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ABSTRACT: The vertical structure of ocean eddies is generally surface-intensified, commonly

attributed to the dominant baroclinic modes arising from boundary conditions (BCs). Conventional

BC consideration mostly focuses on either flat- or rough-bottom conditions. The impact of surface

buoyancy anomaly—often represented by surface potential vorticity (PV) anomaly—has not been

fully explored. Here, we study the role of the surface PV in setting the vertical distribution of eddy

kinetic energy (EKE) in an idealized adiabatic ocean model. The simulated EKE profile in the extra-

tropical ocean tends to peak at the surface and have an 𝑒-folding depth typically smaller than half

of the ocean depth. This vertical structure can be reasonably represented by a single surface quasi-

geostrophic (SQG) mode at the energy-containing scale resulting from surface-trapped baroclinic

instability and inverse energy cascades. The surface meridional PV gradient—key to oceanic

baroclinic instability—induces surface-trapped unstable modes that decay faster with depth for

smaller horizontal scales. Subsequently, through an inverse energy cascade from scales close

to or smaller than the deformation radius to the energy-containing scale, the vertical structure

grows deeper while remaining surface-trapped. These results indicate that the vertical EKE

distribution depends on the horizontal scale since smaller eddies tend to be shallower. Guided

by this interpretation, an SQG-based scale-aware parameterization of the EKE profile is proposed

here. Preliminary offline diagnosis of a high-resolution simulation shows the proposed scheme

successfully reproducing the dependence of the vertical structure of EKE on the horizontal grid

resolution.
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1. Introduction28

Ocean mesoscale eddies including horizontal scales of tens to hundreds of kilometers account29

for a majority of oceanic kinetic energy (e.g., Ferrari and Wunsch 2009; Storer et al. 2022). These30

eddies are important to the transport and mixing of momentum, heat, salt, carbon, as well as other31

biogeochemical tracers, and impact the large-scale circulation and climate (Wolfe and Cessi 2010;32

Marshall and Speer 2012; Griffies et al. 2015; Gnanadesikan et al. 2015). These eddies are yet to be33

fully-resolved in climate models due to their relatively small size and as a result, their effects must34

be parameterized. Observational and modeling studies have shown that the strength of mesoscale35

eddies tend to peak at the surface and decay with depth (Wunsch 1997; de La Lama et al. 2016),36

with the exception for certain mode-water or topographically trapped eddies that intensify in the37

interior or near the bottom (Zhang et al. 2017; Radko 2023). Parameterizations that properly38

account for the surface-intensified vertical structure are crucial for simulations of large-scale ocean39

circulations and density structures (Danabasoglu and Marshall 2007; Eden et al. 2009). This effort40

requires a better understanding and representation of the eddy vertical structure, which is the topic41

of this paper.42

The vertical structure of eddy motions is often represented using vertical normal modes (Wunsch43

1997; Wortham and Wunsch 2014; de La Lama et al. 2016). Traditionally, these modes—including44

the barotropic and baroclinic modes—are solutions to an eigenvalue problem with flat-bottom and45

rigid-lid boundary conditions (Gill 1982; Vallis 2017). The surface-intensified structure of ocean46

eddies is then decomposed as a linear combination of these eigenmodes in the vertical.47

Notably, the barotropic and first baroclinic modes together can capture the bulk of mid-latitude48

eddy structure and variability (Wunsch 1997; Zhang et al. 2013). That these two modes are49

dominant is consistent with geostrophic turbulence theory, which reveals that eddies emerging50

from baroclinic instability tend to transfer energy from higher baroclinic modes to the lower modes51

and then to the barotropic mode at scales comparable to the deformation radius (Salmon 1980;52

Smith and Vallis 2001). Due to surface-intensified stratification and bottom friction, ocean eddies53

are usually not fully barotropized and the first-baroclinic contribution remains considerable (Fu and54

Flierl 1980; Smith and Vallis 2001). Although the barotropic and first baroclinic modes are useful55

for diagnosing the vertical structure of eddies, they are inefficient for quantitative predictions since56

their relative contribution to eddy energy varies substantially in space and time (Wunsch 1997).57
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Vertical mode structures can change significantly in the presence of bottom topography (Hallberg58

1997; Lacasce 2017), leading to recent studies promoting a different set of baroclinic modes subject59

to zero horizontal velocity at the bottom due to rough bathymetry (Lacasce 2017). The inclusion60

of the rough bottom tends to decouple the bottom pressure from the interior, yielding modified61

baroclinic structures that are more surface-intensified (Rhines 1970; Hallberg 1997; Samelson62

1992; Tailleux and McWilliams 2001). The first baroclinic mode derived under such rough-bottom63

setup is more consistent with observations than the traditional mode (de La Lama et al. 2016;64

Ni et al. 2023), and has recently been used for diagnoses and parameterizations of the vertical65

structure of eddy velocity and mixing (Adcroft et al. 2019; Groeskamp et al. 2020; Stanley et al.66

2020; Holmes et al. 2022).67

Still, these rough-bottom modes assume a zero buoyancy anomaly at the ocean surface, whereas68

ocean eddies exhibit strong surface temperature and salinity anomalies (Lapeyre 2009; Hausmann69

and Czaja 2012; Frenger et al. 2015). Theoretical studies indicate that a complete vertical-mode70

analysis should include surface buoyancy anomalies that give rise to surface-trapped responses that71

decay quasi-exponentially from the surface (Smith and Vanneste 2013; Yassin and Griffies 2022a).72

The surface-trapped mode is governed by the surface quasi-geostrophic (SQG) dynamics in the73

presence of a surface horizontal buoyancy gradient (Blumen 1978; Held et al. 1995; Lapeyre and74

Klein 2006; Lapeyre 2017). Previous studies noted that the SQG mode can capture the surface75

intensification of the observed eddies better than the traditional baroclinic structures, pointing to76

surface buoyancy anomalies being key to establishing the vertical distribution of ocean eddies77

(Lapeyre and Klein 2006; Lapeyre 2009).78

The SQG framework has been adapted to infer the eddy properties in the vertical from surface79

observations and hydrography in the midlatitude ocean in both modeling (Lapeyre and Klein 2006;80

Isern-Fontanet et al. 2008; Wang et al. 2013; Ponte and Klein 2013; Liu et al. 2014; Qiu et al. 2016;81

Fresnay et al. 2018; Qiu et al. 2020; Miracca-Lage et al. 2022) and observational studies (LaCasce82

and Mahadevan 2006; Liu et al. 2017). Such inference, however, depends on the spectra of the83

surface eddy energy or buoyancy—seemingly limiting the application of the SQG framework84

to the parameterization of eddies for ocean models in which mesoscale features are not fully85

resolved. Here, we argue that the energy-containing scale comparable to the deformation radius is86

sufficient to determine the dominant SQG mode and its vertical distribution. Assuming the energy-87
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containing scale is given and using this in lieu of the full surface spectra, an SQG-based, scale-aware88

parameterization for ocean eddy is proposed in this study. Focusing on the dependence of vertical89

structure on horizontal scales, offline analyses with output from an idealized adiabatic ocean model90

demonstrate that the proposed scheme reproduces the desired distributions of unresolved eddies91

by models with different horizontal resolutions. The only remaining step for a completely closed92

parameterization is the determination of the horizontal energy-containing scale.93

Why does the SQG mode at the energy-containing scale play such an important role in the94

vertical eddy structure? The geostrophic turbulence theory provides a potential explanation.95

Surface buoyancy anomalies are often represented as surface-confined potential vorticity (PV)96

anomalies (Bretherton 1966). The horizontal PV gradient—important for baroclinic instability—97

tends to be substantial at the ocean surface, yielding surface-trapped unstable modes (Smith 2007;98

Fox-Kemper et al. 2008a; Tulloch et al. 2011; Callies et al. 2016; Feng et al. 2021, 2022). Surface-99

trapped instabilities can efficiently energize submesoscale processes, which in turn energize the100

mesoscale eddies via an inverse energy cascade (Roullet et al. 2012; Callies et al. 2016; Capet101

et al. 2016; Schubert et al. 2020; Khatri et al. 2021). That is, a surface PV (buoyancy) gradient can102

indirectly supply energy to mesoscale eddies via the surface-trapped submesoscale instabilities.103

This hypothesized link between baroclinic instability and the vertical structure of mesoscale104

eddies are also investigated here in an idealized adiabatic ocean model. We examine the eddy105

kinetic energy (EKE) in circulation regimes analogous to those in the Atlantic Ocean. The106

simulated EKE exhibits i) a surface-intensified profile consistent with the SQG mode at the energy-107

containing scale; and ii) a dependence of vertical distribution on the horizontal eddy scale—smaller108

eddies tend to have shallower structures. Although this model does not have surface buoyancy109

forcing and a mixed layer, the isopycnal outcropping due to wind forcing gives rise to a strong110

surface PV gradient, which generates surface-trapped unstable modes. These unstable modes111

supply energy to the energy-containing eddy through the inverse cascade and in turn determines112

the EKE profile.113

This manuscript is organized as follows. Section 2 covers equations of the baroclinic and114

surface-trapped modes for theoretical background. The numerical model configuration and WKB115

solutions for the SQG mode are given in Section 3. In Section 4, we reveal the key role of116

