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Abstract  18 
 19 
Meteorological and geophysical hazards will concur and interact with coronavirus disease 20 
(COVID-19) impacts in many regions on Earth. These interactions will challenge the 21 
resilience of societies and systems. A comparison of plausible COVID-19 epidemic 22 
trajectories with multi-hazard time-series curves enables delineation of multi-hazard 23 
scenarios for selected countries (United States, China, Australia, Bangladesh) and regions 24 
(Texas). In multi-hazard crises, governments and other responding agents may be required to 25 
make complex, highly compromised, hierarchical decisions aimed to balance COVID-19 26 
risks and protocols with disaster response and recovery operations. Contemporary socio-27 
economic changes (e.g., reducing risk mitigation measures, lowering restrictions on human 28 
activity to stimulate economic recovery) may alter COVID-19 epidemiological dynamics and 29 
increase future risks relating to natural hazards and COVID-19 interactions. For example, the 30 
aggregation of evacuees into communal environments and increased demand on medical, 31 
economic, and infrastructural capacity associated with natural hazard impacts may increase 32 
COVID-19 exposure risks and vulnerabilities. COVID-19 epidemiologic conditions at the 33 
time of a natural hazard event might also influence the characteristics of emergency and 34 
humanitarian responses (e.g., evacuation and sheltering procedures, resource availability, 35 
implementation modalities, and assistance types). A simple epidemic phenomenological 36 
model with a concurrent disaster event predicts a greater infection rate following events 37 
during the pre-infection rate peak period compared with post-peak events, highlighting the 38 
need for enacting COVID-19 counter measures in advance of seasonal increases in natural 39 
hazards. Inclusion of natural hazard inputs into COVID-19 epidemiological models could 40 
enhance the evidence base for: informing contemporary policy across diverse multi-hazard 41 
scenarios, defining and addressing gaps in disaster preparedness strategies and resourcing, 42 
and implementing a future-planning systems approach into contemporary COVID-19 43 
mitigation strategies. Our recommendations may assist governments and their advisors to 44 
develop risk reduction strategies for natural and cascading hazards during the COVID-19 45 
pandemic. 46 
 47 
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1. Introduction 51 

 52 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated 53 

coronavirus disease (COVID-19) emerged from probable zoonotic origin from China’s Hubei 54 

province in early December 2019. The virus and disease are collectively referred to as 55 

COVID-19 in this paper. COVID-19 rapidly spread around the world and was declared a 56 

pandemic by the World Health Organization (WHO) on 11 March 2020 57 

(https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen). 58 

As of 29 April 2020, the John Hopkins University coronavirus dashboard 59 

(https://coronavirus.jhu.edu/map.html) reports more than 3.1 million confirmed infections 60 

and more than 217,200 fatalities globally. 61 

 62 

This paper uses quantitative and qualitative measures to assess the likelihood of natural 63 

hazards coinciding with, and influencing epidemiological characteristics of, the COVID-19 64 

pandemic. Natural hazard curves for seasonal (e.g., tropical cyclone, floods, heat waves, 65 

monsoons, tornadoes) hazards are plotted against COVID-19 timeseries forecasts (Figure 1). 66 

Stochastic (e.g., earthquakes, volcanic eruptions) hazards are also considered in a general 67 

sense but not specifically analysed. The effects of these natural hazards on human life 68 

depends on the severity of the hazard, the exposure of humans and infrastructure to it, the 69 

vulnerability of exposed elements, and the ability to respond and recover. COVID-19 has the 70 

potential to significantly impact the exposure, vulnerability and response elements associated 71 

with natural disasters and vice-versa, thereby requiring a systems approach to analyse risk 72 

and resilience (e.g., Simonovic, 2011; Harrison and Williams, 2016).  73 

 74 

Approaches to mitigating COVID-19 risks share some commonalities with natural disaster 75 

mitigation. For example, enacting social distancing protocols to reduce COVID-19 exposure 76 

could be considered analogous to land-use planning to reduce exposure to natural hazards 77 

(e.g., floods, earthquakes) (Quigley et al., 2020). COVID-19 health and service policies 78 

aimed to preference vulnerable groups including the elderly, those with ill health and 79 

comorbidities, the homeless or underhoused, and people from vulnerable socioeconomic 80 

groups that might be vulnerable to financial, psychosocial and/or physical challenges (The 81 

Lancet, 2020), are crudely analogous to defining and enforcing seismic building codes, and 82 

strengthening earthquake-vulnerable buildings, to reduce life safety risks (e.g., Stucchi et al., 83 

2009; Hosseini et al., 2009) .  84 
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 85 

Epidemiological forecasts of COVID-19 infections and fatalities (Figure 1) exhibit large 86 

spatial and temporal variations due to differences in modelling approaches, mitigation 87 

scenarios (e.g. “Supress and Lift” strategy used in Hong Kong and Singapore; see Normile, 88 

2020), health system capacity, epidemiological parameters, and demographic parameters 89 

(https://covid19-scenarios.org/). Changes induced by external (e.g., the concurrency of other 90 

emergent phenomena such as natural disasters) and internal factors (e.g., relaxation of social 91 

distancing measures, return-to-work decisions) can impact on many of these parameters 92 

significantly and thus create more uncertainty in infection and fatality predictions (Figure 1). 93 

It is therefore challenging to define what a ‘worse-case’ COVID-19 fatality scenario is, given 94 

the susceptibility of forecasts to major perturbations induced by phenomena with uncertain 95 

spatial and temporal properties.  96 

 97 

Given this context, resolving policy priorities in response to the COVID-19 pandemic and 98 

associated compounding effects of natural hazards involves a complex higher-level decision-99 

making process that must inevitably be guided by scientific insight (Colwell and Machlis, 100 

2019; Filippelli, 2020). In view of this, our study seeks to provide a qualitative analysis of the 101 

combined effect of COVID-19 epidemic and external perturbations, specifically natural 102 

disasters, to propose that: 103 

 104 

(i) COVID-19 epidemiological models may be highly sensitive to disasters 105 

originating from natural hazards, and thus inclusion of seasonal and / or stochastic 106 

events might better enable worst-case scenarios to be considered,  107 

(ii) contemporary COVID-19 related policies, such as relaxations of mitigative 108 

measures, may increase the probability that diverse multi-hazards will interact 109 

with the COVID-19 crisis and stimulate concurrent and cascading crises, and  110 

(iii) disaster preparedness strategies and resourcing should carefully consider the 111 

impact of COVID-19 on future response operations, including: adaptation of 112 

implementation modalities to account for the disruption of critical supply chains, 113 

the potential localisation of response efforts due to limited mobility of 114 

humanitarian actors, availability of evacuation centres with capacity for social 115 

distancing, the capacity of humanitarian workers/volunteers and medical staff to 116 

respond to natural disasters in COVID-affected regions, and the availability of 117 
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personal protective equipment and medical equipment (e.g., respirators) to 118 

