the recovery of the 1989 superstorm. These drag ef-369

fects correlate well with a very sharp negative excursion presented by the Dst index, which370

is also directly related with the occurrence of low-latitude aurorae and very intense GICs371

around the world (Allen et al., 1989; Kappenman, 2006; Hayakawa, Ebihara, Cliver, et372

al., 2019). This time also coincides with the loss of orbital control of several objects in373

LEO as shown by satellite-based data (Allen et al., 1989; Joselyn, 1990; Burke, 2018).374

The storm-time orbital decays for the 1909 and 1989 events are –96.61 m and –388.59375
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m for CHAMP and –62.14 m and –305.58 m for GRACE. These orbital degradation lev-376

els were never observed by LEO spacecraft with high-precision accelerometers during mag-377

netic superstorms, and therefore set a new base for drag effects under such circumstances.378

Their relative difference is 302.22% and 391.76%, closely following the proportion of storm379

time developments in the case of CHAMP. Taking into consideration that both super-380

storms were almost equally intense, these results show that the storm time duration can381

play a major role in driving orbital drag effects. Note also that relative differences are382

higher in the case of GRACE, most likely explained by the reasons suggested by Oliveira383

and Zesta (2019) as mentioned before.384

Another striking difference concerning minimum Dst and Dst† values, storm de-385

velopment duration and subsequent amplitude rate impacts arises from the comparison386

between the May 1921 and March 1989 superstorms. The 1921 event was more than 50%387

stronger than the 1989 event, but active times during the latter lasted twice longer. The388

storm-time orbital decay for the March 1989 event was nearly twice more severe than389

the May 1921 event in both CHAMP’s and GRACE’s cases (Figure 4 and Tables 1 and390

2). These results clearly reveal that a long-lasting magnetic superstorm can drive much391

more severe drag effects in comparison to a short-lasting, even stronger, superstorm. Ta-392

bles 1 and 2 summarize the main results discussed in sections 3.1 and 3.2.393

There are no solar wind nor interplanetary magnetic field data available for the mag-394

netic superstorms discussed in this paper. Furthermore, it is important to emphasize that395

our statements concerning CME impacts are supported by our current knowledge of the396

underlying science: intense magnetic storms, particularly extreme events, are usually caused397

by CMEs (Gonzalez et al., 1994; Daglis et al., 1999; Balan et al., 2014; Tsurutani & Lakhina,398

2014; Lakhina & Tsurutani, 2016; Kilpua et al., 2019).399

4 Discussion and conclusion400

Extreme magnetic storms (minimum Dst ≤ –250 nT) are very rare. Only 39 ex-401

treme events have taken place since the beginning of the space era (Meng et al., 2019),402

while only 7 extreme events were observed by CHAMP and GRACE (Oliveira & Zesta,403

2019; Zesta & Oliveira, 2019). Additionally, only one magnetic superstorm (minimum404

Dst ≤ –500 nT) occurred since 1957, while none were ever observed by either CHAMP405

or GRACE. Therefore, current knowledge of thermospheric mass density response to mag-406

netic supersotorms and the subsequent storm-time drag effects are very limited. Then,407

in order to estimate these effects, 4 historical magnetic superstorms were selected: one408

with standard Dst data (March 1989), and 3 with Dst† (Dst-like) data occurring on Oc-409

tober/November 1903 (Hayakawa et al., 2020), September 1909 (Love et al., 2019b), and410

May 1921 (Love et al., 2019a). These Dst and Dst† data were used as input data for the411

JB2008 thermosphric empirical model for density computations. The extreme magnetic412

storm of November 2003 (minimum Dst = –422 nT), the most extreme event during CHAMP’s413

and GRACE’s commission times, was used as the benchmark event. The orbital drag414

framework provided by Oliveira and Zesta (2019) was used for drag estimations.415

First, two events with different intensities but with approximately the same storm416

development times were compared (October/November 1903 and May 1921). Although417

the 1921 superstorm was ∼ 80% stronger than the 1903 superstorm, the drag effects in418

the former were up to 120% more severe than the effects in the latter (GRACE’s case).419

This is attributed to the likely impact of another CME during the recovery phase of the420

1921 superstorm. Second, the other pair of superstorms, with very similar strengths, but421

with the September 1909 storm development being 3 times shorter than the March 1989422

storm development, were compared. Results show that the relative difference of the storm-423

time orbital degradation for the 1989 event was about 400% higher than the 1909 event424

(GRACE’s case). This is explained by the likely impacts of several CMEs on the mag-425

netosphere during the main and recovery phases of the March 1989 superstorm (Fujii426
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et al., 1992; Lakhina & Tsurutani, 2016; Boteler, 2019). Therefore, as opposed to lat-427

itudinal extent of aurorae, a superstorm with a smaller amplitude rate (absolute value)428

can cause more detrimental effects on orbital drag in comparison to an even stronger su-429

perstorms that develops faster (larger absolute value of amplitude rate). All orbital degra-430

dations shown in Table 1 are much more severe than the orbital degradation due to the431

background density estimated by Oliveira and Zesta (2019) during November 2003 for432

CHAMP (–34.45 m) and GRACE (–6.86 m); therefore, these results set a new basis for433

these effects. Despite the fact that these effects can have significant error levels partic-434

ularly during the storm recovery phases due to the lack of nitric oxide cooling effects in435

the model (Mlynczak et al., 2003; Bowman et al., 2008; Knipp et al., 2017; Oliveira &436

Zesta, 2019; Zesta & Oliveira, 2019), these results reveal the comparative roles of time437

durations and strengths of magnetic superstorms in controlling drag effects.438

The results of this work clearly show that multiple CME impacts on the Earth’s439

magnetosphere (as in the March 1989 superstorm), particularly occurring during active440

times, can largely enhance satellite orbital drag due to long and sustained storm times.441

These drag effects can be more severe when compared to drag effects during storms caused442

by a single CME leading to even more intense storms, but lasting shorter. Therefore, or-443

bital drag forecasters should be aware of potential impacts of several CMEs on the ter-444

restrial magnetosphere during ongoing magnetic storms (e.g., Zhao & Dryer, 2014, and445

many references therein). In a future work, simulation results of tens of historical severe446

and extreme magnetic storms, with minimum Dst ≤ –250 nT excluding superstorms (Meng447

et al., 2019; Oliveira & Zesta, 2019; Zesta & Oliveira, 2019; Chapman et al., 2020), will448

be statistically studied.449
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