SQG modes in setting the vertical structure of EKE, which can be determined by the horizontal117
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energy-containing scale. In Section 5, we argue that the dominance of the SQG mode arises from118

baroclinic instability and the corresponding inverse energy cascade, which are surface-trapped due119

to the upper-ocean density structures. Based on these understandings, in Section 6 we propose120

a SQG-based parameterization for the subgrid EKE profile that depends on the model horizontal121

resolution. The results are summarized, and their implications for understanding the eddy vertical122

structure are discussed in Section 7.123

2. Theoretical Background124

In this section, we recap elements from quasi-geostrophic (QG) theory, focusing on (i) the125

vertical structure of baroclinic modes; and (ii) modifications to take into account the surface126

buoyancy anomaly.127

a. Baroclinic Modes128

The vertical structure of ocean eddies is commonly represented using the vertical normal modes129

of the linearized QG equations for a quiescent ocean state (e.g., chapter 6 of Vallis 2017),130

𝜕

𝜕𝑡

[
∇2𝜓 + 𝜕

𝜕𝑧

(
𝑓 2

𝑁2
𝜕𝜓

𝜕𝑧

)]
+ 𝛽

𝜕𝜓

𝜕𝑥
= 0, (1)

where 𝜓(𝑥, 𝑦, 𝑧, 𝑡) is the streamfunction perturbation, 𝑓 the Coriolis parameter, 𝛽 the meridional131

derivative of 𝑓 , and 𝑁2 = 𝜕𝐵/𝜕𝑧 the squared buoyancy frequency defined via the large-scale132

buoyancy 𝐵. Note that 𝜓 and 𝜕𝜓/𝜕𝑧 are proportional to the pressure and buoyancy anomalies,133

respectively.134

Substituting the wave-like ansatz135

𝜓 = 𝜓̂0Φ(𝑧)exp[𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦−𝜔𝑡] (2)

into equation (1) yields an eigenvalue problem for the vertical structure function Φ136

d
d𝑧

(
𝑓 2

𝑁2
dΦ
d𝑧

)
= −𝜆2Φ. (3)
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Here, 𝜓̂0 is proportional to the 2D Fourier transform of 𝜓 at the surface, 𝑘𝑥 and 𝑘𝑦 the zonal137

and meridional wavenumber, respectively, 𝜔 the frequency, and 𝜆2 the reciprocal of squared138

deformation radius.139

Solving equation (3) requires surface and bottom boundary conditions (BCs). It is common to140

assume the flat-bottom and rigid-lid conditions in which the buoyancy vanishes141

dΦ
d𝑧

= 0 at 𝑧 = 0, −𝐻. (4)

Equations (3) and (4) constitute a Sturm-Liouville problem for Φ, admitting a set of orthogonal142

normal modes {Φ𝑚} with the corresponding eigenvalues {𝜆2
𝑚}. Here the index 𝑚 ≥ 0 counts the143

number of zeros of Φ𝑚 (𝑧) in the interior. The solution with 𝑚 = 0 denotes the barotropic mode,144

and the infinity of 𝑚 ≥ 1 solutions are the baroclinic modes. The first few modes are shown in145

Fig. 1a as computed with an exponential stratification profile whose e-folding scale is a third of146

water depth. General solutions of the eddy satisfying equation (1) and the same BCs (4) can be147

uniquely represented as a linear combination of these modes.148

An alternative structural consideration includes the bottom topography (Rhines 1970; Hallberg149

1997) with which the horizontal velocity vanishes at the bottom, yielding150

dΦ
d𝑧

= 0 at 𝑧 = 0 and Φ = 0 at 𝑧 = −𝐻. (5)

That is, the bottom BC is now imposed on the pressure anomaly. These alternative BCs result151

in a different set of normal modes shown in Fig. 1b, referred to as the rough-bottom modes or152

“surface modes” in Lacasce (2017) since the bottom horizontal flow is at rest. Notably, there is not153

a depth-independent barotropic mode among these—an important distinction from the flat-bottom154

modes in Fig.1a. The barotropic mode is replaced by bottom-trapped topographic waves (e.g.,155

Rhines 1970; Lacasce 2017; Yassin and Griffies 2022a) not illustrated here. The lowest rough-156

bottom mode (𝑚 = 1; blue line in Fig.1b)—because it does not change sign in the interior—is157

often referred as the equivalent barotropic (EBT) mode (Killworth 1992; Hallberg 1997; Adcroft158

et al. 2019). The EBT mode has been adapted for the parameterization of the vertical distribution159

of mesoscale eddy diffusivity, e.g., in the 0.5◦ version of the GFDL ocean climate model OM4.0160

(Adcroft et al. 2019).161
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A notable feature of the two Sturm-Liouville problems considered thus far is that the horizontal162

wavenumbers do not appear in them, except for the bottom topographic waves. Therefore, the163

vertical structure of the normal modes do not depend on the horizontal scales. This can be164

attributed to the surface boundary conditions not including buoyancy anomalies (i.e., dΦ/d𝑧 = 0165

at 𝑧 = 0)—an assumption shared by both of the flat- and rough-bottom setups that is inconsistent166

with the SST observations exhibiting warm- and cold-core eddies (Lapeyre 2009; Hausmann and167

Czaja 2012; Frenger et al. 2015).168
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Fig. 1. The first four vertical normal modes solved from the eigenvalue problem (3) with (a) flat bottom and

rigid lid boundaries, and (b) rough bottom and rigid lid boundaries. The stratification decays exponentially with

depth following an e-folding scale of a third of the water depth in both cases. Each profile of Φ𝑚 is normalized so

that
∫ 0
−𝐻Φ2

𝑚d𝑧/𝐻 = 1. Blue, orange, green, and red lines indicate the first, second, third, and fourth modes. The

first mode, Φ0 in (a) is depth independent and called the barotropic mode, while the other modes are baroclinic

(BC) modes. The Φ0 mode in (b) is represented by bottom-trapped topographic waves, which are not plotted

here. The first mode, Φ1, in (b) is often called the equivalent barotropic (EBT) mode.
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b. Surface-Trapped Modes176

To incorporate surface buoyancy anomalies, a surface-aware formulation is proposed to include177

the horizontal buoyancy gradient at the surface (and bottom), as briefly outlined here following178

Smith and Vanneste (2013) as well as Yassin and Griffies (2022a).179

In this modified approach, the eigenvalue problem consists of the same differential equation (3)180

but with a set of more general BCs181

𝑓 2

𝑁2𝐻

dΦ
d𝑧

= 𝛼(0) (𝑘2 +𝜆2)Φ, at 𝑧 = 0,

𝑓 2

𝑁2𝐻

dΦ
d𝑧

= −𝛼(−𝐻) (𝑘2 +𝜆2)Φ, at 𝑧 = −𝐻,

(6)

with a non-dimensional function182

𝛼(𝑧) ≡ 𝑓

𝑁2𝛽𝑘𝑥

(
𝑘𝑥

𝜕𝐵

𝜕𝑦
− 𝑘𝑦

𝜕𝐵

𝜕𝑥

)
, (7)

𝑘 = (𝑘2
𝑥 + 𝑘2

𝑦)1/2, and 𝐵 the large-scale buoyancy. The resulting system differs from the standard183

Sturm-Liouville problem in that the wavenumbers 𝑘, 𝑘𝑥 , 𝑘𝑦 and eigenvalue 𝜆2 are now part of184

the BCs. Following Smith and Vanneste (2013), the most relevant case for our discussion here is185

the limit where 𝛼(−𝐻) → 0 (i.e., the buoyancy anomaly vanishes at the bottom) and 𝛼(0) → ∞186

(strong horizontal buoyancy gradient and/or weak vertical stratification at the surface). The full set187

of normal modes in this case consists of a surface-trapped mode Φ𝑠 (𝑧; 𝑘) satisfying188

d
d𝑧

(
𝑓 2

𝑁2
dΦ𝑠

d𝑧

)
= 𝑘2Φ𝑠,

Φ𝑠 |𝑧=0 = 1,
dΦ𝑠

d𝑧

���
𝑧=−𝐻

= 0,

(8)

9



and the interior modes Φ𝑚 (𝑧) (for integral index 𝑚 ≥ 1)189

d
d𝑧

(
𝑓 2

𝑁2
dΦ𝑚

d𝑧

)
= −𝜆2

𝑚Φ𝑚,

Φ𝑚 |𝑧=0 = 0,
dΦ𝑚

d𝑧

���
𝑧=−𝐻

= 0.

