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Abstract15

[ Plankton play an important role in marine food webs, in biogeochemical cycling, and16

in moderating Earth’s climate. Their possible responses to climate change are of broad17

scientific and social interest; yet observations are sparse, and mechanistic and statisti-18

cal methods yield diverging predictions. Here, we evaluate a statistical learning method19

using output from a 21st Century marine ecosystem model as a ‘ground truth’. The model20

is sampled to mimic historical ocean observations, and Generalised Additive Models (GAMs)21

are used to predict the simulated plankton biogeography in space and time. Predictive22

skill varies across test cases, and between functional groups, and errors are more attributable23

to spatiotemporal sampling bias than to sample size. Overall, the GAMs yield poor end-24

of-century predictions. Given that statistical methods are unable to capture changes in25

relationships between variables over time, we advise caution in their application and in-26

terpretation, particularly when modelling complex, dynamic systems. ]27

Plain Language Summary28

[Marine plankton communities play a central role within the Earth’s climate sys-29

tem, with important processes often divided among different ‘functional groups’. Changes30

in the relative abundance of these groups can therefore impact on ecosystem function.31

Sophisticated statistical models have been developed to map the global distribution of32

major functional groups, based on their relationships with observed environmental vari-33

ables. They appear to do a good job of summarising present-day distributions, and are34

increasingly being used to predict ecosystem changes throughout the 21st century. How-35

ever, it is not guaranteed that such models remain valid when extrapolating over time.36

Rather than wait 100 years to find out, we applied such a statistical model to a complex37

virtual ocean. This allows to immediately jump forward to the end-of-century to test the38

accuracy of our predictions. We trained the model using virtual observations that match39

real-world ocean samples in time and place. The statistical model performed well at qual-40

itatively predicting ‘present day’ plankton distributions but yielded poor predictions for41

the end of the century. The model is unable to account for changes in the underlying re-42

lationships between environmental variables and plankton distributions that occur over43

time. These results suggest that statistical techniques must be applied with caution when44

attempting to predict the future state of complex systems.]45

1 Introduction46

Plankton underpin global ocean food webs and fisheries, mediate marine biogeo-47

chemical cycles, and affect climate (Fenchel, 1988; Falkowski et al., 2008; Marinov et al.,48

2008; Guidi et al., 2016; Hutchinson, 1961). Their global biogeography interacts with the49

ocean’s inventory of nutrient elements, and its capacity to sequester CO2 (Cermeño et50

al., 2008; Guidi et al., 2009; Fuhrman, 2009; Falkowski et al., 1998). Understanding present51

and possible future biogeographic patterns of plankton communities is therefore a key52

component of marine microbial research. These biogeographic patterns are affected by53

numerous environmental factors, including supplies of nutrients and light, ambient tem-54

perature, grazing pressure, physical circulation and water column structure, and the sea-55

sonality and variability of these drivers (Tittensor et al., 2010; Rutherford et al., 1999;56

Graff et al., 2016). Despite substantial efforts by observational oceanographers e.g. (Lombard57

et al., 2019), the vastness of the global ocean and the challenges of measuring complex58

microscopic plankton communities makes data-limitation inevitable.59

Empirical methods have often been applied to making predictions from sparse ob-60

servational data, from classical statistical models, to more sophisticated machine-learning61

(ML) methods. Their focus is not typically on extracting the underlying mechanisms that62

govern the behaviour of a system, but to prognostically identify correlations in data that63

may then be leveraged to make accurate predictions. To clarify this distinction, we here64
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follow (Holder & Gnanadesikan, 2021), in referring to underlying mechanistic relation-65

ships as ‘intrinsic’, and the emergent correlations between variables in the data as ‘ap-66

parent’. In the context of predicting plankton biogeography, statistical ‘niche models’67

might seek to extract the apparent relationships between measures of plankton concen-68

trations (e.g. cell counts, gene markers or biomass) and simultaneously measured envi-69

ronmental factors (e.g. temperature, Chl-a, nutrient concentrations). These relationships70

can then be used together with satellite or large synthesis database measurements to make71

diagnostic predictions of plankton abundance. The sparse data are typically separated72

into a training dataset for model development and a testing dataset to evaluate perfor-73

mance. When the statistical models perform well relative to the measured datasets, pre-74

dictions of species presence/absence or concentrations can then be scaled globally (e.g.75

