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ABSTRACT: The vertical structure of ocean eddies is generally surface-intensified, commonly attributed to the dominant baroclinic modes
arising from the boundary conditions (BCs). Conventional BC considerations mostly focus on either flat- or rough-bottom conditions.
The impact of surface buoyancy anomalies—often represented by surface potential vorticity (PV) anomalies—has not been fully explored.
Here, we study the role of the surface PV in setting the vertical distribution of eddy kinetic energy (EKE) in an idealized adiabatic ocean
model driven by wind stress. The simulated EKE profile in the extra-tropical ocean tends to peak at the surface and have an e-folding depth
typically smaller than half of the ocean depth. This vertical structure can be reasonably represented by a single surface quasi-geostrophic
(SQG) mode at the energy-containing scale resulting from the large-scale PV structure. Due to isopycnal outcropping and interior PV
homogenization, the surface meridional PV gradient is substantially stronger than the interior PV gradient, yielding surface-trapped
baroclinically unstable modes with horizontal scales comparable to or smaller than the deformation radius. These surface-trapped eddies
then grow in size both horizontally and vertically through an inverse energy cascade up to the energy-containing scale, which dominates the
vertical distribution of EKE. As for smaller horizontal scales, the EKE distribution decays faster with depth. Guided by this interpretation,
an SQG-based scale-aware parameterization of the EKE profile is proposed. Preliminary offline diagnosis of a high-resolution simulation
shows the proposed scheme successfully reproducing the dependence of the vertical structure of EKE on the horizontal grid resolution.

1. Introduction

Ocean mesoscale eddies have horizontal scales of tens
to hundreds of kilometers and account for a majority of
oceanic kinetic energy (e.g., Ferrari and Wunsch 2009;
Storer et al. 2022). These eddies are important for the
transport and mixing of momentum, heat, salt, carbon,
as well as other biogeochemical tracers, and impact the
large-scale circulation and climate (Wolfe and Cessi 2010;
Marshall and Speer 2012; Griffies et al. 2015; Gnanade-
sikan et al. 2015). These eddies are yet to be fully-resolved
in climate models due to their relatively small size and
as a result, their effects must be parameterized. Observa-
tional and modeling studies have shown that the strength
of mesoscale eddies tend to peak at the surface and decay
with depth (Wunsch 1997; de La Lama et al. 2016), with
the exception for certain mode-water or topographically
trapped eddies that intensify in the interior or near the bot-
tom (Zhang et al. 2017; Radko 2023). Parameterizations
that properly account for the surface-intensified vertical
structure are crucial for simulations of large-scale ocean
circulations and density structures (Danabasoglu and Mar-
shall 2007; Eden et al. 2009). This effort requires a bet-
ter understanding and representation of the eddy vertical
structure, which is the topic of this paper.

The vertical structure of eddy motions is often rep-
resented using vertical normal modes (Wunsch 1997;
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Wortham and Wunsch 2014; de La Lama et al. 2016).
Traditionally, these modes—including the barotropic and
baroclinic modes—are solutions to an eigenvalue problem
with flat-bottom and rigid-lid boundary conditions (Gill
1982; Vallis 2017). The surface-intensified structure of
ocean eddies is then decomposed as a linear combination
of these eigenmodes in the vertical.

Notably, the barotropic and first baroclinic modes to-
gether can capture the bulk of mid-latitude eddy struc-
ture and variability (Wunsch 1997; Zhang et al. 2013).
That these two modes are dominant is consistent with
geostrophic turbulence theory, which reveals that eddies
emerging from baroclinic instability tend to transfer en-
ergy from higher baroclinic modes to the lower modes and
then to the barotropic mode at scales comparable to the
deformation radius (Salmon 1980; Smith and Vallis 2001).
Due to surface-intensified stratification and bottom fric-
tion, ocean eddies are usually not fully barotropized and
the first-baroclinic contribution remains considerable (Fu
and Flierl 1980; Smith and Vallis 2001). Although the
barotropic and first baroclinic modes are useful for diag-
nosing the vertical structure of eddies, they are inefficient
for quantitative predictions since their relative contribu-
tion to eddy energy varies substantially in space and time
(Wunsch 1997).

Vertical mode structures can change significantly in the
presence of bottom topography (Hallberg 1997; Lacasce
2017), leading to recent studies promoting a different set
of baroclinic modes subject to zero horizontal velocity at



2

the bottom due to rough bathymetry (Lacasce 2017). The
inclusion of the rough bottom tends to decouple the bot-
tom pressure from the interior, yielding modified baroclinic
structures that are more surface-intensified (Rhines 1970;
Hallberg 1997; Samelson 1992; Tailleux and McWilliams
2001). The first baroclinic mode derived under such rough-
bottom setup captures a larger fraction of observed ve-
locity variance than the traditional first baroclinic mode
(de La Lama et al. 2016; Ni et al. 2023), and has recently
been used for diagnoses and parameterizations of the ver-
tical structure of eddy velocity and mixing (Adcroft et al.
2019; Groeskamp et al. 2020; Stanley et al. 2020; Holmes
et al. 2022).

Still, these rough-bottom modes assume a zero buoy-
ancy anomaly at the ocean surface, whereas ocean eddies
exhibit strong surface temperature and salinity anoma-
lies (Lapeyre 2009; Hausmann and Czaja 2012; Frenger
et al. 2015). Theoretical studies have proposed vertical-
mode bases that include surface buoyancy anomalies, as-
sociating with surface-trapped responses that decay quasi-
exponentially from the surface (Lapeyre and Klein 2006;
Smith and Vanneste 2013; Yassin and Griffies 2022a). The
surface-trapped mode is governed by the surface quasi-
geostrophic (SQG) dynamics in the presence of a surface
horizontal buoyancy gradient (Blumen 1978; Held et al.
1995; Lapeyre and Klein 2006; Lapeyre 2017). Previous
studies noted that the SQG mode can capture the surface
intensification of the observed eddies better than the tradi-
tional baroclinic structures, pointing to surface buoyancy
anomalies being key to establishing the vertical distribu-
tion of ocean eddies (Lapeyre and Klein 2006; Lapeyre
2009).

The SQG framework has been adapted to infer the eddy
properties in the vertical from surface observations and
hydrography in the midlatitude ocean in both modeling
(Lapeyre and Klein 2006; Isern-Fontanet et al. 2008; Wang
etal. 2013; Ponte and Klein 2013; Liu et al. 2014; Qiu et al.
2016; Fresnay et al. 2018; Qiu et al. 2020; Miracca-Lage
et al. 2022) and observational studies (LaCasce and Ma-
hadevan 2006; Rocha et al. 2013; Liu et al. 2017). Such
inference, however, depends on the spectra of the surface
eddy energy or buoyancy, because the vertical structure of
SQG mode depends on the horizontal eddy scale—smaller
eddies tend to have shallower structures (Lapeyre 2017,
Ajayi et al. 2020). The scale dependence seemingly limits
the application of the SQG framework to the parameter-
ization of eddies for ocean models in which mesoscale
features are not fully resolved.

Here, we argue that knowing the energy-containing scale
is sufficient to determine the dominant SQG mode, sup-
porting a sparse representation of the vertical structure of
mesoscale eddies. Assuming the energy-containing scale
is given and using this information in lieu of the full surface
spectra, we propose an SQG-based, scale-aware parame-
terization for the vertical structure of ocean eddies. Focus-

ing on the dependence of vertical structure on horizontal
scales, offline analyses with output from an idealized adi-
abatic ocean model demonstrate that the proposed scheme
reproduces the desired distributions of unresolved eddies
by models with different horizontal resolutions. The only
remaining step for a completely closed parameterization
is the determination of the horizontal energy-containing
scale, which is a topic outside the scope of this paper.