incorporate large spikes in need.  119 

 120 
 121 

 122 
 123 
 124 
Figure 1. Epidemiological forecast models for COVID-19 fatalities and infections for (a) the 125 
United States, (b) Australia, (c) Bangladesh and (d) China, developed using https://covid19-126 
scenarios.org/ software and boot-strapping reproduction number (1.9 ≤ Ro≤3.2), simulation 127 
date ranges, and % mitigation estimate parameters (see legend in each panel) to maximize 128 
goodness-of-fit between confirmed cumulative fatalities and model curves. Epidemiological 129 
curves are labelled in the format COUNTRY_AVERAGE 130 
Ro_MITIGATION#1%EFFECTIVENESS_ ±MITIGATION#2%EFFECTIVENESS_ 131 
±MITIGATION#3%EFFECTIVENESS. Epidemiological curves are subject to large and 132 
spatiotemporally varying uncertainties and are thus intended for illustrative purposes only, 133 
rather than accurate and precise forecasts. The grey box in (a) is the 95% confidence interval 134 
for the Institute for Health Metrics and Evaluation U.S. cumulative fatality projection with 135 
preferred value (black line). Model parameters and results for (a) to (d) are presented in the 136 
Supplementary Information accompanying this paper. Representative seasonal hazard curves 137 
for each country as shown. TCs = tropical cyclones. See text for interpretations. These 138 
hazard curves are derived from a variety of sources (Brooks et al., 2003; Landsea, 1993; 139 
Nissan et al., 2017; Sheridan and Kalkstein, 2010) and expert knowledge. 140 
 141 
 142 
 143 
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2. Context: Cascading natural disasters and their relevance to COVID-19 scenarios 144 

 145 

In this paper, we forthwith use the term ‘natural disaster’ to refer to an adverse event or series 146 

of events that originate from the interaction of hazardous event(s) of natural origin with 147 

humans and/or their physical and/or socioeconomic systems and infrastructure. Droughts, 148 

floods (meteorological) and earthquakes (geophysical) are the most common natural disasters 149 

in the world, affecting millions of people every year (Kouadio et al., 2012). Natural disaster 150 

fatalities since 1900 reveal decreases in average annual deaths from major drought and flood 151 

events and increases in fatalities associated with earthquakes (including tsunamis) and 152 

extreme weather (e.g., tornadoes, tropical cyclones) and temperature events (e.g., heat waves) 153 

(Figure 2). Fatality estimates from extreme temperature events are considered a minimum 154 

value because heat and cold temperature extremes may exacerbate pre-existing medical 155 

conditions and contribute to mortality rates without formal attribution (Medina-Ramon et al., 156 

2006). 157 

 158 
 159 

Figure 2. Average annual deaths by natural disasters (Ritchie and Roser, 2020).  160 
 161 
A concurrent hazard is defined herein as hazardous event(s) of natural (e.g., earthquake, 162 

volcanic eruption, flood, tropical cyclone) or human origin (e.g., an infectious disease such as 163 

COVID-19) that overlap in time and space. The occurrence of two or more hazardous events 164 

(e.g., an earthquake during COVID-19) is referred to here as a multi-hazard scenario (a.k.a. 165 
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“compound events”, although this term has a broader definition than used here (e.g. 166 

Zscheischler et al., 2018)). Hazards that are source from, triggered by, and/or influenced by 167 

preceding hazards are referred to as cascading hazards. For context, we provide brief 168 

examples below. 169 

 170 

On January 12, 2010, a catastrophic 7.0 magnitude earthquake struck Haiti, causing more 171 

than 200,000 fatalities, displacing more than 1.5 million people, and affecting 3 million 172 

people overall (Doocy et al., 2013, see also Fig. 2). The earthquake severely damaged the 173 

public sanitation system and created ideal conditions for outbreaks of major infectious 174 

diseases. Nine months later, a cholera outbreak originating from human transmission (Orata 175 

et al., 2014) began to spread across the country, eventuating in more than 9,000 deaths and 176 

650,000 infections (https://www.cdc.gov/cholera/haiti/index.html). Prior to 2010, there was 177 

no reported history of cholera in Haiti. Long-term impacts and hazards originating from the 178 

earthquake crisis (socioeconomic impacts, infrastructure impacts, hazards such as 179 

aftershocks) spatially and temporally overlapped, interacted with, and amplified the cholera 180 

impacts; these could be considered as a protracted multi-hazard scenario with cascading 181 

elements and disastrous impacts.  182 

 183 

Other cascading, multi-hazard examples include:  184 

 185 

(i) increased long-term flood hazard in Christchurch, New Zealand caused by, and concurrent 186 

with, the 2010-2011 Canterbury earthquake sequence (Quigley and Duffy, 2020) caused 187 

significant damage to property and infrastructure and increased vulnerability to coastal-tidal 188 

hazards,  189 

(ii) large death tolls in Puerto Rico and some Caribbean islands due to the cascading effects 190 

of Hurricanes Irma and Maria compounded societal vulnerability through infrastructure 191 

damage and power outages that left millions without electricity, water, and cell phone service 192 

for 2-4 weeks;  193 

(iii) the 2015 magnitude 7.8 Nepal earthquake along with its magnitude 7.3 aftershock 194 

triggered snow avalanches (largest ~2.3 km2) and thousands of landslides, the latter of which 195 

caused flooding due to river blockages and landslide dam breaches (Martha et al., (2017). 196 

Blocked and damaged road infrastructure directly impacted earthquake response efforts, 197 

including search and rescue activities, the timely provision of emergency aid, the ability to 198 

conduct rapid needs assessments, and the provision of essential services (Khazai et al., 2015). 199 
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The complex spatial distribution of landslides highlights the need for considering additional 200 

dimensions including seasonality in a multi-hazard scenario (Roback et al., 2018);  201 

(iv) extreme events (e.g. floods of 1987, 1998, and 2007, tropical cyclone in 1991) in 202 

Bangladesh that offer a perspective of the interaction between extreme natural hazards and  203 

socioeconomic vulnerabilities, and how that could be amplified by COVID-19 (Siddique et 204 

al., 1991; Khalil, 1993; Mushtaque et al., 1993; Dove and Khan, 1995; Chowdhury, 2000; 205 

Benson and Clay, 2002; Mirza, 2002; Sherman and Shapiro, 2005; McMahon, 2007; 206 

Zoraster, 2010; Rahman et al., 2013).   207 

(v) the 2011 Tohoku magnitude 9.1 earthquake, which caused shaking damage, triggered a 208 

tsunami with disastrous impacts, including a major malfunction at the Fukushima Daiichi 209 

Nuclear Power Plant that exposed people to severe radiation hazards locally and significant 210 

hazards globally (Ten Hoeve and Jacobson, 2012).  211 

 212 

It is also pertinent to consider hazard cascades with epidemic components. For instance, 213 

previous cases of Acute Respiratory Infections (ARIs) following natural disasters can shed 214 

light on disaster response needed to counter the spread of COVID-19. ARIs were a major 215 

concern following natural disasters such as the South Asian Tsunami (World Health 216 

Organization, 2005; Doocy et al., 2007;), major-to-great earthquakes (Weekly Morbidity and 217 

Mortality Report Pakistan, Vol. 42/ DEWS 2006 -36; Woersching et al., 2004; Akbari et al., 218 

2004), volcanic eruptions (Surmieda et al., 1992), and Hurricanes (Campanella, 1999). 219 

