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Spectral Indices Used as Fixed Effects Independently and in Combination to Improve Model Prediction Accuracy in a Drought Year

[image: Chart, bar chart

Description automatically generated]
Spectral indices, when incorporated as a fixed effect independently and together in prediction modeling of data across diverse environments, improved the prediction accuracy of grain yield in all tested environments. Indices were less useful in less stressed conditions.
Background
Images collected from the UAS platform are stitched to create an orthomosaic image with Pix4Dmapper software and radiometrically calibrated using referenced calibration panels in QGIS. Calibrated bands are used to develop spectral reflectance indices (SRIs). Five SRI’s were tested as fixed effects individually and in combination to improve prediction modeling. Normalized difference vegetation index (NDVI), percent canopy cover, normalized difference red edge (NDRE-1), and modified triangulation vegetation Index (MTVI) are vegetation indices that measure the photosynthetic activity of plant canopies and have been shown to improve grain yield estimations (Aparicio et al., 2000; Jin et al., 2016; Lozada et al., 2020; Venancio et al., 2019; Wall et al., 2008; Zhang et al., 2019). Other indices like normalized water index (NWI-1) provide insight into plant water stress and have shown to aid in yield estimations (Lozada et al., 2020; Zarco‐Tejada et al., 2005). A detailed summary of SRI’s used from prediction improvement can be found in Table 1.
	Table 1. SRI’s to be used as Fixed Effects in GS

	Spectral Reflectance Indices
	Abbreviation
	Equation
	Reference

	Normalized Difference
Vegetation Index
	NDVI
	
	Rouse, 1974

	Percent Canopy Cover
	-
	
	Sankaran et al., 2015

	Normalized Difference
Red Edge 1
	NDRE-1
	
	Gitelson & Merzlyak, 1996

	Modified Triangulation Vegetation Index
	MTVI
	
	Haboudane et al., 2004

	Normalized Water Index 1
	NWI-1
	
	Gao, 1996



Preliminary analysis was done with Pearson correlation of yield and NDVI. Relationships were determined within multi-location yield trials in high and low rainfall regions. BLUPs of both NDVI and grain yield were calculated using a mixed linear model. BLUP correlation removes the environmental variation and shows an improved genotypic relationship. High rainfall for Washington wheat production are annual precipitation zones greater than 16”. Low rainfall regions have an annual rainfall between 10” and 16”. 
[image: ]Figure 1: Pearson relationship between raw grain yield and NDVI in high (A) and low (B) rainfall trials compared with the Pearson relationship between BLUPs of grain yield and NDVI in the same high (C) and low (D) rainfall yield trials.
The regression tree below (Figure 2) outlines the ranked importance of different indices in predicting grain yield in winter wheat. Percent canopy cover gives a precise assessment of plot density, a significant factor in spatial yield potential. NDRE1 and MTVI are vegetation indices focusing on chlorophyll reflectance at different critical wavelengths, as outlined in Table 1. NWI is a water index that evaluates the reflectance of water content in the plant canopy. These indices can more precisely assess what we already know; hydrated green plants with ideal population density will provide the highest yield potential.
[image: ]Indices Relative Importance to Grain Yield Performance
Figure 2: Regression Tree of Index predictive performance for yield. Percent canopy cover and NDRE 1 are key indices for winter wheat yield prediction.
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Background

Multispectral imaging with UAS systems has shown to help
understand the causal mechanisms associated with highly
quantitative traits like grain yield and drought tolerance,
potentially fast-tracking selections in plant breeding and
increase genetic gains.
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Breeding trial plots across 18 Washington location-
years sampled at heading date with a DJI Inspire 2 UAS
equipped with a custom Sentera Quad Multispectral
Sensor.

Lincar Mixed Models
were generated using
spectral data from 2018-
2020 breeding trials. Model
prediction accuracy was
independently validated
with 2021 advanced trial
data.

Image A shows a
traditional RGB image of a
highly variable portion of
the Walla Walla winter
wheat test plots.

Tmage B is a color scale
of NDRE of the same plot,
showing a more
L distinguishable image of

crop health.
Next Steps

Determine UAS data usefulness in genomic prediction
models as well as in machine learning. Evaluate UAS
data ability to account for environmental variability.
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