(Tang & Cassar, 2019; Barton et al., 2013; Irwin et al., 2012; Agusti et al., 2019)).76

Data-driven methods have also been used in the specific case of predicting future77

patterns of diversity and climate-change-driven trends in biogeography (Righetti et al.,78

2019; Flombaum et al., 2020; Ibarbalz et al., 2019). However, their predictions have con-79

flicted with those produced by the dynamic Earth system models used in coupled cli-80

mate change predictions, and dynamic trait-based ecosystem models (e.g. (Ward et al.,81

2014; Dutkiewicz et al., 2009, 2014; Cabré et al., 2015)). For instance, the neural-network-82

derived quantitative niche model model developed in (Flombaum et al., 2020) predicts83

an increase in picophytoplankton biomass in the future subtropical oceans, in direct con-84

trast to Earth system models, e.g. (Dutkiewicz et al., 2013; Marinov et al., 2010). Given85

the complexity of the problem and the paucity of observational data, it is difficult to as-86

sess which of these diverging outcomes is most likely.87

For instance, one could argue that the output of statistical models is more trust-88

worthy, as they do not depend on the current state of theoretical knowledge, which may89

be incomplete. Nor do they risk the loss of important information through over-simplifying90

system structures, components, and their interactions. However, the predictive skill of91

statistical methods is dependant on the quality, quantity and type of available data, and92

the suitability of a given model to the task at hand. Interpreting their outputs can also93

prove challenging, particularly with respect to the nuanced task of separating correla-94

tion from causation. For example, the statistical model might identify a correlation be-95

tween sea surface temperature (SST) and plankton biomass; yet it is uncertain whether96

SST is the primary driver of abundance, or whether separate factors coupled to SST –97

perhaps underwater solar radiation penetration or nutrient supply rates – are more sig-98

nificant. This can be further exacerbated by an inverse relationship between predictive99

skill and interpretability (Carvalho et al., 2019).100

Regardless of methodological approach, predicting unknown states of a complex101

and dynamic system is a notoriously challenging problem. With that in mind, we em-102

phasise that our intention here is not to broadly compare and contrast mechanistic and103

statistical methodologies. Rather, the goal of the current work is to help minimise some104

of this uncertainty by evaluating the performance of a popular statistical model when105

the true global state of the system over time is known. Specifically, we set up an idealised106

testbed to assess the predictive capabilities of Generalised Additive Models (GAMs,(Hastie107

& Tibshirani, 1986)) using the output from an Earth system model (the ‘Darwin Model’)108

((Dutkiewicz et al., 2021)) as a ‘ground truth’. Darwin model output is sampled in pat-109

terns that mimic historical ocean measurements, and at random, and the samples are110

used to train the GAMs. In this manner, we evaluate the GAMs’ ability to capture the111

dynamic model’s emergent biogeography in the present day ‘spatial predictions’ and by112

the end-of-century ‘temporal predictions’. At the outset, we stress that we are not mak-113

ing any claim as to the accuracy of the Darwin Model, nor its ability to faithfully pre-114

dict future plankton abundance in the real world. But, as a self-consistent global ocean115

model, with a complex, well-understood ecosystem (see e.g. (Dutkiewicz et al., 2020))116
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that is subject to perturbation by climate change, we feel that it represents a unique and117

valuable testing analogue for the current purposes.118

A fundamental question that we aim to address is whether the relationships be-119

tween plankton biogeography and the considered environmental factors will be the same120

in the present day versus the end of the century. If the statistical model accurately re-121

produces the end-of-century biogeography of the dynamic model ocean, then we can be122

more confident that the apparent relationships extracted from the training data are closely123

tied to the intrinsic drivers of global plankton abundance, and that these relationships124

remain stable over space and time.125

2 Materials & Methods126

We performed a suite of tests using a widely applied implementation of GAMs (Servén127