(9)

A few examples of these modes are illustrated in Fig. 2. Together, the admissible Φ𝑠 and Φ𝑚190

form an orthogonal basis, which is different from the decomposition of eddy flow into surface and191

interior solutions by Lapeyre and Klein (2006). See Appendix A for detailed comparison.192

Note the similarity between equation (9) and the earlier rough-bottom setup (the surface and193

bottom BCs are switched here). Especially, the vertical structure of the interior modes does not194

depend on horizontal scales (see Fig. 2b).195

In contrast, equation (8) explicitly includes the horizontal wavenumber, yielding an outstanding196

feature of the surface-trapped mode: Larger eddies (with smaller horizontal wavenumber 𝑘) tend197

to be associated with deeper modes whose vertical response decays slower with depth; see Fig. 2a.198

Because Φ𝑠 has a zero interior PV anomaly and is driven by a surface buoyancy anomaly—199

consistent with the surface QG (SQG) dynamics (Blumen 1978; Held et al. 1995)—it is also200

referred to as the “SQG mode.” The SQG mode is relevant to the oceanic cases where horizontal201

buoyancy gradient intensifies near the surface (Smith 2007; Capet et al. 2016), and is central for202

this paper.203

Both of the surface-trapped and interior modes described above assume a flat-bottom condition,204

i.e., vanishing buoyancy anomaly; recall the bottom BCs in equations (8) and (9). These are the205

limiting cases of equation (6) through which more complicated topographic effects can be included206

(Lacasce 2017; Yassin and Griffies 2022a) and will be explored in future work.207

3. Methods214

a. Model Configuration215

The numerical model used in this study is an idealized configuration of the Modular Ocean216

Model version 6 (MOM6). This configuration is named “Neverworld2” by Marques et al. (2022)217

and has been used to study mesoscale eddy parameterizations (e.g., Loose et al. 2022; Yankovsky218
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Fig. 2. Vertical profiles of the (a) surface-trapped mode and (b) interior modes, determined by solving equations

(8), and (9), respectively. The stratification profile is an exponential function of 𝑧, as in Fig. 1. The surface mode

is calculated for three different horizontal wavenumbers, 1/(𝜋𝑟𝑑), 2/(𝜋𝑟𝑑), and 8/(𝜋𝑟𝑑), where 𝑟𝑑 is the Rossby

deformation radius of the first flat-bottom baroclinic mode (orange line in Fig. 1a). Each surface-trapped mode

profile is normalized by its surface value. The lines in panel (b) indicate the first four interior modes, each of

which is normalized in the same way as the modes in Fig. 1.
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209

210

211

212

213

et al. 2022). The model domain is a single basin with two hemispheres using spherical coordinates.219

The domain extends from −70◦S to 70◦N in the meridional direction, 0−60◦ in the zonal direction,220

and has a maximum depth of 4000 m. The domain is bounded by a 200-m continental shelf along221

all side boundaries, except for a zonally reentrant channel located at 60◦S to 40◦S, mimicking the222

Southern Ocean. A ridge topography orienting meridionally spans the entire meridional extent of223

the domain. The ridge has a width of 40◦ and maximum height of 2000 m. There is a semi-circular224

ridge with radius of 10◦ spanning 0◦ to 10◦ longitude and 60◦S to 40◦S latitude that mimics the225

Scotia Arc across the Drake Passage.226

The hydrostatic primitive equations are discretized in the vertical using isopycnal coordinates,227

with a total of 15 isopycnal layers with finer spacing near the surface in the initial setup. The228

horizontal grid spacing is 1/32◦. The model is driven solely via mechanical forcing from a zonally229

uniform zonal wind stress that varies meridionally and is fixed in time. There is no surface buoyancy230
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forcing, no diabatic mixing, nor is there a mixed layer parameterization (i.e., it is a wind-driven231

stacked shallow water model). Dissipation arises from a background kinematic vertical viscosity232

(𝐴𝑣 = 1.0× 10−4 m2 s−1), a dimensionless bottom drag (𝐶𝑑 = 0.003), and the horizontal friction233

given by a biharmonic Smagorinsky viscosity (Griffies and Hallberg 2000). More details about the234

model setup and spinup are given in Marques et al. (2022).235

Fig. 3a shows a snapshot of the surface specific kinetic energy (KE). The black lines correspond242

to the 500-day mean sea surface height (SSH) contours, representing the streamlines of surface243

geostrophic currents outside the tropics. The circulation pattern is a caricature of the Atlantic244

Ocean, with subtropical gyres and western boundary currents in both hemispheres. In the northern245

hemisphere, there is a subpolar gyre, while in the southern hemisphere, a circumpolar current246

prevails in the reentrant channel. The KE illustrates the prevalence of mesoscale eddies throughout247

the domain. The Rossby deformation radius is resolved over most regions of the model, with the248

exception being the continental shelf and very high latitudes near the boundaries (Yankovsky et al.249

2022).250

b. Solution for the SQG Mode251

The SQG mode, Φ𝑠, described by equations (8), is diagnosed in the stacked shallow water model252

introduced above. In this model, the dynamical impact of surface buoyancy is represented by the253

surface-layer PV, as described by the layered QG dynamics detailed in Appendix B.254

The SQG mode can be determined numerically for realistic stratification profiles. We can also255

derive an analytical solution using the WKB approximation. To get a simple analytical form, we256

assume Φ𝑠 → 0 if 𝑧→−∞. For each horizontal wavenumber 𝑘 , the WKB solution, ΦWKB
𝑠 , is given257

to the first order by,258

ΦWKB
𝑠 = 𝑒𝑘𝑧𝑠 , (10)

where259

𝑧𝑠 = −
∫ 0

𝑧

𝑁

| 𝑓 | 𝑑𝑧, (11)

is the stretched vertical coordinate with 𝑧 < 0 and 𝑧𝑠 < 0 in the ocean interior.260
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Fig. 3. (a) Snapshot of horizontal kinetic energy at the surface. Black lines are contours of the 500-day mean

sea surface height (SSH). The four blue boxes indicate the 8.7◦ × 8.7◦ regions where the vertical structure of

eddies is analyzed in later figures. Panel (b) shows a meridional section of the eddy kinetic energy per unit mass

along the longitude shown by the blue dashed line in panel (a). Black lines show all the isopycnals in the model.

Blue lines indicate the e-folding depth, ℎ𝑒, of the rms eddy velocity (square root of EKE). Green line is the

deformation depth, ℎ0, of the energy-containing scale, introduced in section 4b.
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The Fourier transform of the streamfunction field associated with the SQG mode, 𝜓̂𝑠, is261

𝜓̂WKB
𝑠 = 𝜓̂0𝑒

𝑘𝑧𝑠 , (12)

where 𝜓̂0 is the same as that in equation (2), which is the Fourier transform of the streamfunction262

at the surface.263

Equation (10) reveals important characteristics of the SQG mode, namely, its exponential decay264

with 𝑧𝑠 and its dependence on the horizontal scale of eddies. Smaller eddies with larger wavenum-265

ber, 𝑘 , decay faster with depth than larger eddies with smaller wavenumber. The scale dependence266

of the SQG mode provides valuable insights for parameterizating the vertical structure of eddies,267

as we discuss in Section 6.268

Note that equation (10) differs from the widely used “eSQG” method in ocean studies (Lapeyre269

and Klein 2006). The eSQG method assumes a constant 𝑁 with depth, determined empirically270

to account for the impact of an internal PV gradient (Lapeyre and Klein 2006). In contrast, our271

formula accounts for the vertical variation of 𝑁 within the stretched vertical coordinate 𝑧𝑠, allowing272

for a more accurate representation of the SQG mode itself. See also Yassin and Griffies (2022b)273

for more on SQG theory with vertically varying stratification.274

4. Vertical Structure of EKE275

We analyze the vertical structure of EKE, defined as276

EKE =
1
2

(
𝑢′2 + 𝑣′2

)
, (13)

where · indicates a 500-day mean, and ·′ is the anomaly from the mean and is saved in snapshots277

in 5-day intervals. Fig. 3b shows the EKE along a meridional section indicated by the blue dashed278

line in Fig. 3a. The EKE tends to be surface-intensified. It maximizes at the surface and rapidly279

decays with depth in the gyre and low latitudes, while it remains significant in the deep ocean280

in the circumpolar current. To examine the detailed vertical structure, we select four distinct281

dynamical regions, highlighted by the four blue boxes in Fig. 3a, that are located in the circumpolar282

current, subtropical gyre, western boundary current extension, and subpolar gyre. By examining283
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the vertical profile of EKE in these different regions, we aim to identify the dynamics that controls284

the eddy vertical structure.285

a. Comparison to the Vertical Modes286

Vertical profiles of EKE in the four selected regions are shown in Fig .4. The EKE decays293

rapidly with depth in the upper ocean and gradually approaches a constant in the deep ocean. The294

barotropic component (i.e., the depth-independent flat-bottom mode) accounts for about 78% of295

the total EKE in the circumpolar current region and about 50% in the other three regions.296

