Figure Captions
Figure 1 : A. Location of Bute Inlet in British Columbia
(Canada). B. Bute Inlet is fed by Homathko and Southgate Rivers.
Watershed areas were delimited by Gonzalez et al. (2018)
Figure 2 : Bathymetry of the head of Bute Inlet (collected in
2008 by the CCGS Vector), also showing locations of sediment samples
collected in Homathko and Southgate Rivers in 2017, and offshore in
fjord sediments in 2016.
Figure 3 : Submarine morphology and sediment cores collected in
the Bute turbidity current system. Boxes A to D: zoom-ins showing the
parts of the system bounded by overbank. E & F: Sediment core set. 30
cm long cores were collected using a box coring system; 200 cm long
cores were collected using a piston coring system.
Figure 4 : comparison between total carbon (including inorganic
and organic carbon) and total organic carbon content measured on all
samples collected in rivers and fjord.
Figure 5 : Facies and total organic carbon (TOC) content within
rivers, submarine channel and lobe, overbank, and distal flat basin. Pie
charts represent the contribution (in %) of each of the facies to a
given sub-environment.
Figure 6 : Total Carbon content (TC) versus carbon stable
isotopes (δ13C) measured on all samples collected in the rivers and in
the Bute turbidity current system. δ13C values are reported relative to
Vienna Pee-Dee Belemnite (VDBP). Radiocarbon dates are expressed as
reservoir age offsets in 14C years (following Soulet et al., 2016). The
combination of bulk measurement of carbon, stable isotopes and
radiocarbon isotopes allowed five carbon pools to be identified. (1)
Extra polymeric substances associated with bacterioplankton in the river
plumes at the surface of the fjord waters (Albright, 1983). (2) Marine
carbon produced in the distal site. (3) Young terrestrial carbon in the
form of woody debris almost exclusively buried in the sandy submarine
channel. (4) Old terrestrial biospheric organic carbon aged in soils.
(5) Petrogenic (rock-derived) organic carbon associated with coarse
sand.
Figure 7 : Separation of OC mixtures by ramped oxidation (RPO)
for three samples collected in the distal flat basin (Core 15 in Fig.
3). Two facies are identified in this core: muddy sediment with a
reddish colour and muddy sediments with a grey colour and organic
debris. Black lines show distribution of activation energy (Ea)
(thermogram; Hemingway et al., 2017). Blue squares show radiocarbon ages
(in fraction modern, Fm, a measurement of the deviation of the 14C/12C
ratio of a carbon fraction from “modern”). Red dots show carbon stable
isotopes (δ13C, in ‰). Blue bars represent the Ea range to which each
red dot and blue square applies.
Figure 8 : Summary illustration (not to scale) showing total
organic carbon (OC) fluxes from rivers to seafloor sediment in Bute
Inlet. OC fluxes are given as the average value between sediment budgets
estimated using two approaches (see Methods; Heijnen et al., in review,
Syvitski et al., 1988, Heerema, 2021). Error bars correspond to the
range between the two approaches. Sediment and OC are shuffled stepwise
down the channel before reaching the lobe due to migrating knickpoints.
The channel is thus net erosive over decennial timescales, with patches
of erosion (E) and deposition (D) between knickpoints. Over longer
timescales (>100’s yr), the channel is interpreted as being
neutral to slowly aggrading.
Table 1 : Homathko and Southgate Rivers characteristics and
estimates of annual organic carbon fluxes. a: Syvtiski and Farrow
(1983). b: see Text S1 for suspended load estimates in both rivers. c:
no bedload estimate was found in the literature for the Southgate River.
The bedload was thus estimated based on the Homathko River using the
ratio between the two river watersheds as a scaling factor (Text S2).
Table 2 : Sediment budget and organic carbon (OC) fluxes in the
sub-environments of the Bute turbidite system over 10 and 100 yr
timescales. a: sediment volumes derived from repeated bathymetric
surveys between 2008 and 2018 (Heijnen et al.. in review). Sedimentation
rates are obtained by dividing the sediment volume by the surface area
of a given sub-environment. Volume uncertainties are based on vertical
accuracy of the multibeam surveys of 0.5 % of the water depth. hence
the 600 m deep lobe is greatly affected (Heijnen et al.. 2020). b:
Assumed sedimentation rates in the channel and lobe are based on c and
Baudin et al. (2020; see Suppl. Material). c: Sedimentation rates in the
overbank and distal basin are based on 210Pb and 137Cs dating (Syvistki
et al.. 1988. Heerema. 2020; Suppl. Material). OC annual fluxes are
obtained as follows: OC flux = Sediment volume x TOC x (1-Porosity) x
Density
8. References
- Albright, L. J. (1983). Influence of river-ocean plumes upon
bacterioplankton production of the Strait of Georgia, British
Columbia. Marine Ecology - Progress Series , 12, 107-113.