Outbreaks of other communicable diseases (e.g. water borne diseases) in communities 220 

affected by natural disasters are commonly attributed to crowding of displaced people in 221 

camps (Weekly Morbidity and Mortality Report Pakistan, Vol. 23/ DEWS 2006-17; Marin et 222 

al., 2006; Watson et al., 2007; Kouadio et al., 2012). 223 

 224 

Several natural disasters have now occurred during the COVID-19 crisis. We consider some 225 

of these in sections 3 and 4. Many countries around the world, including those with 226 

increasing COVID-19 infection and fatality rates are highly susceptible to seasonal natural 227 

disasters. Some decision-makers have reduced (or are considering reduction of) COVID-19 228 

mitigation measures based on epidemiologic data and/or priority valuation of other inputs 229 

(e.g., economic, political). The likelihood of future natural disasters and potential impacts on 230 

COVID-19 exposure and vulnerability is scarcely mentioned in these narratives. 231 

 232 
 233 
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3. Plausible COVID-19 epidemic scenarios, multi-hazard curves, and the 234 
importance of expeditiously reducing infection rates prior to disaster seasons 235 

  236 
Figure 1 presents epidemiological forecast models for COVID-19 fatalities and infections for 237 

the USA, Australia, Bangladesh and China, developed using https://covid19-scenarios.org/ 238 

Software. Curves were generated by iteratively bootstrapping the COVID reproduction 239 

number (Ro), simulation onset date, and % mitigation variable to maximize goodness-of-fit 240 

between confirmed cumulative fatalities and modelled deaths through the same time period. 241 

Several alternative scenarios were considered by adjusting the % mitigation variable only. 242 

  243 

The average Ro ranges from 1.9 (Australia) to 3.9 (China); Bangladesh is 3.8 and the United 244 

States is 3.2. These estimates are consistent with the range of reported Ro values from 245 

scientific literature (https://www.nature.com/articles/d41586-020-01003-6); noting that the Ro 246 

values used here are intended to be an average value since COVID-19 onset (rather than a 247 

value representing the current situation) that are modified by adjusting the % mitigation 248 

parameter at various time-slices. Mitigation dates for each country were derived from internet 249 

media reports by searching “country name”, and “COVID-19 mitigation actions” in Google 250 

and Google news search engines. The mitigation % effectiveness parameter was estimated 251 

from our analysis of the mitigation protocols taken, as represented by the media consulted for 252 

mitigation dates. A preference was given to peer-reviewed literature and / or government-253 

issued information sources. For example, in Australia, we assigned a mitigation estimate of 254 

75% (range 50% to 90% effectiveness) commencing on 23 March 2020, when many places 255 

of social gathering were closed and a variety of mitigation strategies aimed to reduce social 256 

contact were progressively enacted, based on a government source summary document 257 

(https://www.health.gov.au/news/health-alerts/novel-coronavirus-2019-ncov-health-258 

alert/how-to-protect-yourself-and-others-from-coronavirus-covid-19/limits-on-public-259 

gatherings-for-coronavirus-covid-19). Some countries have highly incremented and highly 260 

regionalized mitigation processes 261 

(https://www.cdc.gov/mmwr/volumes/69/wr/mm6915e2.htm?s_cid=mm6915e2_x) for which 262 

a single Ro metric grossly simplifies the reality (for example the U.S., where 20 March, 2 263 

April, 12 April); in these cases we acknowledge this complexity but consider our estimates to 264 

best represent available information at the time of writing. Ro values, mitigation dates and % 265 

effectiveness estimates, and projected fatalities are included in the Supplementary 266 

Information item 2 accompanying this manuscript. 267 
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  268 

Infection and cumulative fatality scenarios vary widely and are highly sensitive to small 269 

changes in % mitigation scenarios (e.g., Fig. 1d, CHN_3.9_85_67 vs CHN_3.9_85_67), 270 

particularly for countries with higher Ro values. Both estimates are intended for the main 271 

purpose of demonstrating how reducing mitigation measures can dramatically influence these 272 

projections.  273 

In the case of the U.S., where a lifting of restrictions and re-opening of businesses is being 274 

considered, reduction in mitigation measures is likely to sustain higher infection and fatality 275 

rates (see USA_3.2_30_70_80 curve) concurrent with peak tornado hazard season in the 276 

southeast and central U.S. (blue curve), overlapping with increasing (and peak) wildfire and 277 

heatwave hazards, and potentially overlapping with increasing flood, hurricane, and tropical 278 

cyclone hazards. Other COVID-19 related restrictions are likely to compound natural disaster 279 

and COVID-19 risks. For example, the U.S. Forest Service has cancelled its planned seasonal 280 

burns due to COVID-19 restrictions, and travel restrictions may reduce the likelihood of 281 

provision of international support for firefighting. This is explored in more detail in the 282 

Discussion section. 283 

In the case of Australia, where strong and increasing social distancing measures were enacted 284 

nationally beginning on 23 March, daily confirmed infections are reducing significantly, and 285 

the cumulative fatality curve has mostly plateaued (as of 16 April 2020). Infection and 286 

fatality rates began to increase in Australia after the cessation of the severe 2019-2020 287 

bushfire season (“Black Summer Fires”) in which thousands of Australians were forced to 288 

evacuate into communal environments; had COVID-19 emerged only 1-2 months earlier in 289 

Australia community transmission risks would have been significantly higher. All of the 290 

major seasonal hazards are reducing or at low levels; it seems less likely that natural multi-291 

hazard scenarios will concur with COVID-19, although the protracted nature of the latter and 292 

possibility of stochastic hazards (e.g., earthquakes and out-of-peak season floods) means this 293 

is still possible. 294 

 295 

In the case of Bangladesh, infection and cumulative fatality rates are currently steeply 296 

increasing. Some mitigation measures have been in effect, however the effectiveness of these 297 

is currently unclear. Cumulative fatality projections vary widely; our results suggest sustained 298 

70% average effectiveness (in the absence of other concurrent disasters or major changes in 299 
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internal variables) could keep fatalities below 10,000, but weaker mitigation strategies 300 

forecast > 500,000 deaths. Regardless of the mitigation scenarios considered here, sharp 301 

increases in infections and deaths are predicted to overlap with the forthcoming tropical 302 

cyclone and heatwave peak hazard seasons and may overlap with peaks in monsoonal flood 303 

hazard. These aspects are further considered in section 6. 304 

 305 

In the case of China, renewed ‘secondary spikes’ in infections in late March and early April 306 

enhance uncertainty in epidemiologic projections. If the average post-peak infection and 307 

fatality rate reductions have plateaued, our model suggests ~4500 deaths (CHN_3.9_85). 308 

However, if mitigative restrictions are relaxed, and if infection resurgences are sustained and 309 

stimulate cascading infections, it is conceivable (albeit unlikely) that cumulative fatalities 310 

could exceed 70,000 or more (e.g., CHN_3.9_85_67). In the latter scenario, infection and 311 

fatality rates could increase concurrently with increasing flood, heatwave, and hurricane and 312 

tropical cyclone hazards, which cause more than 1000 fatalities per year in China on average 313 