The vertical structure of EKE is compared to the structure predicted by the EBT mode (Section297

2a),298

EEBT = E0Φ
2
EBT, (14)

where E0 is the surface EKE. The square is taken because ΦEBT describes the vertical structure of299

eddy velocity [see equation (2)].300

The profile of EEBT is shown by the purple dashed line in Fig. 4. The EBT mode is surface-301

intensified, but it decays more slowly with depth than the diagnosed EKE. Furthermore, the EBT302

mode has zero vertical gradient at the surface due to its boundary condition in equation (5), whereas303

the EKE has a strong vertical gradient near the surface. Another limitation is that the magnitude of304

the EBT mode is zero at the bottom, but the EKE can be significant at the bottom even with strong305

gradients in the bottom topography.306

The vertical gradient of eddy velocity near the surface indicates that the surface-layer PV plays an307

important role in the vertical structure of EKE, thus motivating us to compare the vertical structure308

of EKE to the SQG mode. The WKB solution of the SQG mode equation (10) gives the vertical309

structure of the SQG mode at each wavenumber, 𝜓̂WKB
𝑠 . If we know the surface streamfunction310

spectrum, 𝜓̂0, the vertical structure of EKE reproduced by the SQG mode, EWKB
SQG , is311

EWKB
SQG =

1
2

∑︁
𝑘

𝑘2 |𝜓̂WKB
𝑠 |2 = 1

2

∑︁
𝑘

𝑘2 |𝜓̂0 |2𝑒2𝑘𝑧𝑠 . (15)

The green dashed lines in Fig. 4 show the WKB solution of the SQG mode, EWKB
SQG , where312

𝜓̂0 = 𝑔𝜂/ 𝑓 is estimated from Fourier transform of the SSH field, 𝜂, within the four regions indicated313

by the blue boxes in Fig. 3a. To check the accuracy of the WKB solution, we also compute the314
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Fig. 4. Vertical profiles of diagnosed EKE (solid blue lines with dots) in the four regions shown in figure 3.

The four regions are located in the (a) circumpolar current, (b) subtropical gyre, (c) western boundary current,

and (d) subpolar regions. Dashed orange and green lines are the numerical and WKB solutions of the SQG

mode, respectively, summed over horizontal wavenumbers of the surface EKE spectrum. Red dashed line is the

WKB solution of the SQG mode at the energy-containing scale. Purple dashed line is the vertical structure of

the EBT mode.
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289

290

291

292

numerical solution of 𝜓̂𝑠. The numerical solution of SQG EKE, EN
SQG, is plotted as the orange315

dashed line, which is close to the WKB solution. The SQG mode captures the near exponential316
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decay of EKE well in all the regions, with the exception of the subtropics, where EKE decays317

slower than the SQG mode (though faster than the EBT mode). The discrepancy in the subtropics318

indicates a nonnegligible role of interior modes, equation (9). Overall, the SQG mode matches319

the vertical structure of EKE better than the EBT mode. This result suggests that the vertical320

structure of EKE is mainly controlled by the surface PV, in which case the vertical structure can321

be reconstructed using the SQG mode as described by equations (8). This result is consistent with322

previous studies showing how the eddy vertical structure can be reconstructed by the SQG mode323

in realistic ocean simulations (Klein et al. 2009; Isern-Fontanet et al. 2008; Qiu et al. 2016, 2020).324

b. Relating to the Energy-Containing Scale325

Reconstruction of the vertical structure based on the SQG mode, equation (15), requires knowl-326

edge of the surface energy spectrum, 𝑘2 |𝜓̂0 |2, which is unavailable in coarse-resolution simulations.327

The surface energy spectrum is usually dominated by a peak, which indicates the energy-containing328

scale (surface energy spectra in the four regions are shown in Fig. 5). This feature suggests that329

the eddy vertical structure may also be dominated by the energy-containing eddy. The energy-330

containing wavenumber, 𝑘0 can be estimated following Thompson and Young (2006) and Zhang331

and Wolfe (2022),332

𝑘0 =

√√√√〈
|∇𝜂′|2

〉〈
𝜂′2

〉 , (16)

where 𝜂′ is the spatial SSH anomaly, and ⟨⟩ indicates a spatial average over each of the four box333

regions in Fig. 3.334

The 𝑘0 estimated by equation (16) is shown by the black dashed line in Fig.5. This estimate is340

generally close to the peak of the energy spectrum. We then estimate the SQG mode structure at341

the energy-containing scale,342

E𝑘0
SQG = E0𝑒

2𝑘0𝑧𝑠 , (17)

which can be calculated at each grid point without Fourier analysis.343

The vertical structure given by equation (17) is shown by the red dashed line in Fig. 4. It works344

similarly well as the SQG solution based on the full energy spectrum, meaning that the vertical345

structure of EKE can be represented by the SQG mode structure at the energy-containing scale.346
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Fig. 5. (a)-(d) 1D surface kinetic energy spectrum (blue lines with dots) in the four regions shown in figure 3.

The spectrum, |𝑢̂ |2 + |𝑣̂ |2 is calculated by Fourier transforming the 2D instantaneous velocity fields in 8.7◦×8.7◦

windows and then averaged over 500 days. The 2D spectrum is then azimuthally integrated to obtain the 1D

spectrum. Black dashed line indicates the energy-containing wavenumber 𝑘0, estimated from (16) at the center

of the four regions.
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Equation (17) also indicates a relation between the horizontal and vertical scales of EKE. Here347

we measure the vertical scale as the e-folding depth, ℎ𝑒, of the eddy velocity (i.e., the square root348
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of EKE). From equation (17), we can also estimate the e-folding depth of the SQG mode, ℎ0,349 ∫ 0

−ℎ0

𝑁

| 𝑓 | 𝑑𝑧 = 𝑘−1
0 , (18)

which is the deformation depth of the energy-containing wavenumber 𝑘0 (Pierrehumbert and350

Swanson 1995). If equation (17) is a good approximation of the EKE vertical structure, ℎ0 should351

be equal to ℎ𝑒.352

The e-folding depth, ℎ𝑒, and equivalent energy-containing depth, ℎ0, are compared in the merid-353

ional section in Fig. 3b. They compare well to each other in the extra-tropical regions (poleward of354

20◦), which is consistent with the good comparison between the EKE vertical structure and SQG355

mode in these regions in Fig. 4. In the tropics, ℎ0 decreases to zero toward the equator due to356

the decreasing magnitude of Coriolis parameter, | 𝑓 |, in equation (18), while ℎ𝑒 remains around357

1000-2000m. The large fluctuations of ℎ𝑒 in the tropics might be due to the spatial variability of358

strong undercurrent and equatorial waves.359

The comparison between ℎ𝑒 and ℎ0 at other meridional sections is similar to that in Fig. 3b.360

The SQG mode captures the vertical structure of EKE well in the extra-tropical regions, where361

the eddy horizontal and vertical scales are coupled in the way described by equation (18). The362

e-folding depth for the eddy velocity is generally shallower than a half of the water depth in the363

extra tropics, indicating that eddies are shallow. The SQG mode does not capture the vertical364

structure of EKE well in the tropics. Fig. 3a shows that the kinetic energy pattern is wave-like365

in the tropics, indicating that EKE is dominated by linear waves there, while in the extra tropics,366

the flow field contains abundant coherent vortices, indicating the dominance of nonlinear eddies.367

Previous studies have shown that the eddy flux is dominated by linear waves and nonlinear eddies368

in the tropics and midlatitude ocean, respectively, leading to different scalings of eddy mixing in369

these regions (Klocker and Abernathey 2014; Zhang and Wolfe 2022). We expect that equation370

(17) is effective in describing the vertical structure of EKE in the midlatitude ocean.371

5. Why is the Vertical Structure SQG-like?372

In section 4, we have seen that the EKE structure tends to be SQG-like. Here, we discuss373

the underlying physics by showing: (i) the EKE profile is consistent with the distributions of the374

eddy PV and large-scale meridional PV gradient; (ii) the surface meridional PV gradient yields375
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baroclinic instability that produces surface-trapped unstable modes; (iii) the kinetic energy created376

by baroclinic instability at small scales cascades toward the energy-containing scale in the form of377

surface-trapped mode, resulting in an SQG-like EKE vertical structure.378

a. PV Structure379

SQG prescribes zero interior PV anomaly. To examine this assumption, the rms eddy PV, 𝑞rms,380

is computed as381

𝑞rms =

√︃
𝑞′2, (19)

where 𝑞 is the QG PV, estimated by equation (B1) in Appendix B. Fig. 6a shows the distribution382

of the rms eddy PV at the same meridional section as Fig. 3b. The eddy PV peaks at the surface383

layer and becomes about an order of magnitude smaller in the interior layers, which is consistent384

with the SQG-like EKE structure in the midlatitudes. In the subtropics (10◦ − 25◦), the PV also385

intensifies at about 400 m, which might be why the EKE structure is less SQG-like in these regions.386