- Baudin, F., Martinez, P., Dennielou, B., Charlier, K., Marsset, T.,
Droz, L., & Rabouille, C. (2017). Organic carbon accumulation in
modern sediments of the Angola basin influenced by the Congo deep sea
fan. Deep-Sea Research Part II , 142, 64-74.
- Baudin, F., Rabouille, C., & Dennielou, B. (2020). Routing of
terrestrial organic matter from the Congo River to the ultimate sink
in the abyss: a mass balance approach (André Dumont medallist lecture
2017). Geologica Belgica , 23(1-2).
- Berner, R. A. (1982). Burial of organic carbon and pyrite sulfur in
the modern ocean: its geochemical and environmental significance.American Journal of Science, 282 , 451-473.
doi:10.2475/ajs.282.4.451
- Berner, R. A. (1989), Biogeochemical cycles of carbon and sulfur and
their effect on atmospheric oxygen over Phanerozoic time,Paleogeogr. Paleoclimatol. Paleoecol ., 75, 97–122.
- Bianchi, T.S., Arndt, S., Austin, W.E.N., Benn, D.I., Bertrand, S.,
Cui, X., Faust, J. C., Koziorowska-Makuch, K., Moy, C.M., Savage, C.,
Smeaton, C., Smith, R.W., Syvitski, J. 2020. Fjords as Aquatic
Critical Zones (ACZs). Earth-Science Reviews (203), pp.
103-145. doi: 10.1016/j.earscirev.2020.103145.
- Bornhold, B. D., Ren, P., & Prior, D. B. (1994). High-frequency
turbidity currents in British Columbia fjords. Geo-Marine
Letters, 14 , 238-243.
- Burdige, D. J. (2005). Burial of Terrestrial Organic Matter in Marine
Sediments: A Re-Assessment. Global Biogeochemical Cycles,
19 (7). doi:10.1029/2004gb002368
- Burdige, D. J. (2007). Preservation of organic matter in marine
sediments: controls, mechanisms, and an imbalance in sediment organic
carbon budgets? Chemical Reviews, 107 , 467-485.
doi:10.1021/cr050347q
- Chen, Y., Parsons, D.R., Simmons, S.M., Williams, R., Cartugny,
M.J.B., Hughes Clarke, J.E., Stacey, C.D., Hage, S., Talling, P.J.,
Azpiroz-Zabala, M.A., Clare, M.A., Hizzett, J.L., Heijnen, M.S., Hunt,
J.E., Lintern, D.G., Sumner, E.J., Vellinga, A.J., Vendettuoli, D.
(2021). Knickpoints and crescentic bedform interactions in submarine
channels. Sedimentology, 68 , 1358-1377
- Cui, X., Bianchi, T. S., Savage, C., Smith, R.W. (2016) Organic carbon
burial in fjords: terrestrial versus marine inputs. Earth and
Planetary Science Letters, 451 , 41-50.
- Cui, X., Bianchi, T. S., Jaeger, J. M., & Smith, R. W. (2016).
Biospheric and petrogenic organic carbon flux along southeast Alaska.Earth and Planetary Science Letters, 452 , 238-246.
- Cui, X., Bianchi, T. S., & Savage, C. (2017). Erosion of modern
terrestrial organic matter as a major component of sediments in
fjords. Geophysical Research Letters , 44, 1457–1465.
- Conway, K. W., Barrie, J. V., Picard, K. & Bornhold, B. D. (2012).
Submarine channel evolution: active channels in fjords, British
Columbia, Canada. Geo-Marine Letters, 32, 301–312.
- Coynel, A., Seyler, P., Etcheber, H., Meybeck, M., & Orange, D.