& Brummitt, 2018) and the ‘Darwin Model’, a dynamic marine microbial ecosystem model128

coupled to an Earth system model ((Dutkiewicz et al., 2021), (Sokolov, 2005)). To train129

the GAMs, we sample the Darwin model at the same places and times as in a large ocean130

measurement dataset used for similar purposes (Martiny & Flombaum, 2020). The re-131

sulting GAMs are then used to predict Darwin Model plankton biogeography. To quan-132

tify how spatiotemporal bias in the training dataset affects the GAMs’ predictive skill,133

we train an additional set of GAMs using a dataset of the same size, but sampled uni-134

formly randomly across the ocean’s surface, and uniformly randomly over the same pe-135

riod of time. To quantify the effect of training set sample size on the GAMs’ predictive136

skill, we generate 54 additional random-sample training sets, in 18 different sample sizes.137

We evaluate the ability of the GAMs to predict the global biogeography of the differ-138

ent plankton functional groups in the simulation, both during the 22-year period over139

which measurements were taken (i.e. spatial extrapolation), and during the last 22 years140

of the 21st century (i.e. both spatial and temporal extrapolation).141

2.1 Numerical Model Simulation142

The Darwin model ecosystem used here includes 51 plankton populations across143

7 functional groups (2 prokaryotes (pro), 2 pico-eukaryotes (pico), 5 coccolithophores (cocco),144

5 diazotrophs (diazo), 11 diatoms (diatom), 10 mixotrophic dinoflagellates (dino) and145

16 zooplankton (zoo)). Individual populations correspond to different size classes within146

functional groups, with all size classes covering a range of 0.6−2425 µm equivalent spher-147

ical diameter. Functional groups have distinct allometric relationships for growth, graz-148

ing, and sinking parameters (see (Dutkiewicz et al., 2020)). The model ecosystem is em-149

bedded within the Massachusetts Institute of Technology Integrated Global System Model150

(IGSM) (Prinn, 2013; Sokolov, 2005) which includes modules for the physics, chemistry,151

and biogeochemistry of the atmosphere, land and ocean. The ocean component has a152

2◦×2.5◦ resolution grid and 22 vertical layers (10m thickness at surface to 500m at bot-153

tom). The simulation is forced with observed greenhouse gas emissions from 1860−1990154

and then with a high emissions scenario that is analogous to the IPCC’s Representative155

Concentration Pathway 8.5, from 1990− 2110. This perturbation results in ∼3◦C sea156

surface temperature warming by 2100, sea ice retreat, increased stratification, and an157

altered overturning circulation. The IGSM has been used to examine changes in marine158

biogeochemstry and ecology in previous studies (Dutkiewicz et al. 2013; 2019) but with159

a simpler version of the ecosystem model. The current more complex ecosystem has also160

been used in previous studies, but only for the current day’s ocean (Dutkiewicz et al.,161

2021; Sonnewald et al., 2020; Kuhn et al., 2019). This model and previous model val-162

idation for the current day demonstrates the output compares well with observations along163

both axes of size and functional type (e.g. (Dutkiewicz et al., 2021, 2020)).164

–4–



manuscript submitted to Geophysical Research Letters

2.2 Ecosystem and Environmental Variables165

Surface-level plankton abundance data and environmental parameters were extracted166

from the Darwin model simulation output, where surface in this context refers to the 10m167

thick surface grid box. The ecosystem data contains 51 separate plankton biomasses, ar-168

ranged into seven functional groups (as described above). A number of environmental169

variables have been used by statistical models to predict abundance and diversity, and170

have thus been included here. They are: sea surface temperature (SST), photosynthet-171

ically active radiation (PAR), phosphate (PO4), nitrate (NO3), silicate (Si) and iron (Fe).172