(Han et al., 2016). China also contains regions with high earthquake hazard. To reduce risks 314 

of concurrent and cascading multi-hazards, our analysis indicates that strong and sustained 315 

mitigation to reduce COVID-19 infection rates are required. 316 

  317 

The COVID-19 pandemic is active and continuously evolving. The time interval over which 318 

our forecast models are valid is shorter than the expected duration of this crisis. For example, 319 

capturing rapid movement of hot spots through China, Italy, Spain, and the United States due 320 

to continuously evolving population dynamics and government measures adds an additional 321 

layer of complexity, reducing the predictive power of forecasts over longer time periods. In 322 

the absence of a vaccine, it is conceivable that the COVID-19 pandemic might last for 323 

multiple months or years and its resurgence may occur in waves as in any other previous 324 

major pandemic (e.g. Cohn, 2008). Adapting resurgence histories of previous COVID-19 like 325 

pandemics (e.g., human corona virus HCoV-OC43) for modelling transmission dynamics, 326 

Kissler et al. (2020) suggest that the current pandemic or its waves may last through 2024. 327 

This effectively translates into an increase in compound risks associated with COVID-19 328 

pandemic, and therefore, while our preliminary analysis of concurrent compound hazards is 329 

useful for the time interval considered, it does not preclude the possibility for future multi-330 

hazard scenarios concurrent with COVID-19 to occur beyond the temporal extent of our 331 

analysis.    332 

 333 
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4. Multi-hazards concurrent with COVID-19 334 
 335 
4.1 Croatia Mw 5.3 earthquake 336 
 337 
On 19 March 2020 at midnight, the Croatian government introduced strict measures to 338 

counter the spread of COVID-19 virus as the number of confirmed cases rose to 105 (Dong et 339 

al., 2020). These included, closing of borders, shutting down all non-essential activities such 340 

as public events and gatherings and service facilities, and requiring employers to facilitate 341 

working-from-home arrangements (http://balkans.aljazeera.net/vijesti/u-hrvatskoj-na-snagu-342 

stupile-stroge-mjere-zabranjen-prelazak-granica). These strict measures were enforced to 343 

promote social-distancing to reduce COVID-19 communal infection risks.  344 

 345 

Concurrent with the countrywide partial lockdown, a moment magnitude (Mw) 5.3 346 

earthquake occurred in the northern suburbs of Zagreb, the capital of Croatia with a 347 

population of over 800,000. Prior to this earthquake, Zagreb has been devastated by several 348 

moderate earthquakes, the latest of which occurred in 1880 with a magnitude of 6.3 (Kozák 349 

and Čermák, 2010) that caused damage to about 500 buildings within a ~25 km radius from 350 

the epicenter. Past experiences have shaped earthquake preparedness in Zagreb and 351 

approximately 80% of buildings are built to standards consistent with the earthquake building 352 

design codes. However, the Mw 5.3 event and its aftershocks in March 2020 caused 353 

significant damage and disruption in the city. There was one fatality and at least 27 people 354 

suffered injuries. Electricity, water, and heating were lost in some parts of the city and about 355 

250 houses sustained significant damage. An estimated 59 people required temporary shelters 356 

due to loss of dwellings (https://abcnews.go.com/Health/wireStory/aftershocks-rattle-357 

croatian-capital-day-strong-quake-69744525). 358 

 359 

The Croatian earthquake is not an extreme natural disaster scenario. However, it provides a 360 

useful perspective of compound risks. For example, in the immediate aftermath of a natural 361 

disaster, measures imposed to ensure social-distancing may collapse temporarily. Due to the 362 

moderate size of the event and relatively localized damage zone, the Croatian government 363 

managed to clamp down on partial lockdown measures within about a day by issuing new 364 

directives, whereby the natural human behaviour of congregating in numbers and comforting 365 

each other in the aftermath of such an event was disrupted. Nonetheless, it is evident that the 366 

risk of COVID-19 transmission increased in a short-time window immediately following the 367 

Zagreb earthquake.  368 



12 
 

      369 
 370 

 371 
Figure 3. Daily new infectee rate in Croatia. The time of the Mw 5.3 Zagreb earthquake is 372 
also shown along with the COVID-19 incubation time range defined by WHO. An apparent 373 
increase in the infectee rate proceeding the earthquake is discernible. Data source: Dong et 374 
al. (2020)  375 
 376 
The daily new infectee rate (Fig. 3) shows an apparent increase following the Zagreb 377 

earthquake on 22 March 2020 within the COVID-19 incubation time range. Further analysis 378 

is needed to ascertain the exact cause of this apparent signal although it is not unreasonable to 379 

presume that the temporary collapse of social-distancing measures not only in Zagreb but 380 

also in other parts of the country in the immediate aftermath of the earthquake might have 381 

played a role. Therefore, the importance of acting rapidly and decisively by governing bodies 382 

in the immediate aftermath of a natural disaster is highlighted by the Zagreb earthquake. 383 

Identifying probable natural disasters and advance preparation might enable enforcing such 384 

actions more efficiently and systematically, reducing risks posed by the COVID-19 virus.  385 

 386 
4.2 Tropical Cyclone Harold (TCH) 387 

 388 
TCH originated as a severe meteorologic event in the Pacific Ocean and made landfall in 389 

Solomon Islands, Vanuatu, Fiji, and Tonga between 1 April 2020 and 8 April 2020 390 

(https://public.wmo.int/en/media/news/tropical-cyclone-harold-challenges-disaster-and-391 

public-health-management), disrupting COVID-19 early intervention made by these 392 

communities. It first hit the Solomon Islands as a Category 2 event and rapidly transitioned 393 
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into a Category 5 event by the time it reached Vanuatu, sustaining high winds of 200 km/h. 394 

Moving further southeast, it traversed Fiji and Tonga as a Category 4 tropical cyclone. 395 

 396 

Initial assessments indicate that 59,000 people were affected in Solomon Islands and 27 397 

people are missing at sea to date. In Vanuatu, the northern province Sanma sustained severe 398 

damage, where 90% of the population lost their homes and about 50% schools and 25% 399 

health centers were damaged. Initial aerial investigations conducted by the National Disaster 400 

Management Office of Vanuatu indicate that 159,474 people have been affected with 401 

possible 3 deaths (https://ndmo.gov.vu/tropical-cyclone-harold). The damage to houses, 402 

evacuation centers, gardens, water systems, health facilities, and schools vary between 50% 403 

and 90% across seven different provinces (https://ndmo.gov.vu/tropical-cyclone-404 

harold/category/100-01-ndmo-situation-reports#). In Fiji, more than 1,500 people have been 405 

moved to evacuation centers. The coastal flooding early warning system recently installed 406 

under the Coastal Inundation Forecasting Demonstration Project in Fiji recorded storm surge 407 

heights between 6.5 m and 8.5 m during the passage of TCH, which suggests that damage to 408 

life and property might be higher than known at present. Damage in Tonga is less 409 

documented but expected to be widespread with damage to homes, water supply, and food 410 

crops. TCH provides an example of how disaster response and recovery may impact COVID-411 

19 measures. For example, Vanuatu has reduced in-country travel restrictions to facilitate 412 

humanitarian and relief operations. However, reduced capacity of communication services, 413 

disruptions infrastructure lifelines and supply chains, and limited resources are likely to 414 

compromise relief efforts and may increase societal vulnerability to COVID-19. Fortunately, 415 

these islands have recorded a very low number of COVID-19 confirmed cases to date, and it 416 

is yet to be seen if TCH has perturbed this trend.  417 

 418 

4.3 Eruption of Anak Krakatau in Indonesia  419 

 420 

Anak Krakatoa garnered much attention after its southwestern flank collapsed in an eruption 421 

in December 2018 and generated a tsunami that killed 437 and injured thousands along 422 

western Java and Southern Sumatra (Ye et al., 2020). The volcano started a new eruption 423 

cycle on 10 April 2020 concurrent with the COVID-19 pandemic. This has remained an 424 

active situation to date with constant alerts being disseminated to the public 425 