Why does the SQG mode at the energy-containing scale
play such an important role in the vertical eddy structure?
We propose that geostrophic turbulence theory offers in-
sights to this question. Surface buoyancy anomalies are
often represented as surface-confined potential vorticity
(PV) anomalies (Bretherton 1966). The horizontal PV gra-
dient tends to be substantial at the ocean surface, yielding
surface-trapped instabilities, such as Charney and mixed-
layer instabilities (Smith 2007; Fox-Kemper et al. 2008a;
Tulloch et al. 2011; Roullet et al. 2012; Callies et al. 2016;
Feng et al. 2021, 2022). The link between baroclinic in-
stability and the vertical structure of mesoscale eddies is
investigated here in an idealized adiabatic ocean model.
We find that the SQG-like profile of EKE is prevalent in
purely wind-driven circulations analogous to those in the
Atlantic Ocean. The simulated EKE exhibits i) a surface-
intensified profile consistent with the SQG mode at the
energy-containing scale; and ii) a dependence of vertical
distribution on the horizontal eddy scale. Although our
adiabatic model does not have surface buoyancy forcing
and a mixed layer, the isopycnal outcropping due to wind
forcing gives rise to a strong surface meridional PV gradi-
ent. In the upper ocean, the interior PV gradient is weak
due to eddy mixing, which tends to homogenize the PV
within geostrophic contours (Rhines and Young 1982b).
Such a large-scale PV distribution induces surface-trapped
broclinically unstable modes with an SQG-like vertical
structure. These surface-trapped eddies supply energy to
the energy-containing eddy through an inverse energy cas-
cade, ultimately shaping the EKE profile.

This manuscript is organized as follows. Section 2 cov-
ers equations of the baroclinic and surface-trapped modes
for theoretical background. The numerical model config-
uration and Wentzel-Kramers—Brillouin (WKB) solutions
for the SQG mode are given in Section 3. In Section 4, we
reveal the key role of SQG modes in setting the vertical
structure of EKE, which can be determined by the horizon-
tal energy-containing scale. In Section 5, we argue that the
dominance of the SQG mode arises from baroclinic insta-
bility and the corresponding inverse energy cascade, which
are surface-trapped due to the upper-ocean PV structures.
Based on these understandings, in Section 6 we propose a
SQG-based parameterization for the subgrid EKE profile
that depends on the numerical model horizontal grid spac-
ing. The results are summarized, and their implications
for understanding the eddy vertical structure are discussed
in Section 7.



2. Theoretical Background

In this section, we recap elements from quasi-
geostrophic (QG) theory, focusing on (i) the vertical struc-
ture of baroclinic modes; and (ii) modifications to take into
account a surface buoyancy anomaly.

a. Baroclinic Modes

The vertical structure of ocean eddies is commonly rep-
resented using vertical normal modes of the linearized QG
equations for a quiescent ocean state (e.g., chapter 6 of
Vallis 2017),
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where ¥ (x,y,z,t) is the streamfunction perturbation, f
the Coriolis parameter, 8 the meridional derivative of f,
and N2 = 9B/dz the squared buoyancy frequency defined
via the large-scale buoyancy, B. Note that ¢ and dy/0z
are proportional to the pressure and buoyancy anomalies,
respectively.

Substituting the wave-like ansatz

¥ = do®(2) expli(kxx+kyy-wi)] 2

into equation (1) yields an eigenvalue problem for the non-
dimensional vertical structure function ®
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Here, ¢ is proportional to the 2D Fourier transform of
¥ at the surface, ky and ky are the zonal and meridional
wavenumbers, respectively, w is the angular frequency, and
A is the reciprocal of squared deformation radius.

Solving equation (3) requires surface and bottom bound-
ary conditions (BCs). It is common to assume the flat-
bottom and rigid-lid conditions in which the buoyancy
vanishes

do
— =0atz=0, —H. 4)
dz

Equations (3) and (4) constitute a Sturm-Liouville problem
for @, admitting a set of orthogonal normal modes, {®,, },
with the corresponding eigenvalues, {12 }. Here the inte-
ger, m > 0, counts the number of zeros of ®,,(z) in the
interior. The solution with m = 0 denotes the barotropic
mode, and the infinity of m > 1 solutions are the baro-
clinic modes. The first few modes are shown in Fig. 1a as
computed with an exponential stratification profile whose
e-folding scale is a third of water depth. General solu-
tions of an eddy feature satisfying equation (1) and the
same BCs (4) can be uniquely represented as a linear com-
bination of these modes. See Rocha et al. (2016) for a
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comprehensive summary regarding the representation in
terms of a pre-determined basis.

An alternative structural consideration includes the bot-
tom topography (Rhines 1970; Hallberg 1997) with which
the horizontal velocity vanishes at the bottom, yielding

do
d—antzzO and ®=0atz=-H. )
z

That is, the bottom BC is now imposed on the pressure
anomaly, whereas the surface BC remains applied to the
buoyancy anomaly. These alternative BCs result in a dif-
ferent set of normal modes shown in Fig. 1b, referred to
as the rough-bottom modes or “surface modes” in Lacasce
(2017) since the bottom horizontal flow is at rest. No-
tably, there is no longer a depth-independent barotropic
mode among these—an important distinction from the flat-
bottom modes in Fig.1a. The barotropic mode is replaced
by bottom-trapped topographic waves (e.g., Rhines 1970;
Lacasce 2017; Yassin and Griffies 2022a) not illustrated
here. The lowest rough-bottom mode (m = 1; blue line in
Fig.1b)—Dbecause it does not change sign in the interior—
is often referred as the equivalent barotropic (EBT) mode
(Killworth 1992; Hallberg 1997; Adcroft et al. 2019). The
EBT mode has been adapted for the parameterization of the
vertical distribution of mesoscale eddy diffusivity, e.g., in
the 0.5° version of the GFDL ocean climate model OM4.0
(Adcroft et al. 2019).

A notable feature of the two Sturm-Liouville problems
considered thus far is that the horizontal wavenumbers
do not appear in them, except for the bottom topographic
waves that are not shown. Therefore, the vertical struc-
ture of the normal modes do not depend on the horizon-
tal scales. This property can be attributed to the surface
boundary conditions not including buoyancy anomalies
(i.e., d®/dz =0 at z = 0)—an assumption shared by both
of the flat- and rough-bottom setups.

b. Surface-Trapped Modes

To incorporate surface buoyancy anomalies, a surface-
aware formulation is proposed to include the horizontal
buoyancy gradient at the surface (and bottom), as briefly
outlined here following Smith and Vanneste (2013) as well
as Yassin and Griffies (2022a).

In this modified approach, the eigenvalue problem con-
sists of the same differential equation (3) but with a set of
more general BCs

f? do
N2H dz
f* do
N2H dz

=a(0)(k>+A%)®, at z=0,
(6)
=—a(-H)(kK*+2%)®, at z=-H,
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FiG. 1. The first four vertical normal modes solved from the eigenvalue problem (3) with (a) flat bottom and rigid lid boundaries, and (b) rough
bottom and rigid lid boundaries. The stratification decays exponentially with depth following an e-folding scale of a third of the water depth in both

cases. Each profile of @, is normalized so that L OH (Dfndz /H = 1. Blue, orange, green, and red lines indicate the first, second, third, and fourth
modes. The first mode, @ in (a) is depth independent and called the barotropic mode, while the other modes are baroclinic (BC) modes. The &
mode in (b) is represented by bottom-trapped topographic waves, which are not plotted here. The first mode, @1, in (b) is often called the equivalent

barotropic (EBT) mode.

with a non-dimensional function
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k = (k%+k%)'/2, and B the large-scale buoyancy. The
resulting eigenvalue problem differs from the stan-
dard Sturm-Liouville problem in that the wavenumbers
k, ky, k, and eigenvalue A2 are now part of the BCs. Fol-
lowing Smith and Vanneste (2013), an oceanic special case
is the limit where a(—H) — 0 (i.e., the buoyancy anomaly
vanishes at the bottom) and a(0) — oo (strong horizontal
buoyancy gradient and/or weak vertical stratification at the

surface). The full set of normal modes in this special case

consists of a surface-trapped mode, @, (z; k), satisfying
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The surface boundary condition, ®;|,—¢ = 1, in equa-
tion (8) is set following ®|,—o = 1 [® is normalized by its
surface value in equation (2)], and ®,;,|,-¢ = 0 as derived
in equation (9). The surface BCs indicate that the sur-
face pressure anomaly is dominated by the surface-trapped
mode ;. A few examples of these modes are illustrated
in Fig. 2. Together, the admissible ®; and ®,, form an
orthogonal basis.

Note the similarity between equation (9) and the ear-
lier rough-bottom setup (the surface and bottom BCs are
switched here). Additionally, the vertical structure of the
interior modes does not depend on horizontal scales (see
Fig. 2b).

In contrast, equation (8) explicitly includes the hori-
zontal wavenumber, yielding an outstanding feature of the
surface-trapped mode: Larger eddies (with smaller hori-
zontal wavenumber k) are associated with deeper modes
whose vertical response decays slower with depth (see
Fig. 2a). Because @ has a zero interior PV anomaly



and is driven by a surface buoyancy anomaly—consistent
with the surface QG (SQG) dynamics (Blumen 1978; Held
et al. 1995)—it is also referred to as the “SQG mode.”
The SQG mode is relevant to the oceanic cases where a
horizontal buoyancy gradient intensifies near the surface
(Smith 2007; Capet et al. 2016), and this mode is central
to this paper.