(2005). Spatial and seasonal dynamics of total suspended sediment and
organic carbon species in the Congo River. Global Biogeochemical
Cycles , 19(4). doi:10.1029/2004gb002335
- Decho, A. W., & Gutierrez, T. (2017). Microbial Extracellular
Polymeric Substances (EPSs) in Ocean Systems. Frontiers in
Microbiology , 8(922). doi:10.3389/fmicb.2017.00922
- Deptuck, M. E., Sylvester, Z., Pirmez, C., O’Byrne, C.
Migration-aggradation history and 3-D seismic geomorphology of
submarine channels in the Pleistocene Benin-major Canyon, western
Niger Delta slope. 2007. Marine and Petroleum Geology, 24,
406-433. doi:10.1016/j.marpetgeo.2007.01.005
- Dyer, K. R. (1997). Estuaries: A Physical Introduction. New York, NY.
- Farrow, G. E., Syvitski, J. P. M., & Tunnecliffe, V. (1983).
Suspended particulate loading on the macro-benthos in a highly turbid
fjord; Knight Inlet, British Columbia. Canadian Journal of
Fisheries and Aquatic Science, 40 (1), 273-288.
- Gaines, S. M., Eglinton, G., & Rullkotter, J. (2009). Echoes of life:
what fossil molecules reveal about earth history: Oxford University
Press.
- Gales, J. A., Talling, P. J., Cartigny, M. J., Hughes Clarke, J.,
Lintern, G., Stacey, C., & Clare, M. A. (2019). What controls
submarine channel development and the morphology of deltas entering
deep‐water fjords? Earth Surface Processes and Landforms,44(2), 535-551.
- Galy, V. V., Peucker-Ehrenbrink, B., & Eglington, T. (2015). Global
carbon export from the terrestrial biosphere controlled by erosion.Nature Letter , 521. doi:10.1038/nature14400
- Geertsema, M. Menounos, B., Bullard, G., Carrivick, J.L., Clague,
J.J., Dai, C., Donati, D., Ekstrom, G., Jackson, J.M., Lynett, P.,
Pichierri, M., Pon, A., Shugar, D.H., Stead, D., Del Bel Belluz, J.,
Friele, P., Giesbrecht, I., Heathfield, D., Millard, T., Nasonova, S.,
Schaeffer, A.J., Ward, B.C., Blaney, D., Blaney, E., Brillon, C.,
Bunn, C., Floyd, W., Higman, B., Hughes, K.E., McInnes, W., Mukherjee,
K., Sharp, M.A. (in review, Geophysical Research Letters). The 28
November 2020 landslide, tsunami, and outburst flood – a hazard
cascade associated with rapid deglaciation at Elliot Creek, British
Columbia, Canada.
- Giesbrecht, I.J.W, Tank, S.E., Frazer, G.W., Hood, E.W., Gonzalez
Arriola, S.G., Butman, D.E., D’Amore, D.V., Hutchinson, D., Bidlack,
A., and Lertzman, K.P. (in press, Global Biogeochemical Cycles).
Watershed classification predicts streamflow regime and organic carbon
dynamics in the Northeast Pacific coastal temperate rainforest.
- Gonzalez Arriola, S., Giesbrecht, I.J.W., Biles, F.E., and D’Amore,
D.V. 2018. Watersheds of the northern Pacific coastal temperate
rainforest margin. Hakai Institute Data Package. doi:
10.21966/1.715755
- Hage, S., Cartigny, M. J. B., Sumner, E. J., Clare, M. A., Hughes
Clarke, J. E., Talling, P. J., Lintern, D.G., Simmons, S.M., Silva
Jacinto, R., Vellinga, A.J., Allin, J.R., Azpiroz-Zabala, M., Hales,
J.A., Hizzett., J.L., Hunt, J.E., Mozzato, A., Parsons, D.R., Pope,
E.L., Stavey, C.D., Symons, W.O., Vardy, M.E., Watts, C. (2019).
Direct Monitoring Reveals Initiation of Turbidity Currents From
Extremely Dilute River Plumes. Geophysical Research Letters,
46 (20), 11310-11320. doi:10.1029/2019gl084526
- Hage, S., Galy, V., Cartigny, M., Acikalin, S., Clare, M., Gröcke, D.,
Hilton, R.G., Hunt., J.E., Lintern, D.G., McGhee, C., Parsons., D.R.,
Stacey., C.D., Sumner, E.J., Talling. P.J. (2020). Efficient
preservation of young terrestrial organic carbon in sandy
turbidity-current deposits. Geology , 48 (9): 882–887.