We sampled both the plankton abundance data and the environmental predictor vari-173

ables from the 3586 spatiotemporal cells that encompass the representative ocean mea-174

surement coordinates, and from the 3586 randomly selected spatiotemporal cells. Note175

that the model simulation used for the current analysis nominally starts in 1991 and ex-176

tends to 2100. As such, we sample the model output from the beginning of 1991 to the177

end of 2012 and consider this as a substitute to 1987−2008 in this context. This is jus-178

tified because the dynamic model’s internal variability does not match real-world inter-179

annual variability in terms of timing, though does capture the magnitudes (e.g. there180

are El Niño events, but these do not occur in the same years as the real ocean). To val-181

idate predictions, we also consider whole-ocean surface data over the same period, and182

for the final 22 years of the simulation, from 2079 − 2100.183

2.3 Training the Statistical Learning Model184

A variety of statistical learning algorithms have already been applied to ocean mea-185

surement data, and used to make predictions about the future state of the ocean micro-186

biome (see e.g. (Righetti et al., 2019; Flombaum et al., 2020)). Indeed, the methods and187

results of (Righetti et al., 2019) act both as a guide to the current work, and as a con-188

tributing factor in our decision to use GAMs as our ‘representative’ statistical learning189

method. This is due to the (Righetti et al., 2019) finding that GAMs perform compa-190

rably to Random Forest and Generalised Linear Models in a range of predictive tasks,191

while offering a high degree of both interpretability and flexibility. Additionally, GAMs192

are of intermediate complexity between classical statistical regression models, and more193

sophisticated machine learning methods, making them both accessible and potentially194

attractive to a wide range of researchers.195

Here, we used the standard ‘LinearGAM’ model of the freely available PyGAM pack-196

age (Servén & Brummitt, 2018), incorporating a Gaussian distribution function with an197

identity link function. Feature functions are built using penalised B-splines that impose198

smoothness to avoid over-fitting, and enable the automatic fitting of nonlinear relation-199

ships, while maintaining additivity. For an initial set of results, we set the number of per-200

mitted splines to 20 for each predictor variable. We note that our results are not sen-201

sitive to the choice of this parameter (see ‘Model Comparison & Sensitivity Tests’). Rather202

than attempt to resolve and make predictions for individual plankton tracers, we instead203

sum the abundance data for each functional group, and train GAMs accordingly. The204

resulting partial dependency plots are examined for unexpected behaviours, or any clear205

indications of over or under-fitting. We thus use the relationships identified by the GAMs206

to make predictions for the global surface ocean plankton biomasses during 1987-2008207

and 2079-2100.208

2.4 Model Comparison & Sensitivity Tests209

We define presence/absence as modelled biomass being above/below a cutoff thresh-210

old (10−5 mmol C/m3), but find that patterns in the resulting predictions are not sen-211

sitive to the choice of this threshold (Table S4).212
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The R2 value of the GAMs predictions against the ‘ground-truth’ simulation val-213

ues is given as R2 = 1 − SSres/SStot, where SSres is the residual sum of squares and214

SStot is the total sum of squares. While R2 is a widely-used statistic in regression anal-215

yses, it does not by itself provide a complete picture of goodness of fit. We therefore also216

examine the mean and median relative differences, defined here as Xme = (meanpredicted−217

meanactual)/meanactual and X̃md = (medianpredicted − medianactual)/medianactual,218

as an indicator of bias. We also consider the false positive and false negative fractions,219

i.e. the fraction of grid cells where the GAMs incorrectly predict, respectively, present220

and absent biomass. Finally, we performed the above analyses with the logarithm of biomass221

concentrations and found that our results were not sensitive to this choice. Overall, we222

found that coccolithophores yielded the median performance in terms of goodness of fit223