The decomposition given by equations (8) and (9) is con-
sistent with the surface mode in Smith and Vanneste (2013)
[their equation (19)] and is different from that proposed by
Lapeyre and Klein (2006). Lapeyre and Klein (2006) use
a Neumann surface boundary condition (i.e., surface buoy-
ancy anomaly is specified) for the surface-trapped mode,
while ®; here has a Dirichlet surface boundary condi-
tion (i.e., surface pressure anomaly is specified). Studies
have found that the SQG mode using the surface pressure
anomaly is better for reproducing the vertical structure of
EKE than that using the surface buoyancy anomaly (Isern-
Fontanet et al. 2008; Qiu et al. 2016, 2020). More details
are provided in Appendix A.

Both of the surface-trapped and interior modes de-
scribed above assume a flat-bottom condition, i.e., van-
ishing bottom buoyancy anomaly; recall the bottom BCs
in equations (8) and (9). These are the limiting cases of
equation (6) through which more complicated topographic
effects can be included (Lacasce 2017; Yassin and Griffies
2022a) and will be explored in future work.

3. Methods
a. Model Configuration

The numerical model used in this study is an ideal-
ized configuration of the Modular Ocean Model version 6
(MOMBO6). This configuration is named “Neverworld2” by
Marques et al. (2022) and has been used to study mesoscale
eddy parameterizations (e.g., Loose et al. 2022; Yankovsky
et al. 2022). The model domain is a single basin with two
hemispheres using spherical coordinates. The domain ex-
tends from —70°S to 70°N in the meridional direction,
0—-60° in the zonal direction, and has a maximum depth
of 4000 m. The domain is bounded by a 200-m conti-
nental shelf along all side boundaries, except for a zonally
reentrant channel located at 60°S to 40°S, mimicking the
Southern Ocean. A ridge topography orienting meridion-
ally spans the entire meridional extent of the domain. The
ridge has a width of 40° and maximum height of 2000 m.
There is a semi-circular ridge with radius of 10° spanning
0° to 10° longitude and 60°S to 40°S latitude that mimics
the Scotia Arc across the Drake Passage.

The Boussinesq and hydrostatic primitive equations are
discretized in the vertical using isopycnal coordinates, with
a total of 15 isopycnal layers with finer spacing near the
surface in the initial setup. The horizontal grid spac-
ing is 1/32°. The model is driven solely via mechan-
ical forcing from a zonally uniform zonal wind stress

5

that varies meridionally and is fixed in time. There is
no surface buoyancy forcing, no diabatic mixing, nor is
there a mixed layer parameterization (i.e., it is a wind-
driven adiabatic stacked shallow water model). Dissipa-
tion arises from a background kinematic vertical viscos-
ity (A, = 1.0x10™*m?s~!), a dimensionless bottom drag
(C4 =0.003), and the horizontal friction given by a bihar-
monic Smagorinsky viscosity (Griffies and Hallberg 2000).
More details about the model setup and spinup are given
in Marques et al. (2022).

Fig. 3a shows a snapshot of the surface specific kinetic
energy (KE). The black lines correspond to the 500-day
mean sea surface height (SSH) contours, representing the
streamlines of surface geostrophic currents outside the
tropics. The circulation pattern is a caricature of the At-
lantic Ocean, with subtropical gyres and western boundary
currents in both hemispheres. In the northern hemisphere,
there is a subpolar gyre, while in the southern hemisphere,
acircumpolar current prevails in the reentrant channel. The
KE illustrates the prevalence of mesoscale eddies through-
out the domain. The Rossby deformation radius is resolved
over most regions of the model, with the exception be-
ing the continental shelf and very high latitudes near the
boundaries (Yankovsky et al. 2022).

b. Solution for the SOQG Mode

The SQG mode, @, described by equations (8), is diag-
nosed in the stacked shallow water model introduced above.
In this model, the dynamical impact of surface buoyancy
is represented by the surface-layer PV, as described by the
layered QG dynamics detailed in Appendix B and D.

The SQG mode can be determined numerically for re-
alistic stratification profiles. We can also derive an ana-
Iytical solution using the WKB approximation. To get an
analytical form, we assume ®3; — 0 as z — —oo. For each
horizontal wavenumber, k, the WKB solution, ®VXB  is
given to first order by

OYKB = ks (10)

0
N
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is the stretched vertical coordinate with z < 0 and zg < 0 in
the ocean interior.

The Fourier transform of the streamfunction field asso-
ciated with the SQG mode, i/, is

where

(1D

lﬁ;’\’KB — M;Oekzs’ (12)
where i is the same as that in equation (2), which is the
Fourier transform of the streamfunction at the surface.
Equation (10) reveals important characteristics of the
SQG mode, namely, its exponential decay with z; and its
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Fic. 2. Vertical profiles of the (a) surface-trapped mode (i.e., the SQG mode) and (b) interior modes, determined by solving equations (8) and
(9), respectively. The stratification profile is an exponential function of z, as in Fig. 1. The surface mode is calculated for three different horizontal
wavenumbers, 1/(nrg), 2/(nrg), and 8/ (nry), where ry is the Rossby deformation radius of the first flat-bottom baroclinic mode (orange line
in Fig. 1a). Each surface-trapped mode profile is normalized by its surface value. The lines in panel (b) indicate the first four interior modes, each

of which is normalized in the same way as the modes in Fig. 1.

dependence on the horizontal scale of eddies. Smaller
eddies with larger wavenumber, k, decay faster with depth
than larger eddies with smaller wavenumber. The scale
dependence of the SQG mode provides valuable insights
for parameterizating the vertical structure of eddies, as we
discuss in Section 6.

Note that equation (10) differs from the widely used
“eSQG” method in ocean studies (Lapeyre and Klein
2006). The eSQG method assumes a constant N with
depth, determined empirically to account for the impact of
an internal PV gradient (Lapeyre and Klein 2006). In con-
trast, our formula accounts for the vertical variation of N
within the stretched vertical coordinate zg, allowing for a
more accurate representation of the SQG mode itself. For
example, ®VKB decays faster with depth in the thermo-
cline since N is larger there. See also Yassin and Griffies
(2022b) for more on SQG theory with vertically varying
stratification.

4. Vertical Structure of EKE

We analyze the vertical structure of EKE, defined as

1 _—
EKE= (w2+v72), (13)
where the bar, -, indicates a 500-day time mean, and the
prime, -/, is the anomaly relative to the mean and is saved
in snapshots in 5-day intervals. Fig. 3b shows the EKE
along a meridional section indicated by the blue dashed

line in Fig. 3a. The EKE tends to be surface-intensified. It
maximizes at the surface and rapidly decays with depth in
the gyre and low latitudes, while it remains significant in
the deep ocean in the circumpolar current. To examine the
detailed vertical structure, we select four distinct dynamical
regimes, highlighted by the four blue boxes in Fig. 3a, that
are located in the circumpolar current, subtropical gyre,
western boundary current extension, and subpolar gyre.
By examining the vertical profile of EKE in these different
regions, we aim to identify the dynamics that controls the
eddy vertical structure.

a. Comparison to the Vertical Modes

Vertical profiles of EKE in the four selected regions are
shown in Fig. 4. The EKE decays rapidly with depth in
the upper ocean and gradually approaches a constant in the
deep ocean. The barotropic component (i.e., the depth-
independent flat-bottom mode) accounts for about 78% of
the total EKE in the circumpolar current region and about
50% in the other three regions.

The vertical structure of EKE is compared to the struc-
ture predicted by the EBT mode (Section 2a),

Eepr = Eo Pipr. (14)
where Ej is the surface EKE. The square is taken because
®ppt describes the vertical structure of eddy velocity [see
equation (2)].
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FiG. 3. (a) Snapshot of horizontal kinetic energy at the surface. Black lines are contours of the 500-day mean sea surface height (SSH). Blue
boxes labeled a, b, ¢ and d indicate the 8.7° x 8.7° regions where the vertical structure of eddies is analyzed in later figures. Panel (b) shows a
meridional section of the eddy kinetic energy per unit mass along the longitude shown by the blue dashed line in panel (a). Black lines show all the
isopycnals in the model. Blue lines indicate the e-folding depth, &, of the rms eddy velocity (square root of EKE). Green line is the deformation

depth, hy, of the energy-containing scale, introduced in section 4b.