- Hecky, R.E. and Hesslein, R.H. Contributions of Benthic Algae to Lake
Food Webs as Revealed by Stable Isotope Analysis (1995). J. N.
Am. Benthol. Soc., 14(4):631-653
- Hedges, J. I., & Keil, R. G. (1995). Sedimentary organic matter
preservation: an assessment and speculative synthesis. Marine
Chemistry, 49 (81e115). doi:10.1016/0304-4203(95)00008-F
- Heerema, C. J. (2021). Evolution of Turbidity Currents: New insights
from direct field measurements, Durham theses, Durham University.Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/13963/
- Heijnen, M. S., Clare, M. A., Cartigny, M. J., Talling, P. J., Hage,
S., Lintern, D. G., Stacey, C.D., Parsons, D.R., Simmons, S.M., Chen,
Y., Sumner, E.J., Dix, J.K., Hughes Clarke, J.E. (2020).
Rapidly-migrating and internally-generated knickpoints can control
submarine channel evolution. Nature communications , 11(1),
1-15.
- Heijnen, M. S., Clare, M.A., Cartigny, M. J., Talling, P.J., Hage, S.,
Pope, E.L., Bailey, L., Sumner, E.J., Lintern, D.G., Stacey, C.D.,
Parsons, D.P., Simmons, S.M., Chen, Y., Hubbard, S.M., Eggenhuisen,
J.T., Kane, I., Hughes Clarke, J.E. (in review, EPSL) Fill, flush or
shuffle: How is sediment carried through submarine channels to build
lobes?
- Hemingway, J. D., Rothman, D. H., Rosengard, S. Z., and
Galy, V. V.: Technical note: An inverse method to relate organic
carbon reactivity to isotope composition from serial oxidation,Biogeosciences , 14, 5099–5114,
https://doi.org/10.5194/bg-14-5099-2017, 2017.
- Hemingway, J.D., Rothman, D.H., Grant, K.E., Rosengard, S.Z.,
Eglington, T.I., Derry, L.A., Galy, V.V. 2019. Mineral protection
regulates long-term global preservation of natural organic
carbon. Nature 570, 228–231.
https://doi.org/10.1038/s41586-019-1280-6
- Hilton, R.G., West, A.J. Mountains, erosion and the carbon cycle.
(2020). Nature Review Earth Environ 1, 284–299.
- Hilton, R. G., Galy, A., Hovius, N., Chen, M. C., Horng, M. J., &
Chen, H. (2008). Tropical-cyclone-driven erosion of the terrestrial
biosphere from mountains. Nature Geoscience , 1(11), 759-762.
- Hizzett, J. L., Hughes Clarke, J. E., Sumner, E. J., Cartigny, M. J.
B., Talling, P. J., & Clare, M. A. (2018). Which triggers produce the
most erosive, frequent, and longest runout turbidity currents on
deltas? . Geophysical Research Letters, 45 , 855-863.
- Hoover, T.M., Marczak, L.B., Richardson, J.S. &Yonemitsu, N. (2010)
Transport and settlement of organic matter in small
streams. Freshwater Biology , 55(2), 436-449.
- Hughes Clarke, J.E., Talling, P.J., Cartigny, M.J.C. (2015) Flow by
flow monitoring within fjord-delta turbidite systems: Insights into
deep water channel-to-lobe transitions. American Geoscience
Union annual meeting, 2015
- Hunter, W., Jamieson, A., Huvenne, V., & Witte, U. (2013). Sediment
community responses to marine vs. terrigenous organic matter in a
submarine canyon. Biogeosciences .
- Kao, S.-J., Hilton, R.G., Selvaraj, K., Dai, M., Zehetner, F., Huang,
J.-C., Hsu, S.-C., Sparkes, R., Liu, J.T., Lee, T.-Y., Yang, J.-Y. T.,
Galy, A., Xu, X., Hovius, N. (2014) Preservation of terrestrial
organic carbon in marine sediments offshore Taiwan: mountain building
and atmospheric carbon dioxide sequestration. Earth Surface
Dynamics , 2, 127-139.