with respect to spatial extrapolations. As such, this group is featured in the main body224

of this work, while results for the other six functional groups are reported in the sup-225

plements.226

GAM sensitivity was investigated by varying the number of splines used in perform-227

ing the fits; first by halving to 10, and then doubling to 40. While the resulting partial228

dependency plots revealed a clear change to the smoothness of the fit, as expected, we229

found that the resulting statistics were not appreciably impacted. To investigate the ef-230

fect of sample size on the overall predictive power of the GAMs, we vary the number of231

randomly-sampled cells from a minimum of 100 (reducing to 63 ocean cells), to a max-232

imum of 20, 000 (reducing to 11, 557 ocean cells), using 18 different test cases. Each sam-233

ple size test case consists of three independent random samples, with the mean value be-234

ing reported along with the standard deviation (Figure 4).235

We also perform a range of simpler correlation analyses, to build a broader picture236

of the emergent relationships between functional group biomass and predictors. These237

act as a visual aid to better understand how these relationships might change in time238

and space, and as a basic cross-reference for GAMs-derived partial dependence plots of239

the training sets. We first calculate the Pearson’s Correlation Coefficient (ρ) for each func-240

tional group-predictor pair, and the Spearman’s Rank Correlation Coefficient (ρs). Re-241

spectively, these popular methods detect the strength of linear associations between vari-242

ables, and the strength of correlation in monotonic relationships. A commonly used method243

for addressing skew or capturing scaling relationships is the log-transform, which we ap-244

ply to all datasets before recalculating ρ. However, this method of broadly applying a245

single transformation is not optimal. A more robust approach would be to examine the246

distribution of each target-predictor relationship individually, before an appropriate trans-247

formation is selected. Nonetheless, even this more optimal method runs the risk prop-248

agating transformation uncertainty into the resulting confidence interval.249

With these limitations in mind, we also determine correlations using the more re-250

cent distance correlations method of (Székely et al., 2007). This technique captures the251

strength of both linear and nonlinear associations and avoids the need to make assump-252

tions about variable distributions or linearity. We plot the correlation matrices for the253

main 3586 cell test cases, both measurements-derived and randomly-sampled, in 1987-254

2008, and at the same locations in 2079-2100. We explore the effect of sample size on255

the derived correlations by increasing the number of randomly-sampled cells to 12, 894,256

and finally to 25, 683 cells.257

3 Results258

3.1 Spatial Predictions259

We first describe the results of predicting plankton biogeography during the his-260

torical measurement period (1987 − 2008) (Figure 1). We find that predictive ability261

varies considerably across functional groups. There are fewer instances of GAMs incor-262
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rectly predicting presence (false positive) or absence (false negative) biomass for prokary-263

otes, picophytoplankton and coccolithophores (16−19% of all location-month pairs) than264

for diatoms, diazotrophs, and dinoflagellates (26−31%), with zooplankton in between265

(21%). Where biomass is present and is predicted as such, GAMs’ predictive ability for266

biomass concentration also varies substantially between functional groups (Figure 2); the267

GAMs account for as much as 71% of the variance in biomass (diazotrophs) and as lit-268

tle as 41% (zooplankton). These patterns are reflected also in the mean relative differ-269

ences and the balanced accuracy.270

Patterns of overprediction of biomass occurs across most of the oceans. For prokary-271

otes, picoeukaryotes, dinoflagellates and zooplankton, this is especially evident in the Arc-272

tic (see Figures (c) of S1, S2, S5, S6). For these groups, we also see consistent underpre-273

diction in most of the Indian Ocean and in the Eastern Equatorial Pacific. Meanwhile,274

diatoms are substantially overpredicted in most of the mid- and high-latitudes in the North-275

ern Hemisphere but perform relatively well in the subtropics (Figure S4(c)). Diazotrophs276

yield the best overall performance, with only a small amount of overprediction in the sub-277

tropical Atlantic, and overprediction in the transition zone latitudes poleward of the sub-278