The distribution of eddy PV is associated with the large-scale meridional PV gradient, 𝑄𝑦,387

structure, shown in Fig. 6b. The meridional PV gradient is estimated from equation (C3) in388

Appendix C for the layered shallow water model. The magnitude of meridional PV gradient peaks389

at the surface due to the isopycnal outcropping. The interior PV gradient is weak, especially in390

the upper 1000 m in the mid- and high-latitudes (latitude poleward of 25◦). The weak interior391

PV gradient is likely due to the isopycnal mixing by eddies, which tend to homogenize the PV in392

the interior (Holland and Rhines 1980; Rhines and Young 1982). In the circumpolar current, the393

magnitude of PV gradient also intensifies in the near-bottom layers, which is consistent with the394

intensification of eddy PV in these regions. In the subtropics, the PV gradient also peaks at about395

400 m due to the flattening of isopycnals at the interior pycnocline. This pronounced interior PV396

gradient is likely the cause of the strong subsurface eddy PV and the deviation of EKE profile from397

SQG in the low latitudes. Quantitative analyses of the impact of PV gradient on the eddy vertical398

structure is given in the next section.399

In addition to variations of magnitude in the vertical, the meridional PV gradient also tends404

to change sign from surface to the interior. In the mid- and high-latitudes, the meridional PV405

gradient is positive at the surface layer, negative at layers below surface, and positive again in the406

deep ocean. In the subtropics, the PV gradient is negative at the surface layer and positive in the407
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Fig. 6. Meridional and vertical distribution of (a) the rms eddy PV and (b) the meridional PV gradient

normalized by 𝛽 at the longitude indicated by the blue dashed line in Fig. 3a. Black solid lines are the isopycnals

in the model. Black dashed lines with characters a,b,c,d indicate the latitude range of the four regions shown in

Fig. 3. Note that a and c are not in the same longitude as this meridional section.

400

401

402

403

interior. A similar distribution of the meridional PV gradient is also found by Tulloch et al. (2011)408

in the schematic of their figure 2, which is based on reanalysis climatology. However, the positive409
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PV gradient is more confined near the surface in the midlatitude regions in our simulation than in410

Tulloch et al. (2011). This feature is found to be common in the mode water regions (e.g., western411

boundary current extension and Southern Ocean) by Capet et al. (2016) using observations. These412

regions tend to have weak stratification layers right above the main thermocline, which squeezes the413

positive PV gradient to the surface and creates negative meridional PV gradient below it, consistent414

with the midlatitude PV gradient distribution in the simulation.415

b. Linear Stability416

The meridional PV gradient is often found to play a crucial role in oceanic baroclinic instability,417

which is an important energy source for mesoscale eddies (Smith 2007; Tulloch et al. 2011; Capet418

et al. 2016). Baroclinic instability occurs when the background horizontal PV gradient changes419

sign in the vertical, which is a typical feature of the meridional PV gradient shown in Fig. 6b.420

We analyze baroclinic stability in the four regions discussed in section 4. The vertical profiles423

of the meridional and zonal PV gradients in the four regions are shown in Fig. 7. Fig. 8 shows the424

distribution of the growth rate, 𝜎, of unstable modes, which are solved from the eigenvalue problem425

described by equation (C6) in Appendix C. Fig. 9 shows the vertical structure of the most unstable426

mode, indicated by the cyan point in Fig. 8. In the circumpolar current, the interior PV gradients are427

about ten times smaller than the surface and bottom gradients. The surface and bottom meridional428

PV gradients are opposite to each other, which gives rise to unstable modes at scales larger than429

the deformation radius. The vertical structure of the most unstable mode intensifies at both surface430

and bottom, which is a typical feature of the Eady-type instability arising from the interaction431

between the surface and bottom edge waves (Eady 1949). In the other three regions, both the432

meridional and zonal PV gradient changes sign near the surface, and the meridional PV gradient is433

generally stronger than the zonal gradient. The most unstable mode occurs at scales smaller than434

the deformation radius in these three regions. The vertical structure of the most unstable mode435

is surface-intensified, indicating a Charney-type instability arising from the interaction between436

surface edge waves and interior Rossby waves (Charney 1947; Tulloch et al. 2011; Capet et al.437

2016). In the subtropics, the unstable mode also intensifies at around 400m, which is associated438

with the subsurface local maximum of the meridional PV gradient. This PV gradient maximum439
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Fig. 7. (a)-(d) Vertical profiles of meridional (blue lines with dots at the layer centers) and zonal (orange lines)

PV gradient normalized by 𝛽 in the four regions shown in Fig. 3.

421

422

occurs at the top of the pycnocline where isopycnals start to become flat at about 400m depth in440

the column labeled by b in Fig. 6.441

In the western boundary current and subpolar regions, although the meridional PV gradient also442

changes sign at 500–1000 m depth, nearly all unstable modes are surface-intensified in these two443

regions (not shown), indicating that the instability is always associated with surface edge waves.444

The Rossby wave propagates eastward in the negative PV gradient layers and westward in the445

positive PV gradient layers below (the zonal mean flow is eastward above 1000 m and becomes446

weak below), so they cannot couple to each other due to the mismatch between their zonal phase447
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speeds. Consequently, the sign change of PV gradient at 500–1000 m does not lead to the Phillips448

type instability in the interior (Phillips 1954).449

Fig. 8. (a)-(d) Growth rate of unstable modes as a function of zonal and meridional wavenumbers, 𝑘𝑥 and

𝑘𝑦 , respectively, that are normalized by the deformation radius in the same four regions as in Fig. 3. Cyan point

indicates the most unstable mode.

450

451

452

The vertical structure of the most unstable mode is compared to the SQG mode at the same456

horizontal wavenumber in Fig. 9. A resemblance between the unstable mode and the SQG mode457

is found in the western boundary current and subpolar regions, consistent with the comparison458

between the SQG mode and the vertical structure of EKE. In the subtropics, the unstable mode is459

similar to the SQG mode, with the exception of its subsurface intensification, likely attributed to460

the intensified meridional PV gradient at around 400 m due to the pycnocline. Such significant461

subsurface PV gradient might also contribute to the deviation of the vertical structure of EKE from462

the SQG mode in this region (Fig. 4b). In the circumpolar current, the SQG mode captures the463

vertical structure of unstable mode in the upper ocean, but fails to capture the bottom intensification464
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Fig. 9. (a)-(d) Vertical structure of the most unstable mode (blue solid line) indicated by the cyan point in

Fig. 8. Orange dashed line is the normalized vertical structure of the SQG mode at the same wavenumber as the

unstable mode.
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455

of the unstable mode. Conversely, the vertical structure of EKE only shows a slight intensification465

near the bottom and appears more like the SQG mode than the unstable mode in this region466

(Fig. 4a). This discrepancy is likely due to the strong damping of EKE by friction at the bottom,467

thereby reducing the bottom intensification of EKE.468

The resemblance between the unstable modes and SQG mode is attributed to the impact of469

the strong surface meridional PV gradient, which gives rise to strong surface edge waves that470

play a more important role in the vertical structure of unstable modes than the interior Rossby471

25



waves. While the stability analysis is based on linear equations and local background states, it472

offers insights into the vertical structure of EKE. The relationship between the EKE and baroclinic473

instability will be further discussed in the subsequent section.474

c. Role of the Energy Cascade475

The linear stability analysis does not account for the energy cascade due to nonlinear interactions.476

We here diagnose the kinetic energy budget to identify the role of nonlinear advection in the eddy477

vertical structure. The layer-wise KE equation is478

𝜕KE𝑛

𝜕𝑡
= −u𝑛 · (u𝑛 · ∇u𝑛) −u𝑛 · ∇𝑀𝑛 +u𝑛 ·F𝑛, (20)

where 𝑀𝑛 is the Montgomery potential, F𝑛 contains the wind stress and bottom friction, as well as479

vertical and horizontal viscous friction.480

The first term on the RHS of equation (20) is the KE tendency due to nonlinear advection, which481

is not accounted for in the linear stability analysis. The role of nonlinear advection is examined by482

decomposing it in spectral space. The cospectrum of the nonlinear advection, 𝑇𝑛, is calculated as483

𝑇𝑛 = −Re
[
û𝑛

∗ · �(u𝑛 · ∇u𝑛)
]
, (21)

where Re(·) indicates taking the real part, (·)∗ is the complex conjugate, · indicates a 500-day484

average.485

The advection term, 𝑇𝑛, quantifies the spectral tendency of KE due to the KE cascade between486

horizontal wavenumbers. The positive and negative values of 𝑇𝑛 (𝑘) indicate that energy cascade487

deposits and removes KE, respectively, for eddies at the corresponding wavenumber 𝑘 . The time488

tendency term on the LHS of equation (20) is close to zero when taking a long-time average.489

In this case, the energy cascade balances the net energy source or sink due to the work by the490

horizontal pressure gradient [second term on the RHS of equation (20)], forcing and dissipation491