- LaRowe, D. E., Arndt, S., Bradley, J. A., Estes, E. R., Hoarfrost, A.,
Lang, S. Q., Lloyd, K.G., Mahmoudi, N., Orsi, W.D., Shah Walter, S.R.,
Steen, A.D., Zhao, R. (2020). The fate of organic carbon in marine
sediments-New insights from recent data and analysis.Earth-Science Reviews , 103146.
- Lee, H., Galy, V., Fend, X., Ponton, C., G., A., France-Lanord, C., &
Feakins, S. (2019). Sustained wood burial in the Bengal Fan over the
last 29 million years. Proceedings of the National Academy of
Sciences of the United States of America, 116 (45), 22518-22525.
- Liu, J. T., Hsu, R. T., Hung, J.-J., Chang, Y.-P., Wang, Y.-H.,
Rendle-Bühring, R. H., Yang, R. J. (2016). From the highest to the
deepest: The Gaoping River–Gaoping Submarine Canyon dispersal system.Earth-Science Reviews , 153, 274-300.
- Macdonald, R., Macdonald, D., O’Brien, M., & Gobeil, C. (1991).
Accumulation of heavy metals (Pb, Zn, Cu, Cd), carbon and nitrogen in
sediments from Strait of Georgia, BC, Canada. Marine Chemistry ,
34(1-2), 109-135.
- McArthur, A. D., Kneller, B. C., Wakefield, M. I., Souza, P. A., &
Kuchle, J. (2016). Palynofacies classification of the depositional
elements of confined turbidite systems: Examples from the Gres
d’Annot, SE France. Marine and Petroleum Geology , 77,
1254-1273. doi:10.1016/j.marpetgeo.2016.08.020
- McArthur, A., Kneller, B., Souza, P., & Kuchle, J. (2016).
Characterization of deep-marine channel-levee complex architecture
with palynofacies: An outcrop example from the Rosario Formation, Baja
California, Mexico. Marine and Petroleum Geology , 73, 157-173.
- McArthur, A., Gamberi, F., Kneller, B., Wakefield, M., Souza, P., &
Kuchle, J. (2017). Palynofacies classification of submarine fan
depositional environments: Outcrop examples from the Marnoso-Arenacea
Formation, Italy. Marine and Petroleum Geology , 88, 181-199.
- Plink-Björklund, P., & Steel, R. J. (2004). Initiation of turbidity
currents: outcrop evidence for Eocene hyperpycnal flow turbidites.Sedimentary Geology , 165(1-2), 29-52.
- Pope, E. L., Normandeau, A., O Cofaigh, C., Stokes, C.R., Talling,
P.J. 2019. Controls on the formation of turbidity current channels
associated with marine-terminating glaciers and ice sheets.Marine Geology (415). doi: 10.1016/j.margeo.2019.05.010
- Pope, E.L., Cartigny, M.J.B., Clare, M.A., Talling, P.J., Lintern,
D.G., Vellinga, A., Hage, S., Acikalin, S., Bailey, L., Chapplow, N.,
Chen, Y., Eggenhuisen, J.T., Hendry, A., Heerema, C., J., Heijnen,
Hubbard, S.M., Hunt, J.E., McGhee, C., Parsons, D.R., Simmons, S.M.,
M., Stacey, C.D., Vendettuoli, D. (in review, Science Advance). First
source-to-sink monitoring shows dense head controls sediment flux and
runout in turbidity currents.
- Prior, D. B., Bornhold, B. D., & Johns, M. W. (1986). Active sand
transport along a fjord-bottom channel, Bute Inlet, British Columbia.Geology , 14(7), 581-584.
- Prior, D. B., Bornholdt, B. D., Wiseman, W. J. J., & Lowe, D. R.
(1987). Turbidity Current Activity in a British Columbia Fjord.Sciences, New Serie, American Association for the Advancement of
Science, 237 (4820), 1330-1333.
- Runkel, R.L., Crawford, C.G., and Cohn, T.A., 2004, Load Estimator
(LOADEST):
A FORTRAN Program for Estimating Constituent Loads in Streams and
Rivers: U.S. Geological Survey Techniques and Methods Book 4 ,
Chapter A5, 69 p.
- Sadler, P. M. (1981). Sediment Accumulation Rates and the Completeness
of Stratigraphic Sections. The Journal of Geology, 89(5),569–584. doi:10.1086/628623
- Smeaton, C., & Austin, W. E. N. (2019). Where’s the Carbon: Exploring
the Spatial Heterogeneity of Sedimentary Carbon in Mid-Latitude
Fjords. Frontiers in Earth Science , 7, 269.