The profile of Egpt is shown by the purple dashed line
in Fig. 4. The EBT mode is surface-intensified, but it
decays more slowly with depth than the diagnosed EKE.
Furthermore, the EBT mode has zero vertical gradient at
the surface due to its boundary condition in equation (5),
whereas the EKE has a strong vertical gradient near the
surface. Another limitation is that the magnitude of the

EBT mode is zero at the bottom, but the EKE can be
significant at the bottom even with strong gradients in the
bottom topography.

The vertical gradient of eddy velocity near the surface
indicates that the surface-layer PV plays an important role
in the vertical structure of EKE, thus motivating us to com-
pare the vertical structure of EKE to the SQG mode. The
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FiG. 4. Vertical profiles of the horizontally averaged EKE (solid blue lines with dots) in the four labeled regions in figure 3. The four regions are
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is the vertical structure of the EBT mode.

WKB solution of the SQG mode, equation (10), gives the
vertical structure of the SQG mode at each wavenumber.
If we know the surface streamfunction spectrum, xﬁo, the

vertical structure of EKE reproduced by the SQG mode,

WKB
ESQG ’
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The green dashed lines in Fig. 4 show the WKB solution
of the SQG mode, Eg‘ggg where o = gfi/ f is estimated
from Fourier transform of the SSH field, 5, within the four
regions indicated by the blue boxes in Fig. 3a. To check
the accuracy of the WKB solution, we also compute the
numerical solution of ®; according to equation (15). The
numerical solution of SQG EKE, ES - is plotted as the
orange dashed line, which is close to the WKB solution.

The SQG mode captures the near exponential decay of



EKE well in all the regions, with the exception of the
subtropics, where EKE decays slower than the SQG mode
(though faster than the EBT mode). The discrepancy in
the subtropics indicates a nonnegligible role of interior
modes, equation (9). Overall, the SQG mode matches the
vertical structure of EKE better than the EBT mode. This
finding suggests that the surface PV plays an important
role in setting the vertical structure of EKE. This result
is consistent with previous studies showing how the eddy
vertical structure can be reconstructed by the SQG mode
in realistic ocean simulations (Klein et al. 2009; Isern-
Fontanet et al. 2008; Qiu et al. 2016, 2020).

b. Relating to the Energy-Containing Scale

Reconstruction of the vertical structure based on the
SQG mode, equation (15), requires knowledge of the sur-
face energy spectrum, k2[o|?, which is unavailable in
coarse-resolution simulations. The surface energy spec-
trum is usually dominated by a peak, which indicates the
energy-containing scale (surface energy spectra in the four
regions are shown in Fig. 5). This feature suggests that
the eddy vertical structure may also be dominated by the
energy-containing eddy. The energy-containing wavenum-
ber, k¢, can be estimated following Thompson and Young
(2006) and Zhang and Wolfe (2022),

(16)

where 1" is the spatial SSH anomaly, and () indicates a
spatial average over each of the four box regions in Fig. 3.

The k¢ estimated by equation (16) is shown by the black
dashed line in Fig.5. This estimate is generally close to the
peak of the energy spectrum. We then estimate the SQG
mode structure at the energy-containing scale,

Egq = Eoe™%,

a7

which can be calculated at each grid point without Fourier
analysis.

The vertical structure given by equation (17) is shown by
the red dashed line in Fig. 4. It works similarly well as the
SQG solution based on the full energy spectrum, meaning
that the vertical structure of EKE can be represented by the
SQG mode structure at the energy-containing scale.

Equation (17) also indicates a relation between the hor-
izontal and vertical scales of EKE. Here we measure the
vertical scale of EKE as the e-folding depth, %,, of the rms
eddy velocity (i.e., VEKE|,=_p, = VEKE|;~0/e). From
equation (17), we can also estimate the e-folding depth of
the SQG mode at the energy-containing scale, kg, deter-

mined by z; = kal,

0 N .,
which is also called the deformation depth of wavenumber
ko (Pierrechumbert and Swanson 1995). If N is constant
with depth, then ho =k, | £|/N; if not, which is the case in
our model, it is solved numerically from equation (18). If
equation (17) is a good approximation of the EKE vertical
structure, then /¢ should be equal to 4.

The e-folding depth, h., and the deformation depth of
the energy-containing scale, s, are compared in the merid-
ional section in Fig. 3b. They compare well to each other in
the extra-tropical regions (poleward of 20°), which is con-
sistent with the good comparison between the EKE vertical
structure and SQG mode in these regions in Fig. 4. In the
tropics, hg decreases to zero toward the equator due to the
decreasing magnitude of Coriolis parameter, |f|, in equa-
tion (18), while &, remains around 1000-2000m. The large
fluctuations of 4, in the tropics might be due to the spatial
variability of strong undercurrent and equatorial waves.

The comparison between 4, and hg at other meridional
sections is similar to that in Fig. 3b. The e-folding depth,
h., for the eddy velocity is generally shallower than a half of
the water depth. The SQG mode captures the vertical struc-
ture of EKE well in the extra-tropical regions, while it is
shallower than the EKE profile in the tropics. Fig. 3a shows
that the kinetic energy pattern is wave-like in the tropics,
indicating that EKE is dominated by linear waves there,
while in the extra tropics, the flow field contains abundant
coherent vortices, indicating the dominance of nonlinear
eddies. Previous studies have shown that the eddy flux
is dominated by linear waves and nonlinear eddies in the
tropics and midlatitude ocean, respectively, leading to dif-
ferent scalings of eddy mixing in these regions (Klocker
and Abernathey 2014; Zhang and Wolfe 2022). We expect
that equation (17) is effective in describing the vertical
structure of EKE for nonlinear eddies, which are dominant
in the extra-tropical ocean (Chelton et al. 2011).

5. Why is the Vertical Structure SQG-like?

In section 4, we have seen that the EKE structure tends
to be SQG-like. Here, we discuss the underlying physics
by showing: (i) the EKE profile is consistent with the dis-
tributions of the eddy PV and large-scale meridional PV
gradient; (ii) the surface meridional PV gradient yields
baroclinic instability that produces surface-trapped unsta-
ble modes; (iii) the kinetic energy created by baroclinic in-
stability cascades upscale in the form of a surface-trapped
mode, resulting in an SQG-like EKE profile dominated by
the energy-containing eddy.
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a. PV Structure

SQG prescribes a zero interior PV anomaly. To examine
this assumption, the rms eddy PV, gns, is computed as

qrms = \/p,

where ¢ is the QG PV, estimated by equation (B1) in Ap-
pendix B. Fig. 6a shows the distribution of the rms eddy
PV at the same meridional section as Fig. 3b. The eddy
PV peaks at the surface layer and becomes about an or-
der of magnitude smaller in the interior layers, which is

19)

consistent with the SQG-like EKE structure in the midlati-
tudes. In the subtropics (10° —25°), the PV also intensifies
at about 400 m, which might be why the EKE structure is
less SQG-like in these regions.

The distribution of eddy PV is associated with the large-
scale meridional PV gradient, Q,, structure, shown in
Fig. 6b. The meridional PV gradient is estimated from
equation (C3) in Appendix C for the layered shallow water
model. The magnitude of meridional PV gradient peaks
at the surface due to the isopycnal outcropping. The in-
terior PV gradient is weak compared with the surface PV
gradient, especially in the upper 1000 m in the mid- and



high-latitudes (poleward of 30°). The weak interior PV
gradient is likely due to the isopycnal mixing by eddies,
which act to homogenize the PV within closed geostrophic
contours in the interior (Rhines and Young 1982a,b). The
large-scale PV structure shown in Fig. 6b is consistent with
observations of upper-ocean circulations (Keffer 1985; Tal-
ley 1988; Pedlosky and Pedlosky 1996). The presence
of such a large-scale PV structure is responsible for the
surface-intensified eddy PV distribution in Fig. 6a.

Besides the surface intensification, the magnitude of
the PV gradient also intensifies in the near-bottom layers
in the circumpolar current, which is consistent with the
distribution of eddy PV in this region. In the subtropics,
the PV gradient also peaks at about 400 m due to the
flattening of isopycnals at the interior pycnocline. This
pronounced interior PV gradient is likely the cause of the
strong subsurface eddy PV and the deviation of EKE profile
from SQG in the low latitudes. Quantitative analyses of
the impact of the PV gradient on the eddy vertical structure
is given in the next section.