(https://magma.esdm.go.id/v1/vona?page=1#) with a Volcano Observatory Notice for 426 

Aviation (VONA) alert level assigned as orange (3/4): “Volcano is exhibiting heightened 427 
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unrest with increased likelihood of eruption with column height below 6000 meter above sea 428 

level”. To our knowledge, no damage has been reported from this latest eruption cycle. A 429 

flank collapse analogous with the December 2018 is very unlikely as the volcano has greatly 430 

reduced in aerial extent as a result of that event. However, this highlights in general the high 431 

volcanic hazard throughout Indonesia, and the risk of volcanic activity to cause fatalities and 432 

population displacements that could impact on current COVID-19 mitigation strategies. 433 

Indonesia is still in early stage of the pandemic with only 4,839 confirmed cases and 459 434 

deaths, however the mortality rate of 9.5% is higher than global average of 6.4% on 14 April 435 

2020.   436 

 437 

4.4 Tornadoes in the southeastern US  438 

 439 

On 12 and 13 April, cold fronts crossed the southeast of the United States bringing 440 

widespread rainfall and embedded mesoscale convective systems (MCSs) with associated 441 

strong winds and tornadoes. The MCSs within the larger weather system crossed several 442 

states, but Mississippi, Georgia and South Carolina were the worst impacted. The severe 443 

weather killed at least 30 people (https://www.nytimes.com/2020/04/13/us/tornado-storm-444 

south.html) across four states and destroyed many more peoples’ homes. 445 

 446 

The typical immediate emergency response during a tornado outbreak is centred around 447 

finding shelter and this is practised by the community in the central and southeast US which 448 

has been well drilled in this process through past experience of severe weather. There is 449 

obvious potential for social distancing to be compromised where large tornado shelters are 450 

used, but accurate weather forecasts allowed for planning so that individual families within 451 

shelters were instructed to stand apart. Concerns about managing disaster response during the 452 

COVID-19 pandemic prompted the American Meteorological Society to draw up a list of 453 

guidelines for sheltering from tornadoes during the COVID-19 pandemic 454 

(https://www.ametsoc.org/index.cfm/ams/about-ams/ams-statements/statements-of-the-ams-455 

in-force/tornado-sheltering-guidelines-during-the-covid-19-pandemic/). Much of the advice is 456 

consistent with standard procedures for severe weather, but additionally people should be 457 

sure ahead of time that specific tornado shelters are open. 458 

 459 
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The US was in the midst of a steep rise in COVID-19 cases and fatalities at the time of this 460 

tornado outbreak. It is presently unclear whether this severe weather has compounded the 461 

effects of the COVID-19 pandemic in the southeast US. 462 

 463 

 464 

5. A simple epidemic phenomenological model with a concurrent event 465 

 466 

5.1 Method 467 

 468 

To qualitatively understand the effect of an external perturbation such as a natural hazard on 469 

the daily COVID-19 infectee rate, we created a simple epidemic model assuming that the 470 

cumulative growth of infectees over time follows a logistic differential function (eq. (1)). For 471 

a holistic analysis, this simple model is appropriate as the distribution of confirmed 472 

cumulative COVID-19 cases in countries that have implemented strict counter measures (e.g. 473 

China, South Korea, and Australia) can be approximately explained by this model. The 474 

exponential growth of COVID-19 cases observed in other countries is an indication of early 475 

stage exposure to the disease and that patient distribution is not sustainable over a longer time 476 

horizon due to the finiteness of populations and counter measures taken by governments. 477 

Therefore, the cumulative distribution of COVID-19 cases can be expected to converge to a 478 

model similar to that described by some variation of eq. (1).  479 

 480 

 481 
 482 
Where N is the cumulative number of infectees at any given time, t is time, Nmax is the 483 

expected maximum number of infectees, and g is the fractional growth of cumulative 484 

infectees. Figure 4 compares data from China and the model based on eq. (1) with g = 0.3, 485 

Nmax = 83,213 and a time horizon of 83 days, where an approximate value for g is selected 486 

based on visual inspection of the fit between data and the model. Note that the first patient in 487 

China was potentially discovered on 10 December 2019 and data for the period from that day 488 

to 22 January 2020 (start date given in the figure) is not reliably recorded 489 

(https://www.wsj.com/articles/how-it-all-started-chinas-early-coronavirus-missteps-490 

11583508932). 491 

 492 
 493 

𝑑𝑁𝑑𝑡 = 𝑔 ቆ1 − 𝑁𝑁𝑚𝑎𝑥ቇ 𝑁 (𝑒𝑞. 1) 
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 494 
 495 
 496 
 497 
 498 
 499 
 500 
 501 
 502 
 503 
 504 
 505 
 506 
 507 
 508 
 509 
 510 
 511 
Figure 4. Illustrations of cumulative infectees and daily new infectee rates. Upper panel: 512 
Reported confirmed COVID-19 cases in China from 22 January 2020 (blue curve) and the 513 
model based on eq. (1) (red-dashed line). See main text for parameters used. Bottom panel: 514 
An example model output (see main text for details) showing the daily new infectee rate over 515 
time for larger (blue) and smaller (red) spreading rates. While the infected population size 516 
(Nmax = 10,000) remains the same, a reduction in spreading rate from g = 0.2 to g = 0.1 517 
“flattens the curve” over a time horizon of 150 days. 518 
 519 
Rather than analysing cumulative infectee numbers, we focus on the effect on the “flattened” 520 

daily new infectee rate following an external perturbation (e.g. a natural disaster) as it is the 521 

behaviour of this curve that is being used to design COVID-19 counter measures (“curve 522 

flattening” shown in Fig. 4 bottom panel). We make several assumptions to construct our 523 

simple models: 524 

 525 

(1) In the immediate aftermath of an extreme natural disaster, it is reasonable to assume that 526 

all measures taken to contain the spread of COVID-19 collapse in the area directly affected 527 

by the event and the control over spreading rate is lost, resulting a spike in infectees. In this 528 

case, we assume that the spreading rate increases to the background value that existed prior to 529 

imposing “curve flattening” measures. 530 

 531 

(2) Governments re-establish social-distancing measures fully over a finite time horizon 532 

(Pdays) following the external perturbation, which means that the flattened spreading rate that 533 

existed prior to the external perturbation will take effect beyond Pdays. In the interim period 534 

(i.e. within Pdays), it is highly likely that governments will take partial measures that will 535 
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reduce the spreading rate as was seen during the earthquake in Croatia. Also, compliance of 536 

citizens to these partial measures can be expected although it may depend on the severity of 537 

the event and the socio-political profiles of countries. Thus, we model this effect by linearly 538 

reducing the spreading rate from the background value to the flattened value in the interim 539 

period. We test several reasonable time horizons to understand their effect on the flattened 540 

daily new infectee rate curve. Depending on the nature of the external perturbation, different 541 

scenarios may play out. For instance, in the event of a flood, a population may get displaced 542 

and scattered from days to months (Sastry, 2009) or it may be that populations get displaced 543 

but not scattered as in the case of an earthquake (Akbari et al., 2004; Asokan and Vanitha, 544 