- Smith, R. W., Bianchi, T. S., Allison, M., Savage, C., & Galy, V.
(2015). High rates of organic carbon burial in fjord sediments
globally. Nature Geoscience, 8 . doi:10.1038/ngeo2421.
- Soulet, G., Skinner, L., Beaupré, S.R., Galy, V. 2016. A note on
reporting of reservoir 14C disequilibria and age
offsets. Radiocarbon , 58 (1), 205-2011.
- Sparkes, R. B., Lin, I.-T., Hovius, N., Galy, A., Liu, J. T., Xu, X.,
& Yang, R. (2015). Redistribution of multi-phase particulate organic
carbon in a marine shelf and canyon system during an exceptional river
flood: Effects of Typhoon Morakot on the Gaoping River–Canyon system.Marine Geology, 363 , 191-201. doi:10.1016/j.margeo.2015.02.013
- Sparkes, R. B. (2012). Marine Sequestration of Particulate Organic
Carbon from Mountain Belts. (PhD thesis) Downing College, University
of Cambridge, United Kingdom
- Syvitski, J. P. M., & Farrow, G. E. (1983). Structures and processes
in Bayhead Deltas: Knight and Bute Inlet, British Columbia.Sedimentary Geology, 36 (217), 244.
- Syvitski, J. P. M., Asprey, K. W., Clattenburg, D. A., & Hodge, G. D.
(1985). The prodelta environment of a fjord: suspended particle
dynamics. Sedimentology, 32 , 83-107.
- Syvitski, J. P. M., Smith, J.N., Calabrese, E.A., Boudreau, B.P.
(1988). Basin Sedimentation and the Growth of Prograding Deltas.Jounral of Geophysical Research, 93 (C6), 6895-6908.
- Tabata, S., & Pickard, G. L. (1957). The physical oceanography of
Bute Inlet, British Columbia. Journal of the Fisheries Research
Board of Canada , 14 (4), 487–520.https://doi.org/10.1139/f57-014
- Talling, P. J., Amy, L. A., & Wynn, R. B. (2007). New insight into
the evolution of large‐volume turbidity currents: comparison of
turbidite shape and previous modelling results. Sedimentology ,
54(4), 737-769.
- Talling, P. J., Massin, D., G., Sumner, E. J., & Malgesini, G.
(2012). Subaqueous sediment density flows: Depositional processes and
deposit types. Sedimentology , 59, 1937–2003.
doi:10.1111/j.1365-3091.2012.01353.x
- Turowski, J.M., Hilton, R.G., Sparker, R. (2016). Decadal carbon
discharge by a mountain stream is dominated by coarse organic matter.Geology , 44 (1), p. 27-30.
- Underwood, G., Paterson, D. and Parkes, R. (1995). The measurement of
microbial carbohydrate exopolymers from intertidal sediments.Limnology and Oceanography, 40(7), pp.1243-1253.
- Water Survey of Canada. (2020). Historical Hydrometric Data.
- Waterson, E. J., & Canuel, E. A. (2008). Sources of sedimentary
organic matter in the Mississippi River and adjacent Gulf of Mexico as
revealed by lipid biomarker and δ13C TOC analyses.Organic Geochemistry , 39(4), 422-439.
- West, A. J., Lin, C. W., Lin, T. C., Hilton, R. G., Liu, S. H., Chang,
C. T., Lin, K.-C., Galy, A., Sparkes, R.B., Hovius, N. (2011).
Mobilization and transport of coarse woody debris to the oceans
triggered by an extreme tropical storm. Limnology and
oceanography , 56(1), 77-85.
- Włodarska‐Kowalczuk, M., Mazurkiewicz, M., Górska, B., Michel, L. N.,
Jankowska, E., & Zaborska, A. (2019). Organic carbon origin, benthic
faunal consumption, and burial in sediments of northern Atlantic and
Arctic fjords (60–81°N). Journal of Geophysical Research:
Biogeosciences , 124, 3737–3751.https://doi.org/10.1029/2019JG005140
- Zeng, J., Lowe, D. R., B., P. D., Wiseman, W. J. J., & Bornhold, B.
D. (1991). Flow properties of turbidity currents in Bute Inlet,
British Columbia. Sedimentology, 38(6), 975-996.