[third term on the RHS of equation (20)] at each wavenumber. The work by the horizontal pressure492

gradient includes the contribution from the divergence of 3D energy transport by pressure and the493

conversion of potential energy (PE) to KE due to baroclinic instability (Capet et al. 2008).494
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Fig. 10. Cospectrum of the advection term of KE, 𝑇𝑛, as a function of horizontal wavenumber and depth in the

four regions shown in Fig. 3. Blue color indicates that nonlinear advection removes KE from the corresponding

wavenumber, which balances the KE source by other terms on the RHS of the KE equation (20), while red

color means that nonlinear advection supplies KE to balance the KE sink by the other terms. Black dashed

line indicates the inverse of the Rossby deformation radius. Purple dashed line indicates the energy-containing

wavenumber, 𝑘0. Note the different color range for each panel.
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Fig. 10 shows the distribution of 𝑇𝑛 at horizontal wavenumber and depth in the four regions. The501

red and blue colors indicate that energy cascade deposits and removes KE, respectively, for eddies502

at the corresponding wavenumber. The vertical structure of 𝑇𝑛 is generally surface intensified503

and decays faster with depth at smaller scales (larger wavenumbers), which is consistent with504
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characteristics of the SQG mode. In the circumpolar current, the energy cascade removes energy505

at around the deformation radius. This energy sink due to energy cascade intensifies at both the506

surface and bottom, which is consistent with the unstable mode of the Eady instability at this507

region (section 5b), indicating that the energy cascade balances the baroclinic instability at these508

wavenumbers. At the other three regions, the energy cascade mainly removes energy from scales509

smaller than the deformation radius. This energy sink concentrates near the surface, which is likely510

to balance the energy source due to the Charney baroclinic instability in these regions. There is also511

an energy sink at small wavenumbers at around 1000 m in the subtropical and subpolar regions,512

though it is about an order smaller than the value of 𝑇𝑛 at surface. This sink is likely to balance the513

baroclinic instability at small wavenumbers in these two regions (see the growth rate distribution514

in Fig. 8).515

The energy cascade deposits energy at scales larger than the deformation radius in all the four516

regions. This energy source due to energy cascade maximizes at the energy-containing scale (purple517

dashed line in Fig. 10). This source is balanced by energy conversion from KE to PE and friction518

(not shown). These results show that the energy cascade transfers energy generated by baroclinic519

instability at scales close to or smaller than the deformation radius to the energy-containing eddies,520

where kinetic energy is consumed by conversion to potential energy and friction.521

The energy cycle shown by Fig. 10 is illustrated by the schematic in Fig. 11, which is motivated522

by a similar schematic in Roullet et al. (2012). The forcing inputs PE to circulation at the large523

scales. The PE is converted to KE at scales that are close to or smaller than the deformation radius524

through baroclinic instability. The baroclinic instability is generally dominated by the surface PV525

gradient, which gives rise to surface-trapped unstable modes. These unstable modes cascade KE526

from small scales to large scales through their nonlinear interactions until the cascade is halted at527

the energy-containing scale. Consequently, the vertical structure of EKE is dominated by the mode528

structure at the energy-containing scale, which is deeper than the original unstable modes but still529

remains surface-trapped.530

6. A Scale-Aware Parameterization540

Section 4 shows that SQG modes play an important role in setting the vertical structure of EKE.541

How can this finding inform the parameterization of the eddy vertical structure? A crucial property542
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Fig. 11. Energy schematic modified from Roullet et al. (2012). The forcing supplies available potential energy

(upper horizontal lines). The available potential energy cascades to smaller scales and is then converted to kinetic

energy (lower horizontal lines) through baroclinic instability (blue arrows) at a broad range of horizontal scales

that are close to or smaller than the deformation radius, the inverse of 𝑘𝑑 . The unstable modes arising from

the instability are surface-trapped, which decay faster with depth at smaller scales. The kinetic energy of these

unstable modes cascades from small scales (shallow modes) to large scales (deep modes) until the cascade is

halted at the energy-containing scale, the inverse of 𝑘0. Part of the kinetic energy is dissipated by the friction and

the other part is converted back to available potential energy (orange arrows) at around the energy-containing

scale.
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of the SQG mode is the coupling of its vertical and horizontal scales. As is shown in the analytical543

expression (10), smaller horizontal scale eddies, which have a larger horizontal wavenumber, decay544

more rapidly with depth than larger eddies. In the context of eddy parameterization, the focus is545

on representing the subgrid EKE that is unresolved by the model. As the model grid spacing is546

refined, the scale of unresolved eddies becomes smaller, resulting in a shallower vertical structure547

of subgrid EKE. This result suggests that the parameterization of the vertical structure of subgrid548

EKE should depend explicitly on the model grid spacing.549

To examine the scale dependence of the eddy vertical structure, we employ high-pass spatial550

filters on the eddy velocity fields to compare the vertical structure at different horizontal scales.551

Fig. 12 shows the normalized vertical structures for eddies smaller than 2𝜋/0.25◦, 2𝜋/0.5◦, and552

2𝜋/1◦, represented by the solid blue, orange, and green lines, respectively. The vertical structure553

29



of EKE becomes shallower as the horizontal scale becomes smaller. This finding is consistent with554

the prediction by SQG, highlighting the scale dependence of the eddy vertical structure.555

To represent the scale-dependent eddy vertical structure at different model resolutions, we propose556

a scale-aware parameterization of the normalized EKE profile, 𝐸𝑝,557

E𝑝 = 𝑒2𝑘𝑔𝑧𝑠 , (22)

with558

𝑘𝑔 = max (𝑘0, 𝑐/Δ) , (23)

where Δ is the model grid spacing, and 𝑐 is a dimensionless constant, which will be a tuning559

parameter. The ratio, 𝑐/Δ, is proportional to the largest wavenumber resolved by the model with560

grid spacing Δ. The constant 𝑐 is on the order of 1 and determined by the minimum number561

of grid points needed to resolve a wavelength (𝑐 = 1 means that the model needs about 6 grid562

points to resolve a wavelength since 2𝜋/6Δ ≈ 1/Δ). If 𝑘0 > 𝑐/Δ, that means the energy containing563

scale is unresolved by the model, so the vertical structure of the subgrid EKE is dominated by the564

energy-containing wavenumber 𝑘0. If 𝑘0 < 𝑐/Δ, the energy-containing scale is resolved, so the565

vertical structure of subgrid EKE will be dominated by the largest resolved wavenumber (i.e., 𝑐/Δ)566

instead.567

To evaluate the effectiveness of the parameterization (23), we conduct tests by varying Δ to568

0.25◦, 0.5◦, and 1◦ and assume 𝑐 = 1, which means we assume a minimum of 6 grid points is569

required to resolve an eddy. The parameterization profiles (22) with 0.25◦, 0.5◦, and 1◦ are shown570

by the dashed blue, orange, and green lines in Fig.12, respectively. Compared with the solid571

blue, orange, and green lines in Fig.12, which represent the vertical structure of subgrid EKE in572

0.25◦, 0.5◦, and 1◦ model grid spacings, respectively, the parameterization well captures the scale573

dependence of the eddy vertical structure. The parameterization profiles look similar to the vertical574

structure of subgrid EKE at different resolutions, with the exception for the subtropics where the575

parameterization tends to decay faster than the subgrid EKE. This result is consistent with the576

comparison between the SQG mode and total EKE in Fig. 4.577

The parameterization based on equation (22) requires the prediction of the energy-containing587

scale. Studies have estimated the energy-containing scale as the Rossby deformation radius (Stone588
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Fig. 12. The vertical structure of spatially filtered EKE in the four regions shown in Fig.4. Blue, orange, and

green solid lines are the high-pass filtered vertical structure of EKE with cutoff wavenumber as 1/0.25◦, 1/0.5◦,

and 1/1◦, respectively. They represent the vertical structures of subgrid EKE that is unresolved by 0.25◦, 0.5◦,

and 1◦ models, assuming a minimum of six grid points is required to resolve an eddy. All EKE profiles are

normalized by their surface values. Blue, orange, and green dashed lines are the parameterized vertical structure

E𝑝 (𝑧,Δ). E𝑝 depends on the model grid spacing Δ and the energy-containing wavenumber 𝑘0. The vertical

structure of subgrid EKE is determined by Δ at 0.25◦ and 0.5◦ resolutions, where the energy-containing eddy is

resolved, and by 𝑘0 at 1◦ resolution. The parameterization captures the scale dependence reasonably well, except

for an underestimation in the subtropical region.
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1972), width of the baroclinic zone (Visbeck et al. 1997), Eady length scale (Larichev and Held589