In addition to the variation of magnitude, the meridional
PV gradient also tends to change sign from surface to the
interior. In the mid- and high-latitudes (except for the cir-
cumpolar current), the meridional PV gradient is positive
at the surface layer, negative at layers below the surface,
and positive again in the deep ocean. In the circumpolar
current, the PV gradient is positive at the surface, remains
weak in the interior, and becomes negative in the deep
ocean. A similar distribution of the meridional PV gradient
is found by Tulloch et al. (2011) (their figure 2a) based on
oceanic reanalysis climatology. Tulloch et al. (2011) also
reveals a positive surface PV gradient in the subtropics, a
feature that is missing in our simulation. Fig. 6b shows that
the surface PV gradient is negative in the subtropics due
to the upward isopycnal slope toward the equator, while
in the real ocean, surface buoyancy forcing can generate
a negative surface buoyancy gradient (equivalent to a pos-
itive surface PV gradient) by reversing the near-surface
isopycnal slope in the subtropics. Since the Neverworld2
model is forced by wind stress only, this positive surface
PV gradient is not captured by the simulation.

b. Linear Stability

The meridional PV gradient is often found to play a
crucial role in oceanic baroclinic instability, which is an
important energy source for mesoscale eddies (Smith 2007;
Tulloch et al. 2011; Capet et al. 2016). A necessary con-
dition for baroclinic instability is for the background hori-
zontal PV gradient to change sign in the vertical, which is
a typical feature of the meridional PV gradient shown in
Fig. 6b.

We analyze baroclinic stability in the four regions dis-
cussed in section 4. The vertical profiles of the meridional
and zonal PV gradients in the four regions are shown in
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Fig. 7. Fig. 8 shows the distribution of the growth rate,
o, of unstable modes, which are solved from the eigen-
value problem described by equation (C6) in Appendix C.
Fig. 9 shows the vertical structure of the most unstable
mode, indicated by the cyan point in Fig. 8. The orange
dashed line indicates the SQG mode at the same horizon-
tal wavenumber as the unstable mode. We compare the
vertical structure of the most unstable mode with the SQG
mode and connect this result to the interpretation of the
EKE profile in these four regions.

In the circumpolar current, the interior PV gradients are
about ten times smaller than the surface and bottom gradi-
ents. The surface and bottom meridional PV gradients are
opposite to each other, which gives rise to unstable modes
at scales larger than the deformation radius. The vertical
structure of the most unstable mode intensifies at both sur-
face and bottom, which is a typical feature of the Eady-type
instability arising from the interaction between the surface
and bottom edge waves (Eady 1949). The Eady unsta-
ble mode is also observed in the Southern Ocean (Tulloch
etal. 2011; Feng et al. 2021). The unstable mode is similar
to the SQG mode in the upper ocean but not in the deep
ocean because of the bottom intensification of the unsta-
ble mode. Conversely, the vertical structure of EKE only
shows a slight intensification near the bottom and appears
more like the SQG mode than the unstable mode in this re-
gion (Fig. 4a). The difference between the unstable mode
and EKE is likely due to the strong damping by friction at
the bottom, thereby reducing the bottom intensification of
EKE.

In the western boundary current and subpolar regions,
both the meridional and zonal PV gradient changes sign
near the surface. The meridional PV gradient is generally
stronger than the zonal gradient, except near the bottom,
where the zonal PV gradient is large due to the ridge topog-
raphy. The most unstable mode occurs at scales smaller
than the deformation radius in these two regions. The
vertical structure of the most unstable mode is surface-
intensified, indicating a Charney-type instability arising
from the interaction between surface edge waves and inte-
rior Rossby waves (Charney 1947). These unstable mode
structures are consistent with those observed in the Gulf
Stream and North Pacific regions (Tulloch et al. 2011;
Capet et al. 2016). The vertical structure of unstable mode
resembles the SQG mode, similar to the vertical structure
of EKE in the two regions (figure 4c and 4d).

Although the meridional PV gradient also changes sign
at 500-1000 m depth, nearly all unstable modes are
surface-intensified in the western boundary current and
subpolar regions (not shown), indicating that the instabil-
ity is always associated with surface edge waves. The
Rossby wave propagates eastward in the negative PV gra-
dient layers and westward in the positive PV gradient layers
below (the zonal mean flow is eastward above 1000 m and
becomes weak below), so they cannot couple to each other
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due to the mismatch between their zonal phase speeds.
Consequently, the sign change of meridional PV gradient
at 500-1000 m does not lead to the Phillips type instability
(Phillips 1954) in the interior. For the same reason, the
zonal PV gradient also does not induce Phillips instability
in the deep ocean, although the bottom zonal PV gradient
is strong due to the topography.

In the subtropics, the meridional PV gradient is nega-
tive at the top layer (note that the real ocean has a positive
surface PV gradient above the top layer here) and posi-
tive in the interior. Such a PV gradient profile induces
Charney-type instability—the growth rate of the unstable
mode maximizes at scales smaller than the deformation ra-
dius, and the vertical structure of the most unstable mode is
surface-intensified. This unstable mode structure is similar
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to that observed in the subtropical Atlantic Ocean (Tulloch
et al. 2009), despite the absence of a positive surface PV
gradient in the subtropics in our simulation. The unstable
mode also exhibits a subsurface maximum, which devi-
ates from the SQG mode. This subsurface intensification
is likely attributed to the intensified meridional PV gradi-
ent at around 400 m due to the rapid vertical variation of
isopycnal slope at the pycnocline in this region (Figs. 6b
and 7b). Such subsurface intensification of unstable modes
might contribute to the deviation of the vertical structure
of EKE from the SQG mode in this region (Fig. 4b).
Lapeyre (2009) also notes that the SQG mode con-
tributes a minor fraction to the velocity variance in the
subtropical Atlantic Ocean based on a realistic simulation.
This suboptimal performance of SQG mode is attributed
to the negative correlation between interior and surface
meridional PV gradients near the surface, a pattern akin to

the observation that meridional PV gradient changes sign
near the surface in the subtropics in our model (Fig. 7b).
In the western boundary current and subpolar regions, the
meridional PV gradient also changes sign in the upper
ocean, consistent with Lapeyre (2009)’s Fig. 12a where
the regression of PV on surface buoyancy is negative at
200-500 m in the Gulf Stream and North Atlantic Current.
We attribute the good performance of SQG mode in these
two regions to the significantly weaker negative PV gradi-
ent in the upper ocean compared to the positive surface PV
gradient (Fig. 7c and 7d).

The resemblance between the unstable modes and SQG
mode is attributed to the large-scale PV structure, shown
in Fig. 6b, manifesting as a much stronger surface merid-
ional PV gradient than an interior PV gradient. Although
the large-scale circulations are purely wind-driven in our
shallow water model, similar PV structure has been ob-
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served in the ocean (Talley 1988; Tulloch et al. 2011).
As a result, the Charney- and Eady-type instabilities have
been found to be prevalent in the midlatitude ocean (Capet
et al. 2016; Feng et al. 2021), consistent with the results of
our simulation. Phillips-like instability, characterized by
subsurface-intensified unstable mode structures, has also
been observed in the subtropical and midlatitude ocean,
particularly during the summer (Feng et al. 2022). The
relatively rare occurrence of such subsurface-intensified
instability in our model may be attributed to the absence
of surface buoyancy forcing. Such forcing is known to
enhance the near surface stratification during the summer,
reducing the prevalence of Charney instability (Capet et al.
2016). The cases discussed here are thus more relevant to
ocean situations during the winter and spring.

The surface PV gradient also plays an important role
in the mixed-layer instability, which is not present in our
model due to its lack of a mixed layer. Eddies generated
by mixed-layer instability exhibit characteristics similar to
the Eady mode within the mixed layer and resemble SQG
modes below the base of the mixed layer (Callies et al.
2016). Mixed-layer instability is thus analogous to the
Charney instability in its ability to generate surface-trapped

unstable modes, with the distinction that the “surface” for
the former shifts to the base of the mixed layer.

¢. Role of the Energy Cascade

Linear stability analysis does not account for the energy
cascade arising from nonlinear interactions. We here di-
agnose the kinetic energy budget to identify the role of

nonlinear advection in the eddy vertical structure. The
layer-wise KE equation is

0KE

Tn =-u,-(u,-Vu,)-u, -VM, +u,-F,, (20)

where M, is the Montgomery potential, F,, contains the
wind stress and bottom friction, as well as vertical and
horizontal viscous friction.