2017). These different scenarios will have an effect on the spreading rate. Describing the 545 

spreading rate quantitatively for different scenarios is not the focus of our modelling. Instead, 546 

we model the general behaviour of the “flattened curve” in the event of an external 547 

perturbation subjected to above (1). 548 

 549 

(3) The COVID-19 incubation time period (the time between exposure to the virus and 550 

emergence of symptoms) is five days, consistent with the median incubation time published 551 

by WHO (https://www.who.int/news-room/q-a-detail/q-a-coronaviruses). This means that no 552 

new cases will be found within the first five days following an event. This simplifies the 553 

“ground truth” somewhat, as according to WHO, incubation time range varies between one 554 

and fourteen days. 555 

 556 

In our models, we set Nmax = 10,000, a background spreading rate (gb) of 0.2, a flattened 557 

spreading rate (gf) of 0.1, and a time horizon of 150 days. We test the perturbation to the 558 

flattened curve with Pdays= 1, 7, 14, 21, and 28 days.  559 

 560 

 561 

5.2 Results 562 

 563 

Figure 5 shows the results of modelling the flattened daily new infectee rate after introducing 564 

a concurrent event with Pdays = 1, 7, 14, 21, and 28 days. For each Pdays, we tested two 565 

scenarios, where we introduce external perturbations at 72 and 112 days from the start date of 566 

the flatten curve. These two time points are located symmetrically on either side of the peak 567 

of the flattened curve (day 92), and thus, provide qualitative insights into demands on the 568 

health services depending on the event occurrence relative to the peak. 569 
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 570 

Our results provide two main insights: (1) A concurrent event occurring prior to reaching the 571 

peak of the flattened curve increases the new infectee rate more in the aftermath of a 572 

concurrent event than if it were to occur at a post-peak time. This translates into increased 573 

demand on health services in the pre-peak period than in the post-peak period. (2) The 574 

number of days a government takes to re-establish COVID-19 spreading control measures 575 

(Pdays) is a critical factor that determines the level of demand placed on health services. That 576 

is, the longer it takes for a government to re-establish control measures, the higher the 577 

demand on the health services particularly in the pre-peak period.  578 

 579 

These results based on our simple model emphasize two main policy decisions governments 580 

have to make. First, measures must be enforced as early as possible to flatten the daily new 581 

infectee rate curve, so that the peak can be reached within a reasonable amount of time. This 582 

would decrease the risk of a natural disaster occurring in the pre-peak period, reducing an 583 

unexpected demand on health services. Secondly, contingency plans must be devised with a 584 

focus on re-establishing COVID-19 counter measures as fast as possible in the wake of an 585 

event. This would involve identifying possible natural disasters, their magnitude, timing (for 586 

example seasonal events), and regional dependencies. 587 

 588 

Following our example, more sophisticated models can be built to incorporate infectious 589 

disease dynamics in the wake of a concurrent event. For example, we have only considered 590 

the infected component in this instance, whereas a standard epidemiological compartmental 591 

model will incorporate susceptible and recovered components in addition to the infected 592 

component (Kermack and McKendrick, 1927) enabling the mapping of dynamic interactions 593 

between different population groups. Prediction capabilities can be further improved with 594 

even more complex models, where the underlying assumption of a well-mixed population is 595 

relaxed, and structured populations are used to reflect variable dynamics among different 596 

groups of population (e.g. Inaba and Nishiura, 2008). For real time applications, however, 597 

more work will be needed to reduce uncertainties in parameters that capture the 598 

spatiotemporal characteristics of spreading of a disease (e.g., R0, Ridenhour et al., 2014)       599 
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 600 
Figure 5. The daily new infectee rate with a concurrent event (e.g. a natural disaster). Red 601 
and blue curves are same as those given in Fig. 4 and the grey dash-dot curve is the flattened 602 
curve perturbed by a concurrent event. The vertical dashed black line is the event day. The 603 
left panel shows the effect on the flattened curve for an event occurrence in the pre-peak 604 
period, whereas the right panel is for an event occurrence in the post-peak period. Each row 605 
represents a given Pday, the number of days a government takes to fully re-establish COVID-606 
19 counter measures following the concurrent event. Pre-peak events increase the daily new 607 
infectee rate more than post-peak events. Also, the longer the governments take to re-608 
establish strict COVID-19 counter measures, the higher the daily new infectee rate. 609 
 610 
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 611 
6. Discussion 612 
 613 
6.1 Concurrent multi-hazard cascades during the COVID-19 crisis 614 

 615 

The combined epidemiological COVID-19 forecasts and seasonal hazard risk plots in Figure 616 

1 illustrate the different extreme weather types that countries will likely need to manage 617 

during different stages of the pandemic. While we have not modelled stochastic hazards such 618 

as earthquakes, they contribute a non-negligible to high hazard with regional variability for 619 

all the countries considered. Volcanic hazard is highly regionalized and not further discussed, 620 

but is highly relevant in some locations. 621 

 622 

(a) Australia: 623 

In Australia, summer 2019/20 saw substantial natural hazards including major heatwaves that 624 

brought record high temperatures to populated areas including Canberra and western Sydney, 625 

severe bushfires that swept through an unprecedented area of the continent (Boer et al. 2020) 626 

and continuing drought that has devastated farming areas, diminished water supplies and 627 

primed the Australian forests for bushfire (King et al. 2020). Australia’s “Black Summer” 628 

also saw millions of people experience very poor air quality for several days at a time as 629 

smoke from the fires blanketed Sydney, Canberra and Melbourne on several occasions. The 630 

bushfires, which resulted in 33 fatalities, led to mass evacuations from vulnerable areas and 631 

people sheltering on crowded beaches in Mallacoota, Victoria amongst other places. 632 

 633 

The “Black Summer” came only months before the COVID-19 pandemic began and as 634 

Australia approaches winter the risks of severe weather related to heatwaves, bushfires, 635 

tropical cyclones and hailstorms is reduced. While there are still natural hazard risks in 636 

Australian winter, notably related to floods and extratropical cyclones, the overall rate of 637 

meteorological hazards is lower than in summer. In that sense Australia is fortunate to have 638 

not experienced major natural hazards coincident with the COVID-9 pandemic, and it is less 639 

likely to do so than Northern Hemisphere countries over the coming months. Note, that there 640 

are non-natural hazards that could also occur during winter that could exacerbate the effects 641 

of COVID-19 in Australia such as seasonal flu. 642 

 643 

(b) The United States: 644 
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In the US, we have already highlighted the tornado outbreak of 12 and 13 April as occurring 645 

during the COVID-19 pandemic. The US experiences its seasonal peak in tornado probability 646 

in May, so there are likely to be further severe storms around this time. During boreal 647 

summer, the US often experiences other natural hazards including heatwaves and hurricanes. 648 

While these extremes both have devastating impacts their interaction with the ongoing 649 