tropics (Figure S3(c)).279

In general the GAMs show a tendency to overestimate biomass in the spatial pre-280

dictions regime. Overestimation ranges between 9−21% on average (picoeukaryotes and281

zooplankton, respectively), with a median overprediction of ≥16%. Despite this, there282

are some notable instances in the current context where the GAMs perform well. Spa-283

tial predictions for coccolithophores, prokaryotes and diazotrophs all yield R2 values that284

range between 0.62 and 0.71 (Figures 1(e), S1(e), S5(e)). Diazotrophs fare particularly285

well in this regime, with a mean overprediction of 10%, an R2 of 0.71, and the best vi-286

sual, qualitative match of biogeography overall (although we note that the median over-287

prediction in this case is a substantial 194%) (Figures S3(c) and S3(e)). On the whole,288

GAMs trained on data from historical measurement locations appear to be able to re-289

produce qualitative biogeographic patterns from spatial predictions well, but quantita-290

tive performance is variable, with a broad tendency towards overprediction. Notably, the291

greatest predictive errors more often occur in the undersampled regions of the ocean, such292

as the Arctic and Indian Oceans, but are by no means confined to these regions. For in-293

stance in the highly sampled North Atlantic predictions for diatoms and diazotrophs was294

also poor.295

3.2 Temporal Predictions296

GAMs’ predictive ability is substantially reduced when extrapolating to the future297

ocean (see Figures 1 and 2). Rates of false positives and negatives in presence/absence298

do not uniformly change across functional groups: the cosmopolitan groups whose ranges299

expand poleward experience the least overall change, increasing by between 3% and 11%300

in prokaryotes, dinoflagellates and coccolithophores, with a decrease of 5% for picophy-301

toplankton. GAMs’ ability to correctly predict presence/absence is further reduced for302

the groups with a more confined biogeography, increasing by between 14% and 23% for303

diazotrophs, zooplankton and diatoms. We see a substantial increase in false negative304

occurrences for diatoms (to 29%), the group whose biogeographic range contracts most.305

Where biomass is present and is predicted as such, GAMs’ predictive ability was reduced306

for all functional groups. In most cases, this reduction is substantial, with the fraction307

of variance accounted for by the GAMs reducing by between 17 and 50%, such that the308

prediction for zooplankton is worse than just assuming a globally uniform constant biomass309

(i.e. R2 < 0). We see a marked increased in mean relative differences compared to the310

‘spatial’ predictions, accompanied by a reduction in balanced accuracy for all groups be-311

sides diatoms (Figure 2).312
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Diatoms are the only group for which the fraction of variance accounted for does313

not decrease substantially, only from R2 = 0.59 to R2 = 0.56 (Figure S4). Thus, the314

predictive ability for diatom biomass where it is present is not greatly reduced, despite315

the GAMs substantial overprediction of the contraction of diatoms’ biogeography. This316

is not sensitive to varying the absence/presence cut-off value by an order or magnitude317

in either direction (Table S1).318

Spatial patterns of prediction errors of coccolithophores, prokaryotes, picoeukary-319

otes, dinoflagellates and zooplankton are largely similar to those for the historical pe-320

riod, except the North Atlantic is now underpredicted for all groups besides diazotrophs321

(Figures 1, S1, S2, S4, S5, S6). Diatom biomass is notably underpredicted in the South-322

ern Ocean and Northern Atlantic (Figure S4). Meanwhile, diazotroph biomass is notably323

overpredicted throughout the Atlantic Ocean, the Arctic, bands of the subtropical Pa-324

cific and Indian Ocean (Figure S3). Excluding diatoms, the overall tendency towards over-325

prediction is exacerbated for all groups, increasing by 57% for prokaryotes, picoeukary-326

otes, coccolithophores, and dinoflagellates, by 20% for zooplankton, and by 49% for di-327

azotrophs. Median overpredictions also increase for all groups besides diatoms.328