The first term on the RHS of equation (20) is the KE ten-
dency due to nonlinear advection, which is not accounted
for in the linear stability analysis. The role of nonlinear
advection is examined by decomposing it in spectral space.
The cospectrum of the nonlinear advection, T;,, is calcu-
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lated as

T, =-Re 1)

f(eru)]

where Re(+) indicates taking the real part, (-)* is the com-
plex conjugate, and - indicates a 500-day average.

The advection term, 7, quantifies the spectral tendency
of KE due to the KE cascade between horizontal wavenum-
bers. The positive and negative values of T,,(k) indicate
that energy cascade deposits and removes KE, respectively,
for eddies at the corresponding wavenumber, k. The time
tendency term on the LHS of equation (20) is close to zero
when taking a long-time average. In this case, the energy
cascade balances the net energy source or sink due to the
work by the horizontal pressure gradient [second term on
the RHS of equation (20)], forcing and dissipation [third
term on the RHS of equation (20)] at each wavenumber.

The work by the horizontal pressure gradient includes the
contribution from the divergence of 3D energy transport
by pressure and the conversion of potential energy (PE) to
KE due to baroclinic instability (Capet et al. 2008).

Fig. 10 shows the distribution of 7, at horizontal
wavenumber and depth in the four regions. The vertical
structure of T, is generally surface intensified and decays
faster with depth at smaller scales (larger wavenumbers),
which is consistent with characteristics of the SQG mode.
In the circumpolar current, the energy cascade removes
energy at around the deformation radius. This energy sink
due to the energy cascade intensifies at both the surface
and bottom, which is consistent with the unstable mode of
the Eady instability at this region (section 5b), indicating
that the energy cascade balances the baroclinic instability
at these wavenumbers. At the other three regions, the en-
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ergy cascade mainly removes energy from scales smaller
than the deformation radius. This energy sink concen-
trates near the surface, which is likely to balance the energy
source due to the Charney baroclinic instability in these re-
gions. There is also an energy sink at small wavenumbers
at around 1000 m in the subtropical and subpolar regions,
though it is about an order of magnitude smaller than the
value of 7}, at the surface. This sink is likely to balance the
baroclinic instability at small wavenumbers in these two
regions (see the growth rate distribution in Fig. 8).

The energy cascade deposits energy at scales larger than
the deformation radius in all the four regions (red color
in Fig. 10). This energy source due to energy cascade

maximizes at the energy-containing scale (purple dashed
line in Fig. 10), where it is balanced by energy conversion
from KE to PE and friction (not shown). The vertical
distribution of the energy source remains surface-trapped
at the energy-containing scale, giving rise to the SQG-like
EKE profile there.

The energy cycle shown by Fig. 10 is illustrated by
the schematic in Fig. 11, which is motivated by a simi-
lar schematic in Roullet et al. (2012). The forcing inputs
PE to circulation at the large scales. The PE is converted to
KE at scales that are close to or smaller than the deforma-
tion radius through baroclinic instability. The baroclinic
instability is generally dominated by the surface PV gra-



dient, which gives rise to surface-trapped unstable modes.
These unstable modes cascade KE from small scales to
large scales through their nonlinear interactions until the
cascade is halted at the energy-containing scale. Conse-
quently, the vertical structure of EKE is dominated by the
mode structure at the energy-containing scale, which is
deeper than the original unstable modes but still remains
surface-trapped.

6. A Scale-Aware Parameterization

Section 4 shows that SQG modes play an important role
in setting the vertical structure of EKE. How can this find-
ing inform a parameterization of the eddy vertical struc-
ture? A crucial property of the SQG mode is the coupling
of its vertical and horizontal scales. As shown by the an-
alytical expression (10), smaller horizontal scale eddies,
which have a larger horizontal wavenumber, decay more
rapidly with depth than larger eddies. In the context of eddy
parameterization, the focus is on representing the subgrid
EKE that is unresolved by the model. As the model grid
spacing is refined, the scale of unresolved eddies becomes
smaller, resulting in a shallower vertical structure of sub-
grid EKE. This result suggests that parameterization of the
vertical structure of subgrid EKE should depend explicitly
on the model grid spacing.

To examine the scale dependence of the eddy vertical
structure, we employ high-pass spatial filters on the eddy
velocity fields to compare the vertical structure at different
horizontal scales. Fig. 12 shows the normalized vertical
structures for eddies smaller than 27/0.25°, 27/0.5°, and
2m/1°, represented by the solid blue, orange, and green
lines, respectively. The vertical structure of EKE becomes
shallower as the horizontal scale becomes smaller. This
finding is consistent with the prediction by SQG, highlight-
ing the scale dependence of the eddy vertical structure.

To represent the scale-dependent eddy vertical structure
at different model resolutions, we propose a scale-aware
parameterization of the normalized EKE profile, E,,

E, = ke, (22)
with

kg =max (ko, c/A), 23)

where A is the model grid spacing, and ¢ is a dimension-
less constant, which will be a tuning parameter. The ratio,
¢/A, is proportional to the largest wavenumber resolved
by the model with grid spacing A. The constant ¢ is on
the order of 1 and determined by the minimum number of
grid points needed to resolve a wavelength (¢ = 1 means
that the model needs about 6 grid points to resolve a wave-
length since 27/6A ~ 1/A). If kg > c¢/A, that means the
energy containing scale is unresolved by the model, so
the vertical structure of the subgrid EKE is dominated by
the energy-containing wavenumber ko. If kg < c/A, the
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energy-containing scale is resolved, so the vertical struc-
ture of subgrid EKE will be dominated by the largest re-
solved wavenumber (i.e., ¢/A).

To evaluate the effectiveness of the parameterization
(22), we conduct tests by varying A to 0.25°, 0.5°, and 1°
and assume ¢ = 1, which means we assume a minimum of
6 grid points is required to resolve an eddy. Fig. 12 shows
that the parameterization profiles, estimated by equation
(22), look similar to the vertical structure of subgrid EKE
in 0.25°, 0.5°, and 1° model grid spacings, with the excep-
tion for the subtropics where the parameterization tends to
decay faster than the subgrid EKE. This result is consis-
tent with the comparison between the SQG mode and total
EKE in Fig. 4.

The parameterization based on equation (22) requires
a prediction of the energy-containing scale. Studies have
estimated the energy-containing scale as the Rossby defor-
mation radius (Stone 1972), width of the baroclinic zone
(Visbeck etal. 1997), Eady length scale (Larichev and Held
1995; Jansen et al. 2015), and Rhines scale (Jansen et al.
2015, 2019). Examination of these theories for predicting
the eddy scale is beyond the scope of this study and will
be pursued in forthcoming work.

7. Discussion and Conclusions

This study addresses the question of why ocean
mesoscale eddies are surface intensified—at least those re-
alized within our adiabatic and wind-driven shallow water
model—with an aim to parameterize the vertical structure
of mesoscale eddies. Unlike previous studies that explain
the eddy vertical structure from the perspective of baro-
clinic modes (Wunsch 1997; de La Lama et al. 2016; La-
casce 2017; Brink and Pedlosky 2020; Quan et al. 2023),
we attribute the eddy vertical structure to the baroclinic
instability and the energy cascade. The vertical structure
of EKE is found to be well-represented by a single SQG
mode of the energy-containing scale in the extra tropics,
indicating that the surface PV plays a dominant role in the
vertical structure of mesoscale eddies.

a. Baroclinic instability and the surface-trapped mode

The prevalence of the SQG mode is attributed to the
surface-trapped baroclinic instability and energy cascade.
Although the model used in this study does not have sur-
face buoyancy forcing, the wind forcing induces isopycnal
outcropping, leading to pronounced surface meridional PV
gradients. The interior PV gradient is much weaker com-
pared with the surface PV gradient due to the interior
PV homogenization by eddies. Linear stability analysis
shows that the surface PV gradient plays a dominant role
in baroclinic instability, giving rise to surface-trapped un-
stable modes. These unstable modes are often smaller than
the Rossby deformation radius, except in the circumpolar
current where they are close to the deformation radius.
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Fic. 11. Energy schematic modified from Roullet et al. (2012). The forcing supplies available potential energy (upper horizontal lines). The
available potential energy cascades to smaller scales and is then converted to kinetic energy (lower horizontal lines) through baroclinic instability
(blue arrows) at a broad range of horizontal scales that are close to or smaller than the deformation radius, 1/k,4. The unstable modes arising from
the instability are surface-trapped, which decay faster with depth at smaller scales. The kinetic energy of these unstable modes cascades from small
scales (shallow modes) to large scales (deep modes) until the cascade is halted at the energy-containing scale, 1/kg. Part of the kinetic energy is
dissipated by the friction and the remainder is converted back to available potential energy (orange arrows) at around the energy-containing scale.