COVID-19 pandemic will likely differ. Heatwaves tend to exacerbate pre-existing health 650 

conditions. This would place an additional burden on a healthcare system that may also be 651 

stretched due to COVID-19. In contrast, hurricanes tend to damage infrastructure, and, like 652 

tornadoes, people evacuate and shelter, often travelling interstate or sheltering with many 653 

other people in large buildings. Such a response to a hurricane in summer 2020 would not 654 

abide by social distancing protocols and could aid the spread of the virus. Alternate plans 655 

should be considered. Both heatwaves and hurricanes affect larger areas than tornadoes and 656 

have the potential to strain emergency response systems already managing the COVID-19 657 

pandemic.  658 

 659 

 660 

(c) South Asia: 661 

South Asian countries with some of the highest population densities 662 

(https://neo.sci.gsfc.nasa.gov/view.php?datasetId=SEDAC_POP) are exposed to compound 663 

risks from COVID-19 pandemic and extreme weather events such as severe floods as the 664 

region enters the wet season from May to October. For instance, 1110 people died and nearly 665 

14 million were affected in the floods of June 2007 in Bangladesh (Dewan, 2015). In 666 

addition, Northern Pakistan and India, Nepal, and Bhutan are located along the Himalayan 667 

main frontal thrust capable of producing large Mw > 7.0 earthquakes (Lavé et al., 2005). The 668 

devastation caused by the 2015 Mw 7.8 Gorkha earthquake that occurred in Nepal 669 

exemplifies the exposure of this region to extreme geologic hazards. This particular event 670 

killed 8,790 people, injured 22,304 and affected another 8 million people and damaged 671 

755,549 buildings (Gautam, 2017). It is evident from these statistics that solitary extreme 672 

natural hazards in this region have the potential to affect large numbers of people and 673 

displace them. In particular, displacement in large numbers during severe natural events is 674 

mainly attributable to the poor quality of dwellings and infrastructure. This in turn is 675 

detrimental to measures enforced to counter the spread of COVID-19, foremost of which is 676 

social distancing. In the event of natural hazards, these measures are highly likely to 677 

disintegrate completely, substantially increasing the risk of COVID-19 infections. 678 
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(d) Other: 679 

While we have qualitatively aggregated these hazards on an domestic scale, the countries 680 

considered herein (and many other countries with high natural disaster risk including Japan, 681 

The Philippines, Iran, and many central America and Pacific island nations) have strong 682 

regional variations in hazard, exposure, and vulnerability that are superimposed on 683 

spatiotemporal variabilities in COVID-19 risks. It is well beyond the scope of this article to 684 

consider these regional variations. However, we provide one example, from the U.S. state of 685 

Texas (Figure 6). Currently Texas has implemented two of four potential social distancing 686 

measures but has a climbing rate of COVID-19 hospitalizations and deaths that are 687 

collectively increasing demand on resources (Figure 6). Projected peaks in fatality rate and 688 

hospital demand overlap with the seasonal peak in tornado hazard (Long et al., 2018). Upper 689 

bounds (95% confidence) on projected ICU resource capacity currently approach ICU bed 690 

availability; if tornadoes increase ICU demand (by increasing critical care injuries associated 691 

with the tornado and / or COVID-19 infectees) or reduce capacity (by power outages and 692 

infrastructure damage) then it is conceivable that resource limits could be approached. 693 

 694 

 695 
Figure 6. COVID-19 daily deaths, hospital bed usage and capacity, and future projections 696 
plotted against the tornado seasonal hazard curve. The concurrency of increased COVID-19 697 
and tornado hazards define heightened risk of a multi-hazard scenario that could greatly 698 
increase demand on hospital resources and increase COVID-19 exposure risks in instances 699 
where existing tornado evacuation procedures such as communal clustering into shelters are 700 
undertaken.  701 
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6.2 Implications for humanitarian response 702 
 703 

In 2020 it is estimated that 167 million people across 55 countries will require humanitarian 704 

assistance (OCHA, 2019). With ongoing global economic uncertainty (IMF, 2020), it is 705 

unclear what impact the COVID-19 pandemic will have on humanitarian financing and 706 

resource mobilisation. In the event that a crisis exceeds the coping capacity of a host country, 707 

a funding or resourcing gap resulting from COVID-19 would severely impair the 708 

government’s ability to deliver critical humanitarian aid and to scale-up response efforts to 709 

meet the needs of the affected population.  710 

For many countries, a hazard response beyond the coping capacity of the government will 711 

trigger a Level 3 (L3) Inter-Agency Standing Committee (IASC) Humanitarian System-Wide 712 

Scale-Up (IASC, 2018) involving one or more clusters / sectors (i.e. Water Sanitation and 713 

Hygiene (WASH), Health, Protection, Logistics, Shelter) to coordinate response efforts. 714 

Responding to a L3 multi-hazard situation during COVID-19 will require additional 715 

resources and rely more heavily on integrated programming and inter-sectorial coordination 716 

incorporating competing priorities from different clusters / sectors.   717 

Where countries have an existing Humanitarian Response Plan (HRP), or contingency 718 

planning simulations have been carried out such as the 2019 “Bangladesh contingency plan 719 

for earthquake response in major urban centres” (HCTT, 2019), response plans will need to 720 

be revised, to account for the increased risk of disease transmission and additional limitations 721 

and access considerations imposed by COVID-19 during response and recovery operations. 722 

Where an IASC system-wide L3 emergency response is triggered, such as a major earthquake 723 

on a similar scale to the 2015 Gorkha Earthquake, global humanitarian response mechanisms 724 

may be limited in their ability to rapidly mobilise international surge capacity (including 725 

humanitarian staff and volunteers) and resources typically relied on for large-scale 726 

humanitarian response. International military deployments may also be limited due to an 727 

increasing focus on domestic priorities. As a result, response efforts will likely need to 728 

become much more localised, with a focus on improving remote coordination and support for 729 

local responders. Movement restrictions will make it increasingly difficult for remote and 730 

isolated populations to seek medical services and assistance (OCHA, 2020) and specialised 731 

services such as psychosocial support will increasingly need to be delivered through remote 732 

systems, as already observed during the recent Croatia Earthquake Response (IFRC, 2020). 733 

Multi-hazard risk profiles in these circumstances will need to include an array of often 734 
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compounding vulnerabilities, such as the risk to elderly populations and the elevated risk of 735 

sexual and gender-based violence. 736 

Logistics supply chains have already been severely compromised by COVID-19, with a 737 

disruption of critical supply chains due to border closures, import/export restrictions, and 738 

access restrictions (OCHA, 2020). This will influence the way humanitarian programming 739 

can be implemented. Stimulation of local markets (where they still exist) through cash and 740 

voucher assistance (CVA) programming, improved engagement with the private sector, and 741 

utilisation of local industry and resources and will likely play an increasing role in strategies 742 

for recovery.  743 

 744 

A multi-hazard situation in an already compounded and protracted or ‘complex’ emergency is 745 

of particular concern. These include densely populated camp-like situations with a high risk 746 

of natural hazard, such as the Bangladesh Rohingya Refugee Response. As of December 747 

2019, some 810,000 Rohingya refugees lived in 34 congested camps at high risk of flooding, 748 

landslides and seasonal cyclones, and reliant on humanitarian aid to meet basic needs 749 

(OCHA, 2019). The added complication of COVID-19 containment measures into this 750 

already protracted crisis will put populations at significant risk of loss of life and will cause 751 

unprecedented complexity for humanitarian response efforts in the event of a natural hazard. 752 

Dense settlements, with a high population density will need to carefully consider social / 753 

physical distancing measures in humanitarian programming. This will limit the types of 754 

assistance (emergency centres, camps, emergency shelter, cash distributions, rental 755 

assistance, etc.) that can be delivered and the implementation modalities that can be used 756 

without increasing risk of transmission, and thereby compromising efforts to contain COVID-757 