1995; Jansen et al. 2015), and Rhines scale (Jansen et al. 2015, 2019). Examination of these590

theories for predicting the eddy scale is beyond the scope of this study and will be pursued in591

forthcoming work.592

7. Discussion and Conclusions593

This study addresses the question of why ocean mesoscale eddies are surface intensified—at least594

those realized within our idealized stacked shallow water model—with an aim to parameterize the595

eddy vertical structure. Unlike previous studies that explain the eddy vertical structure from the596

perspective of baroclinic modes (Wunsch 1997; de La Lama et al. 2016; Lacasce 2017; Brink and597

Pedlosky 2020; Quan et al. 2023), we attribute the eddy vertical structure to baroclinic instability598

and the energy cascade. The vertical structure of EKE is found to be well-represented by a single599

SQG mode of the energy-containing scale in the extra tropics, indicating that the surface PV plays600

a dominant role in the eddy vertical structure.601

a. Baroclinic instability and the surface-trapped mode602

The prevalence of the SQG mode is attributed to the surface-trapped baroclinic instability and603

energy cascade. Although the model used in this study does not have surface buoyancy forcing,604

the wind forcing induces isopycnal outcropping, leading to pronounced surface meridional PV605

gradients. The interior PV gradient is much weaker compared with the surface PV gradient due606

to the interior PV homogenization by eddies. Linear stability analysis shows that the surface PV607

gradient plays a dominant role in baroclinic instability, giving rise to surface-trapped unstable608

modes. These unstable modes are often smaller than the Rossby deformation radius, except in the609

circumpolar current where they are close to the deformation radius. Through nonlinear interactions,610

unstable modes transfer their kinetic energy upscale to energize mesoscale eddies, which have an611

energy-containing scale larger than the deformation radius but retain the surface-trapped vertical612

structure.613

Early geostrophic turbulence theory shows that baroclinic eddies tend to transfer their energy to614

the barotropic (depth independent) mode, and then barotropic eddies cascade their energy upscale615

(Charney 1971; Salmon 1980). Later studies have found that ocean eddies are not fully barotropic,616
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and as a consequence, the inverse energy cascade can occur in both the barotropic and baroclinic617

modes (Smith and Vallis 2001; Scott and Arbic 2007). In this study, we propose a different618

interpretation of the eddy energy cycle. Instead of decomposing the energy into the barotropic619

and baroclinic modes, we find that the energy cascade can directly occur among surface-trapped620

modes. The vertical and horizontal scales of these surface-trapped modes are coupled—smaller621

eddies decay faster with depth. Consequently, as eddies transfer energy to larger scales, they also622

grow deeper, in alignment with the barotropization tendency of geostrophic turbulence (Charney623

1971; Salmon 1980). Although eddies can become nearly barotropic if their horizontal scales are624

an order of magnitude larger than the deformation radius, the inverse energy cascade tends to be625

halted at a scale that is comparable to the deformation radius. As a result, the vertical structure of626

energy-containing eddies is surface intensified, similar to the SQG mode.627

b. Parameterization of vertical structure based on SQG628

The vertical structure of EKE depends on the horizontal scale, with smaller eddies decaying629

faster with depth. This feature suggests that the parameterization of eddy vertical structure should630

account for the horizontal scale of unresolved eddies. As the model grid spacing becomes finer,631

the unresolved eddies will be smaller and have a shallower vertical structure. Based on the WKB632

solution of the SQG mode, we propose a scale-aware parameterization of the vertical structure of633

EKE [equations (22) and (23)], building upon previous work using the SQG mode for diagnostic634

studies of the ocean’s eddy vertical structure (e.g., Lapeyre and Klein 2006; Isern-Fontanet et al.635

2008; Klein et al. 2009; Qiu et al. 2016, 2020). This parameterization requires the specification of636

an eddy horizontal scale that depends on the model grid spacing. If the energy-containing scale is637

not resolved, the vertical structure parameterization is determined by the energy-containing scale638

itself. On the other hand, if the energy-containing scale is resolved—which may be the case in639

eddy-permitting models now being used for climate studies (e.g., Adcroft et al. 2019)—the vertical640

structure parameterization is determined by the largest unresolved scale that is proportional to641

the horizontal grid spacing. This parameterization is shown to capture the vertical structure of642

EKE filtered with different horizontal scales, so that it can be useful for both non-eddying and643

eddy-permitting simulations.644
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Full closure of the vertical structure parameterization requires a prediction of the horizontal645

energy-containing scale. The energy-containing scale is associated with the mechanism that halts646

the inverse energy cascade; for example, bottom friction and the planetary vorticity gradient (Rhines647

1975; Larichev and Held 1995). Prediction of such an eddy length scale has been the focus of many648

studies (Larichev and Held 1995; Held and Larichev 1996; Thompson and Young 2006; Jansen649

et al. 2015; Kong and Jansen 2017; Chang and Held 2019; Gallet and Ferrari 2020; Chang and650

Held 2021; Gallet and Ferrari 2021).651

The SQG mode does not fully capture the vertical structure of EKE in the lower latitudes and652

tropics. Previous studies reveal that the scaling for eddy mixing is different between the tropics653

and midlatitude ocean due to the dominance of linear waves (tropics) versus nonlinear eddies654

(extra tropics) (Klocker and Abernathey 2014; Zhang and Wolfe 2022). Parameterization of the655

eddy vertical structure in the tropics requires additional work, though eddies there are mostly large656

enough to be well resolved by models targeted for climate simulations in the near future such as657

Adcroft et al. (2019).658

c. Prospects and future work659

Many previous studies consider the importance of bottom topography in causing the surface660

intensification of ocean eddies (Aoki et al. 2009; de La Lama et al. 2016; Lacasce 2017; Quan661

et al. 2023). Bottom topography can decouple abyssal eddies from upper-ocean eddies, leading662

to baroclinic modes with zero horizontal velocity at the bottom (Rhines 1970; Samelson 1992;663

Hallberg 1997; Bobrovich and Reznik 1999; Tailleux and McWilliams 2001). We find that the first664

rough-bottom mode (the EBT mode), with zero horizontal velocity at the bottom, does not describe665

the vertical structure of EKE well in our simulation. This limitation arises from the EBT mode’s666

ignorance of the surface buoyancy anomaly, which we find to be essential for reconstructing the eddy667

vertical structure. In fact, both the surface buoyancy and bottom topography can be incorporated668

in the general boundary conditions, described by equation (6), of vertical modes (Lacasce 2017;669

Yassin and Griffies 2022a). The vertical mode accounting for both effects will be explored in future670

work.671

The model used in this study does not have a mixed layer, which can change the quantitative672

analyses of the instability and eddy energetics but, we expect, will not qualitatively change the673
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role of surface PV in the vertical structure. Mixed layer baroclinic instability provides another674

important energy source for submesoscale eddies, which can cascade their energy upscale to675

energize mesoscale eddies (e.g., Fox-Kemper et al. 2008b; Sasaki et al. 2014; Callies et al. 2016;676

Schubert et al. 2020; Dong et al. 2020; Khatri et al. 2021). Callies et al. (2016) shows that the677

energy generated by mixed layer instability resides in the SQG mode, where the energy cascades678

upscale to the largest, most energetic eddies. This energy cascade is similar to our finding, with the679

difference that the SQG mode is mainly excited by the surface Charney instability in our model.680

The mixed-layer instability thus may play a similar role to the Charney instability in enhancing the681

surface-trapped mode. In a more realistic numerical setup, the mixed layer and Charney instabilities682

can coexist, with the relative importance between them depending on the depth of the mixed layer,683

stratification, and lateral buoyancy gradient in the upper ocean (Capet et al. 2016; Zhang et al.684

2023).685

This study serves as a step forward to understand and parameterize the eddy vertical structure686

by emphasizing its dependence on the horizontal scale, resulting from the impact of surface PV.687

The parameterization, described by equation (22), is ripe to be tested in non-eddying and eddy-688

permitting simulations after combining it with a closure of the horizontal energy-containing scale689

(e.g., Jansen et al. 2015, 2019). We are planing to apply this vertical structure to the kinetic690

energy backscatter parameterization that has recently been used in both idealized and realistic691

eddy-permitting simulations (Jansen et al. 2019; Juricke et al. 2019, 2020; Yankovsky et al. 2023;692

Chang et al. 2023). Other aspects, including the impacts of bottom topography and mixed layer,693

will also be incorporated in this scheme to predict the eddy vertical structure in more realistic694

situations. Such scheme will be validated by comparing to observations of full-depth eddy profile695

(Ni et al. 2023).696
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APPENDIX A707

Comparison of the Surface-Trapped Mode to the Solution in Lapeyre and Klein (2006)708

The orthogonal basis derived from equations (8) and (9) is different from that in Lapeyre and Klein709

(2006). They proposed a decomposition of the eddy streamfunction 𝜓 into a surface component710

𝜓sur satisfying711

∇2𝜓sur +
𝜕

𝜕𝑧

(
𝑓 2

𝑁2
𝜕𝜓sur
𝜕𝑧

)
= 0,

𝜕𝜓sur
𝜕𝑧

���
𝑧=0

=
𝑏𝑠

𝑓
,

𝜕𝜓sur
𝜕𝑧

���
𝑧=−𝐻

= 0,

(A1)

and an interior component 𝜓int satisfying712

∇2𝜓int +
𝜕

𝜕𝑧

(
𝑓 2

𝑁2
𝜕𝜓int
𝜕𝑧

)
= 𝑞,

𝜕𝜓int
𝜕𝑧

���
𝑧=0

= 0,

𝜕𝜓int
𝜕𝑧

���
𝑧=−𝐻

= 0.