Through nonlinear interactions, unstable modes transfer
their kinetic energy upscale to energize mesoscale ed-
dies, which have an energy-containing scale larger than
the deformation radius but retain the surface-trapped ver-
tical structure.

Early geostrophic turbulence theory shows that baro-
clinic eddies tend to transfer their energy to the barotropic
(depth independent) mode, and then barotropic eddies cas-
cade their energy upscale (Charney 1971; Salmon 1980).
Later studies have found that ocean eddies are not fully
barotropic, and as a consequence, the inverse energy cas-
cade can occur in both the barotropic and baroclinic modes
(Smith and Vallis 2001; Scott and Arbic 2007). In this
study, we propose a different interpretation of the eddy
energy cycle. Instead of decomposing the energy into
the barotropic and baroclinic modes, we find that the en-
ergy cascade can directly occur among surface-trapped
modes. The vertical and horizontal scales of these surface-
trapped modes are coupled—smaller eddies decay faster
with depth. Consequently, as eddies transfer energy to
larger horizontal scales, they also grow deeper, in align-
ment with the barotropization tendency of geostrophic tur-
bulence (Charney 1971; Salmon 1980). Although eddies
can become nearly barotropic if their horizontal scales are
an order of magnitude larger than the deformation radius,
the inverse energy cascade tends to be halted at a scale
that is comparable to the deformation radius. As a result,
the vertical structure of energy-containing eddies is surface
intensified, similar to the SQG mode.

b. Parameterization of vertical structure based on SQG

The vertical structure of EKE depends on the horizontal
scale, with smaller eddies decaying faster with depth. This
feature suggests that the parameterization of eddy vertical
structure should account for the horizontal scale of unre-
solved eddies. As the model grid spacing becomes finer,
the unresolved eddies will be smaller and have a shal-
lower vertical structure. Based on the WKB solution of
the SQG mode, we propose a scale-aware parameteriza-
tion of the vertical structure of EKE [equations (22) and
(23)]. This parameterization requires the specification of
an eddy horizontal scale that depends on the model grid
spacing. If the energy-containing scale is not resolved,
the vertical structure parameterization is determined by
the energy-containing scale itself. On the other hand, if
the energy-containing scale is resolved—which may be
the case in eddy-permitting models now being used for
climate studies (e.g., Adcroft et al. 2019)—the vertical
structure parameterization is determined by the largest un-
resolved scale that is proportional to the horizontal grid
spacing. This parameterization is shown to capture the
vertical structure of EKE filtered with different horizontal
scales, so that it can be useful for both non-eddying and
eddy-permitting simulations.

Full closure of the vertical structure parameterization
requires a prediction of the horizontal energy-containing
scale. The energy-containing scale is associated with the
mechanism that halts the inverse energy cascade; for ex-
ample, bottom friction and the planetary vorticity gradient
(Rhines 1975; Larichev and Held 1995). Prediction of
such an eddy length scale has been the focus of many stud-
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FiG. 12. The vertical structure of spatially filtered EKE in the four regions shown in Fig.4. Blue, orange, and green solid lines are the high-pass
filtered vertical structure of EKE with cutoff wavenumber as 1/0.25°, 1/0.5°, and 1/1°, respectively. They represent the vertical structures of
subgrid EKE that is unresolved by 0.25°, 0.5°, and 1° models, assuming a minimum of six grid points is required to resolve an eddy. All EKE
profiles are normalized by their surface values. Blue, orange, and green dashed lines are the parameterized vertical structure E;, (z,A). E,, depends
on the model grid spacing A and the energy-containing wavenumber kg. The vertical structure of subgrid EKE is determined by A at 0.25° and
0.5° resolutions, where the energy-containing eddy is resolved, and by kg at 1° resolution. The parameterization captures the scale dependence

reasonably well, except for an underestimation in the subtropical region.

ies (Larichev and Held 1995; Held and Larichev 1996;
Thompson and Young 2006; Jansen et al. 2015; Kong and
Jansen 2017; Chang and Held 2019; Gallet and Ferrari
2020; Chang and Held 2021; Gallet and Ferrari 2021).
The SQG mode does not fully capture the vertical struc-
ture of EKE in the lower latitudes and tropics. Previous
studies reveal that the scaling for eddy mixing is differ-
ent between the tropics and midlatitude ocean due to the

dominance of linear waves (tropics) versus nonlinear ed-
dies (extra tropics) (Klocker and Abernathey 2014; Zhang
and Wolfe 2022). Parameterization of the eddy vertical
structure in the tropics requires additional work, though
eddies there are mostly large enough to be well resolved by
models targeted for climate simulations in the near future
such as Adcroft et al. (2019).
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c. Prospects and future work

Many previous studies consider the importance of bot-
tom topography in causing the surface intensification of
ocean eddies (Aoki et al. 2009; de La Lama et al. 2016;
Lacasce 2017; Quan et al. 2023). Bottom topography can
decouple abyssal eddies from upper-ocean eddies, leading
to baroclinic modes with zero horizontal velocity at the
bottom (Rhines 1970; Samelson 1992; Hallberg 1997; Bo-
brovich and Reznik 1999; Tailleux and McWilliams 2001).
We find that the first rough-bottom mode (the EBT mode),
with zero horizontal velocity at the bottom, does not de-
scribe the vertical structure of EKE well in our simulation.
This limitation arises from the EBT mode’s ignorance of
the surface buoyancy anomaly, which we find to be essen-
tial for reconstructing the eddy vertical structure. In fact,
both the surface buoyancy and bottom topography can be
incorporated in the general boundary conditions, described
by equation (6), of vertical modes (Lacasce 2017; Yassin
and Griffies 2022a). The vertical mode accounting for both
effects will be explored in future work.

The model used in this study does not have a mixed layer,
which can change the quantitative analyses of the instability
and eddy energetics but, we expect, will not qualitatively
change the role of surface PV in the vertical structure.
Mixed layer baroclinic instability provides another impor-
tant energy source for submesoscale eddies, which can
cascade their energy upscale to energize mesoscale eddies
(e.g., Fox-Kemper et al. 2008b; Sasaki et al. 2014; Callies
et al. 2016; Schubert et al. 2020; Dong et al. 2020; Khatri
etal. 2021). Callies et al. (2016) shows that the energy gen-
erated by mixed layer instability resides in the SQG mode,
where the energy cascades upscale to the largest, most ener-
getic eddies. This energy cascade is similar to our finding,
with the difference that the SQG mode is mainly excited by
the surface Charney instability in our model. The mixed-
layer instability thus may play a similar role to the Charney
instability in enhancing the surface-trapped mode. In a
more realistic numerical setup, the mixed layer and Char-
ney instabilities can coexist, with the relative importance
between them depending on the depth of the mixed layer,
stratification, and lateral buoyancy gradient in the upper
ocean (Capet et al. 2016; Zhang et al. 2023).

This study serves as a step forward to understand and
parameterize the eddy vertical structure by emphasizing
its dependence on the horizontal scale, resulting from the
impact of surface PV. The parameterization, described by
equation (22), is ripe to be tested in non-eddying and eddy-
permitting simulations after combining it with a closure of
the horizontal energy-containing scale (e.g., Jansen et al.
2015, 2019). We are planning to apply this vertical struc-
ture to the kinetic energy backscatter parameterization that
has recently been used in both idealized and realistic eddy-
permitting simulations (Jansen et al. 2019; Juricke et al.
2019, 2020; Yankovsky et al. 2023; Chang et al. 2023).

Other aspects, including the impacts of bottom topography
and mixed layer, will also be incorporated in this scheme
to predict the eddy vertical structure in more realistic situ-
ations.