19.  758 

It is essential that humanitarian response remains proportionate, appropriate and relevant to 759 

the emergency, while still being timely and effective (Sphere, 2020). Humanitarian response 760 

should avoid exposing populations to further harm, and it is critical that preparedness plans 761 

pre-emptively assess and evaluate the compounding risks posed by COVID-19 in multi-762 

hazard situations. A tiered resilience approach that concurrently integrates resilience indices, 763 

visualization tools, and modeling methods from multiple agencies, organizations, and 764 

researchers could assist in reconciling analytical complexity with stakeholder (humanitarian 765 

organizations and beneficiaries) needs and resources available for creating actionable 766 

recommendations to enhance resilience (Linkov et al., 2018). 767 
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7. Conclusions and recommendations 768 

 769 

Our analysis suggests that without good planning there is an increased risk of compounding 770 

impacts originating from natural hazard event(s) during the COVID-19 pandemic. This could 771 

include both the effects of the natural disaster being worse than they would otherwise be, and 772 

additional spread of COVID-19. Here we make several recommendations we believe could 773 

alleviate some of the worst effects of natural hazards during the pandemic: 774 

 775 

1) Make extensive use of pandemic and natural disaster hybrid models  776 

The compounding effect of seasonal natural hazards (e.g. floods, cyclones) on the COVID-19 777 

pandemic is largely a foreseeable problem and plans developed ahead of time could prevent 778 

some of the worst potential impacts from occurring. These plans can be based on modelling 779 

similar to that shown in this paper and we encourage emergency management agencies to 780 

consider use of these hybrid models to build response plans. COVID-19 epidemiological 781 

models may be highly sensitive to natural disasters, and thus inclusion of seasonal and / or 782 

stochastic events might better enable worst-case scenarios to be considered. This may be 783 

particularly important considering (a) the effect on infectee rate of the timing of a concurrent 784 

event relative to the peak of the infectee rate curve as demonstrated in this study (Fig. 5); (b) 785 

the uncertainty in intensity and duration with which COVID-19 counter measures must be 786 

implemented for them to be effective. 787 

 788 

2) Make extensive use of weather forecasting and seasonal prediction models 789 

Where possible, use of prediction models may help agencies ramp up emergency planning 790 

procedures days and weeks before meteorological extremes occur. For example, seasonal 791 

prediction allows advance planning for the possibility of specific weather extremes and this 792 

should be undertaken to prevent some of the worst impacts of such events. There is already 793 

an indication that the 2020 Atlantic hurricane season will be unusually active (e.g. 794 

https://engr.source.colostate.edu/csu-researchers-predicting-active-2020-atlantic-hurricane-795 

season/), so planning for major land-falling hurricanes in the US over heavily populated cities 796 

during the COVID-19 pandemic could be beneficial. In particular, developing alternate 797 

response plans and communicating these well in advance should prepare people for the most 798 

suitable actions to take that keep them safe from the hazard while also adhering to social 799 
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distancing, could help in preventing a major disaster. Even on the timescale of numerical 800 

weather prediction, the response to the 12-13 April tornado outbreak demonstrates that 801 

several days may be enough to prepare for well-forecast small-scale extreme weather events. 802 

 803 

3) Re-design policy responses to different natural hazards 804 

 805 

It is likely that hazard mitigation measures for worst case scenarios of expected natural 806 

disasters, seasonal or stochastic, are already in place for many countries and regions (e.g. 807 

Hurricanes in the US, Floods in Bangladesh, earthquakes in Nepal). However, these plans do 808 

not account for the existing COVID-19 crisis that requires social-distancing as the primary 809 

counter measure. Thus, incorporating effects of natural hazards in epidemiological models 810 

can guide modifications required in existing natural hazard mitigation plans. The compound 811 

risks associated with stochastic natural disasters (e.g. earthquake, volcanic eruptions) can 812 

potentially be mitigated by modifying existing hazard mitigation plans. Specific suggestions 813 

include establishing strategies for decongestion of densely populated spontaneous camps and 814 

settlements, introducing clear physical distancing protocols for distribution of essential 815 

assistance, increasing space allocations for vulnerable populations in shelters to reduce the 816 

risk of COVID-19 transmission, and the use of more emergency shelter locations with fewer 817 

people so that some semblance of social distancing may be achieved even in the aftermath of 818 

a hurricane or earthquake. Large-scale availability of personal protective equipment (PPE) to 819 

emergency responders would also help prevent the spread of infection. 820 

4) Support agencies working in developing regions to manage relief efforts 821 

Given the disproportionate impacts of many prior pandemic and natural hazards on the 822 

developing world, plans to equip developing countries and NGOs in preparing for and 823 

responding to natural hazards during the COVID-19 pandemic would help limit the impacts 824 

of such disasters. 825 

As our simple epidemiology models show, spikes in daily new infectee rates are a likely 826 

scenario in the wake of a natural disaster. The magnitude and duration of these spikes could 827 

in principle be controlled by policy decisions (described above). Thus, disaster planning 828 

strategies and resourcing, such as the introduction of remote coordination platforms, the 829 

localisation of response efforts and resources, availability of evacuation centres with capacity 830 

for social distancing, potential mobility of humanitarian actors, volunteers and medical staff 831 
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that could respond to natural disasters in COVID-affected regions, and the availability of 832 

personal protective equipment and medical equipment (e.g., respirators) must be designed in 833 

combination with above (ii). Countering challenging conditions associated with natural 834 

hazards (limited road access, lack of communication etc.) must be considered in upholding 835 

COVID-19 social-distancing measures. 836 

 837 

We offer these recommendations in the hope that they may be used to prevent some of the 838 

worst-impact scenarios of coincident natural hazard occurrences with the ongoing COVID-19 839 

outbreak. These recommendations support the independently-derived strategic disaster risk 840 

reduction recommendations proposed by Djalante et al. (2020): (i) Strengthen knowledge and 841 

science provision in understanding disaster and health-related emergency risks, (ii) Mobilise 842 

existing disaster risk governance structure to manage disaster risk and potential health-843 

emergencies, (iii) Utilise existing disaster coordination mechanisms at regional level to 844 

inform epidemic response, (iv) Understand COVID-19 economic implications and resilience, 845 

(v) Prepare inclusive early recovery plans, and (vi) Strengthen community-level preparedness 846 

and response. Urgent sharing of scientific information (models, methods), particularly with 847 

developing countries, is important because many of these countries may lack capacity to 848 

generate knowledge rapidly to improve resilience against foreseeable compound risks.  849 

Our recommendations are framed around the ideas of building resilience to natural hazard 850 

risks such that their impacts are reduced in the era of COVID-19. We note that the concept of 851 

increasing resilience to mitigate impacts of extreme events is not novel (Bostik et al. 2018; 852 

Linkov et al. 2018), however, we hope that our suggested actions will build on those provided 853 

previously and will be used to reduce risks from natural hazards during the COVID-19 854 

outbreak. Our use of plausible scenarios could stimulate production of resilience analyses that 855 

incorporate uncertainty and complex dynamics of physical and human/social factors across 856 

multiple spatial and temporal scales (e.g., Bostik et al., 2018). 857 
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