(A2)

Here 𝑏𝑠 is the surface buoyancy anomaly and 𝑞 the PV, with the bottom boundary condition713

specified following Lapeyre (2009).714
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The interior solution, 𝜓int, is driven by interior PV anomalies and can be projected onto the715

flat-bottom modes, described by equations (2) and (4). The surface solution, 𝜓sur, is driven716

by surface buoyancy anomalies. Although 𝜓sur and the surface-trapped mode Φ𝑠 [described by717

equation (8)] share certain properties (i.e., zero interior PV anomaly and horizontal wavenumber718

dependence), 𝜓sur satisfies a Neumann surface boundary condition (i.e., surface buoyancy anomaly719

is given) while Φ𝑠 a Dirichlet surface boundary condition (i.e., surface pressure anomaly is given).720

Consequently, 𝜓sur is not orthogonal to the interior solution 𝜓int. In contrast, Φ𝑠 is orthogonal to the721

interior modes Φ𝑚 described by equation (9). Later studies have shown that the surface solution722

𝜓sur—modified to incorporate surface pressure anomaly—is better for reproducing the vertical723

structures of EKE and vertical velocity than the original formulation based on surface buoyancy724

anomaly (Isern-Fontanet et al. 2008; Klein et al. 2009; Isern-Fontanet et al. 2014; González-Haro725

and Isern-Fontanet 2014).726

APPENDIX B727

SQG Mode in Layered Quasigeostrophic Models728

Eddies in the shallow water model, described in Section 3a, are analyzed based on layered729

quasigeostrophic (QG) dynamics. The eddy streamfunction 𝜓 can be obtained from the distribution730

of the QG PV, 𝑞, by inverting the relation731

𝑞1 = ∇2𝜓1 +
𝑓 2

𝐻1

𝜓2 −𝜓1
𝑔′1

,

𝑞𝑛 = ∇2𝜓𝑛 +
𝑓 2

𝐻𝑛

(
𝜓𝑛−1 −𝜓𝑛

𝑔′
𝑛−1

− 𝜓𝑛−𝜓𝑛+1
𝑔′𝑛

)
, 𝑛 ∈ [2, 𝑛max −1],

𝑞𝑛max = ∇2𝜓𝑛max +
𝑓 2

𝐻𝑛max

𝜓𝑛max−1 −𝜓𝑛max

𝑔′
𝑛max−1

,

(B1)

where (·)𝑛 indicates the property on the n-th layer, 𝐻𝑛 is the layer thickness, 𝑓 is the Coriolis732

parameter, 𝑛max = 15 for our simulations, and 𝑔′𝑛 is the reduced gravity, computed as733

𝑔′𝑛 = 𝑔
𝜌𝑛+1 − 𝜌𝑛

𝜌0
, (B2)
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where 𝑔 = 10 m2 s−1, 𝜌𝑛 is the uniform layer density, and 𝜌0 = 1000 kg/m3 is the reference density.734

We emphasize that 𝑛 in this paper is used to label the discrete layer number in the stacked shallow735

water model, whereas 𝑚 was introduced earlier and denotes the vertical eigenmode.736

In matrix form, the relationship between q =
[
𝑞1, · · · , 𝑞𝑛max

]T and ψ =
[
𝜓1, · · · , 𝜓𝑛max

]T can be737

written as738

q =

(
S+ I∇2

)
ψ, (B3)

where I is the 𝑁 ×𝑁 identity matrix, and S is the stretching matrix written as739

S = 𝑓 2



− 1
𝐻1𝑔

′
1

1
𝐻1𝑔

′
1

0 0 · · ·
...

...

· · · 1
𝐻𝑛𝑔

′
𝑛−1

− 1
𝐻𝑛𝑔

′
𝑛−1

− 1
𝐻𝑛𝑔

′
𝑛

1
𝐻𝑛𝑔

′
𝑛

· · ·
...

...

· · · 0 0 1
𝐻𝑛max𝑔

′
𝑛max−1

− 1
𝐻𝑛max𝑔

′
𝑛max−1


Surface buoyancy is not explicitly simulated in a stacked shallow water model. Even so, its740

dynamical impact is similar to that of the surface-layer PV, 𝑞1. The streamfunction due to SQG741

dynamics, ψ𝑠, is equivalent to the streamfunction induced by the surface-layer PV,742

ψ𝑠 = (S+∇2I)−1q𝑠, (B4)

where q𝑠 = [𝑞1,0, · · · ,0]T.743

APPENDIX C744

Linear Stability Analysis745

The QG PV evolution equation in a layered QG model (e.g., Vallis 2017) is746

𝜕𝑞𝑛

𝜕𝑡
+𝑈𝑛

𝜕𝑞𝑛

𝜕𝑥
+𝑉𝑛

𝜕𝑞𝑛

𝜕𝑥
+ J(𝜓𝑛, 𝑞𝑛) + J(𝜓𝑛,𝑄𝑛) = 0, (C1)
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where J is the Jacobian, 𝑈 and 𝑉 are the background zonal and meridional velocities, and 𝑄 is the747

background PV estimated as748

Q = SV𝑥 + (𝛽−SU) 𝑦, (C2)

where Q =
[
𝑄1, · · · , 𝑄𝑛max

]T, U =
[
𝑈1, · · · , 𝑈𝑛max

]T, and V =
[
𝑉1, · · · , 𝑉𝑛max

]T. Zonal and merid-749

ional background PV gradients, 𝑄𝑥 and 𝑄𝑦, respectively, are750

Q𝑥 = SV,

Q𝑦 = 𝛽−SU.
(C3)

Inserting a wave ansatz, 𝜓𝑛 = 𝑅𝑒
[
𝜓̂𝑛𝑒

𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦−𝜔𝑡)
]
, into the linearized PV equation (C1), we get751

𝑖(𝑘𝑥𝑈𝑛 + 𝑘𝑦𝑉𝑛−𝜔)𝑞𝑛 + (𝑖𝑘𝑥𝑄𝑛𝑦 − 𝑖𝑘𝑦𝑄𝑛𝑥)𝜓̂𝑛 = 0, (C4)

where the relationship between q̂=
[
𝑞1, · · · , 𝑞𝑛max

]T and ψ̂ =
[
𝜓̂1, · · · , 𝜓̂𝑛max

]T is given by equation752

(B3),753

q̂ =

(
S− 𝑘2I

)
ψ̂, (C5)

Equation (C4) forms a generalized eigenvalue problem for the mode ψ̂ (eigenvectors) and the754

frequency 𝜔 (eigenvalues),755

𝜔Aψ̂ =
[
(𝑘𝑥U+ 𝑘𝑦V)A+ 𝑘𝑥Q𝑦 − 𝑘𝑦Q𝑥

]
ψ̂, (C6)

where A = S− 𝑘2I. For 𝜔 = 𝜔𝑟 + 𝑖𝜎, if the imaginary component, 𝜎 > 0, then the mode will grow756

exponentially, which signals a linear instability.757
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Frenger, I., M. Münnich, N. Gruber, and R. Knutti, 2015: Southern Ocean eddy phenomenology.809

J. Geophys. Res. Oceans, 120 (11), 7413–7449.810

Fresnay, S., A. Ponte, S. Le Gentil, and J. Le Sommer, 2018: Reconstruction of the 3-D dynamics811

from surface variables in a high-resolution simulation of North Atlantic. Journal of Geophysical812

Research: Oceans, 123 (3), 1612–1630.813

Fu, L.-L., and G. R. Flierl, 1980: Nonlinear energy and enstrophy transfers in a realistically814

stratified ocean. Dynamics of Atmospheres and Oceans, 4 (4), 219–246.815

41



Gallet, B., and R. Ferrari, 2020: The vortex gas scaling regime of baroclinic turbulence. Proc.816

Natl. Acad. Sci. USA, 117 (9), 4491–4497.817

Gallet, B., and R. Ferrari, 2021: A quantitative scaling theory for meridional heat transport in818

planetary atmospheres and oceans. AGU Advances, 2 (3), e2020AV000 362.819

Gill, A., 1982: Atmosphere-Ocean Dynamics, International Geophysics Series, Vol. 30. Academic820

Press, London, 662 + xv pp.821

Gnanadesikan, A., M.-A. Pradal, and R. Abernathey, 2015: Isopycnal mixing by mesoscale eddies822

significantly impacts oceanic anthropogenic carbon uptake. Geophys. Res. Lett., 42 (11), 4249–823

4255.824
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