As the Surface Water Ocean Topography (SWOT) satel-
lite has become operational, the SQG schemes proposed
here [equation (15) or (17)] can be a useful tool for re-
constructing the upper-ocean eddy fields using the sea sur-
face height field from SWOT. Since the surface-intensified
Charney instability has been found to be prevalent in the
mid-latitude oceans, particularly during the spring and
winter (Capet et al. 2016; Feng et al. 2021, 2022), our
schemes are physically justified to interpret and infer the
eddy vertical structure in these regions. Such schemes can
be evaluated by comparing to observations of full-depth
eddy profile (Ni et al. 2023).
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APPENDIX A

Comparison of the Surface-Trapped Mode to the
Solution in Lapeyre and Klein (2006)

The orthogonal basis derived from equations (8) and (9)
is different from that in Lapeyre and Klein (2006). They
proposed a decomposition of the eddy streamfunction
into a surface component Y, satisfying

0 ([ Wsur
Vz sur T - | 5 =Y,
Wour + 0z (N2 0z 0
8'#8[]1‘ — E’ (Al)
0z lz=0 f
8lﬁsur
T sur -0,
6z z=—H

and an interior component ¥, satisfying

6 fz awint
Vz i I\ |=9
Wioe + 07 (N2 0z 1
a‘/’int =0, (A2)
0z 1z=0
Ew’int —
8z z=—H

Here by is the surface buoyancy anomaly and g the PV,
with the bottom boundary condition specified following
Lapeyre (2009). Note that in equations (8) and (9) we use
@ for the vertical mode in contrast to ¥, and ;,, here.
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The interior solution, ¥in, is driven by interior PV
anomalies and can be projected onto the flat-bottom modes
satisfying equations (3) and (4). The surface solution, Y,
is driven by surface buoyancy anomalies. Although yg,,
and the surface-trapped mode ®; [described by equation
(8)] share certain properties (i.e., zero interior PV anomaly
and horizontal wavenumber dependence), they satisfy dif-
ferent surface buondary conditions—g,, satisfies a Neu-
mann surface boundary condition (i.e., surface buoyancy
anomaly is given) while @ a Dirichlet surface boundary
condition (i.e., surface pressure anomaly is given). The
derivation of ®; [equation (8)] indicates that when the
mean surface PV gradient becomes much stronger than the
interior gradient, the surface-trapped mode ®; will dom-
inate the surface pressure anomaly, while interior modes
®,,, will have zero surface pressure anomaly. We call @
as the SQG mode, because it has zero interior PV anomaly
and is dynamically driven by the surface buoyancy/PV
anomaly, while interior modes ®,,, are driven by both sur-
face and interior PV anomalies.

Although ¥, of Lapeyre and Klein (2006) uses surface
buoyancy anomaly as the boundary condition, later studies
have modified its surface boundary condition to incorpo-
rate surface pressure (or SSH) anomaly and find such a
formulation (i.e., @) successfully reconstructs the verti-
cal profile of EKE and vertical velocity in both idealized
and realistic ocean simulations (Klein et al. 2009; Isern-
Fontanet et al. 2008; Qiu et al. 2016, 2020). Conversely,
studies employing ., estimated from surface buoyancy
anomaly, reveal its limited contribution in reconstructing
the eddy vertical structure (Wang et al. 2013; LaCasce and
Wang 2015). Isern-Fontanet et al. (2008) find that ¢, re-
constructs the vertical structure of buoyancy and velocity
well only in the upper 100-200 m, while @, reconstructs
the buoyancy and velocity well from the base of mixed layer
to at least 1000 m in North Atlantic Ocean (their figure 8
and 9). They attribute the error of iy, to the deviation of
surface buoyancy from its value at the base of the mixed
layer due to the presence of mixed layer processes.

APPENDIX B

Surface PV in Layered Quasigeostrophic Models

Eddies in the shallow water model, described in Section
3a, are analyzed based on layered quasigeostrophic (QG)
dynamics. The eddy streamfunction ¢ can be obtained
from the distribution of the QG PV, ¢, by inverting the
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where J is the Jacobian, U = Ui+ Vf, U and V are the
background zonal and meridional velocities, and Q is the
background PV estimated as

Q=SVx+(B-SU)y, (C2)

where Q = [Ql, cee Qnm]T’ U= [Ub e Unm]T, and

relation
2
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(B1)
where (+), indicates the property on the n-th layer, H,, is
the layer thickness, f is the Coriolis parameter, n,, = 15 for
our simulations, and g, is the reduced gravity, computed
as

’ Pn+l —Pn
gl’l = g - >
PO

where g = 10 m2 s P is the uniform layer density, and
po = 1000 kg/m? is the reference density. We emphasize
that n in this paper is used to label the discrete layer num-
ber in the stacked shallow water model, whereas m was
introduced earlier and denotes the vertical eigenmode.

In matrix form, the relationship between Q =

[ql, RN q,,m]T and ¢ = [wl, e wnm]T can be written
as

(B2)

Q= (S+]IV2) ¥, (B3)

where I is the N X N identity matrix, and S is the stretching
matrix written as

1

1t _1_ 0 0
ngi ngi
S= f2 [ B B i
= 7 7 7 7
—f Hng, | Hng, | Hngpn Hngp
0 0 1 _ 1
Hnmg;lm,] Hnpy, g;zm—l

Surface buoyancy is not explicitly simulated in a stacked
shallow water model. Even so, its dynamical impact is sim-
ilar to that of the surface-layer PV, ¢;. The streamfunction
due to SQG dynamics, 1, is equivalent to the streamfunc-
tion induced by the surface-layer PV,

Ps = (S+IV)7'Qs. (B4)

where Qq = [¢1,0,---,0]™.

APPENDIX C

Linear Stability Analysis

The QG PV evolution equation in a layered QG model
(e.g., Vallis 2017) is

0
(E +Un-V) Gn+I(Wn,qn) +I(WYn,Qn) =0, (C1)

V= [Vl, e Vnm]T. Zonal and meridional background
PV gradients, O and Q, respectively, are
Qx = SV,
(C3)
Q, =p-SU.

Inserting a wave ansatz, ¥, = Re [, e'kx*thyy=wn ]
into the linearized PV equation (C1), we get

i(kx U, +ky Va _w)én + (ikx Qny _iky an)lﬁn =0,

(C4)
where the relationship between Q= [c] IERE c}nm]T and
'@ = [(/71, e Jtnm]T is given by equation (B3),

4= (s - kz]l) b, (C5)

Equation (C4) forms a generalized eigenvalue problem for
the mode 1) (eigenvectors) and the angular frequency w
(eigenvalues),

wAY = [(kyU+kyV)A+k Qy —kyQi| 9,  (C6)
where A =S —k’. For w = w, +ic, if the imaginary
component, o > 0, then the mode will grow exponentially,
which signals a linear instability.

APPENDIX D
Analogy to Continuous QG Model

The surface PV and linear stability analysis described in
Appendix B and C are for a layered QG framework, which
is a natural fit for the shallow water model used in this
study. One may wonder how these equations are relevant
to those in a model with continuous stratification. Here we
derive the vertically discretized form of the continuous QG
equations and show that they are equivalent to the layered
QG equations and the surface buoyancy anomaly can be
absorbed into the surface-layer PV.

The linear stability problem in continuous QG is

(£+U-V)q+u-VQ:O, -H<z<0 (D1)

ot
where the eddy PV is g = V2§ +4, [(fz/N2)6zw], the
mean PV is Q = By +0; [(f/Nz)B], and geostrophic ve-
locity isu = k x V. The boundary conditions are applied



to the buoyancy anomaly, b = f0,y,
0
E+U-V b+u-VB=0, z=-H, 0. D2)

Discretizing equation (D1) in the vertical direction for n,,

vertical layers, we get for n € [1,n,,]
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with the boundary conditions (D2) discretized as

(£+U1 -V)f(‘/’o v +u;-VB, =0 (D4)
ot z7 2
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where n = 1/2 and n = n,, + 1/2 indicate the upper and
lower boundaries, respectively, and ¢ and ¢, 41 are the
eddy streamfunctions at the upper and lower boundaries,
respectively. Here we have assumed the buoyancy at the
upper (lower) boundary is advected by the same flows in
the top (bottom) layers.

Insert f/(NzAzl)X(D4) and f/(N2

into equation (D3) we get

Az, )X (DS)
2

0
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where the eddy PV g¢,, is
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and the mean PV Q,, is

/B3

01 —ﬁy—N%Am,
2

On =,3))+§ =, (D8)
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m=73

The boundary conditions are absorbed into the dis-
cretized PV equation (D6), where the buoyancy anomaly
(mean buoyancy gradient) at the upper and lower bound-
aries are absorbed into the PV anomaly (mean PV gradi-
ent) in the top and bottom layers, respectively. Recall that
g’ =N?Az and VB = k X f0,U, equations (D7) and (D8)
are equivalent to the eddy and mean PV in layered QG,
expressed by equations (B3) and (C3), respectively.
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