3.3 Model Trained on Randomised Locations329

Here we compared the above results with those produced when the GAMs were trained330

on randomly sampled datasets (Figure 2). Interestingly, the broad spatial patterns of331

where overprediction and underprediction occurs do not change much when training GAMs332

on randomly distributed data, as opposed to the ocean observation locations (Figures333

S8 and S9). Nonetheless, predictive abilities increase, biases are reduced, and balanced334

accuracy increases in both the spatial and temporal cases (Figure 2). The fraction of vari-335

ance accounted for by the GAMs increases by 2−19% when using random data to pre-336

dict historical biogeography, but increase from 5−46% when using random data to pre-337

dict future biogeography. The most notable differences are for prokaryotic, picoeukary-338

otic, and zooplankton biomass in the future case. The magnitude of the biases also de-339

creases – average biases are within 3−4% in the historical case using random data. The340

median bias for all groups is still that of overprediction, with most groups in the range341

of ≥17% compared to ≥30% for measurements-derived predictions. Diatoms and dia-342

zotrophs have a markedly higher bias in both measurements-derived and random cases,343

of ≥194% and ≥162%, and ≥65% and ≥35%. In the future case, using random data re-344

duces biases for all groups, though does not eliminate them. We also found that the pre-345

dictive ability of the GAMs was only weakly dependent on sample size (where sample346

size here refers to the number of grid cell-month pairs that are sampled)(Figure 4), with347

predictive ability appearing to plateau with increasing sample size.348

The results using random training datasets suggest that historical measurement349

biases reduce the predictive ability of GAMs more than the sample size of the training350

dataset. Predictive ability can be improved by subsampling or weighting one’s training351

dataset to reduce biases in space and time, although the coarse resolution of the Dar-352

win model – and thus reduced variability as a result of correlated observations – rela-353

tive to the real ocean may contribute to this plateauing effect.354
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(a) (b)

(c) (d)

(e) (f)

Figure 1: (a) Mean coccolithophore surface biomass (1987 - 2008) from the Darwin
model. Red points indicate spatial location of training set datapoints, derived from ocean
measurement data. (b) As per 1(a) for the years 2079 - 2100. (c) Relative (percent) dif-
ference between mean diatom surface biomass from the Darwin model and the GAMs
(1987 - 2008) (d) As per 1(c) for the years 2079 - 2100. For direct visual comparison, we
first calculate the 5th and 95th percentile of the relative di↵erence values for both the
spatial and temporal predictions, then scale symmetrically to whichever of these values is
the greatest, in either direction. (e) Hexagonally binned scatterplot of GAMs predictions
vs Darwin model for grid cells in Figure 1(c), showing density of observations via colour-
bar on the right. Top inset shows fraction of data above the presence/absence threshold
(10�5 mmol C/m3) for both (green), one (pink), or neither (red) of the statistical and
numerical models. Bottom inset shows the R2, the relative di↵erence of the means (X̄me),
and the relative di↵erence of the medians (X̃md). (f) As per 1(e) but for grid cells in
1(d). See Supplemental Materials for other functional groups.

348
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Figure 1: (a) Mean coccolithophore surface biomass (1987 - 2008) from the Darwin
model. Red points indicate spatial location of training set datapoints, derived from ocean
measurement data. (b) As per 1(a) for the years 2079 - 2100. (c) Relative (percent) dif-
ference between mean diatom surface biomass from the Darwin model and the GAMs
(1987 - 2008) (d) As per 1(c) for the years 2079 - 2100. For direct visual comparison,
we first calculate the 5th and 95th percentile of the relative difference values for both
the spatial and temporal predictions, then scale symmetrically to whichever of these val-
ues is the greatest, in either direction. (e) Hexagonally binned scatterplot of 1987-2008
GAMs predictions vs 1987-2008 Darwin model. Colorbar shows log-scaled density of
observations. Top inset: Fraction of data above the presence/absence threshold (10−5

mmol C/m3)(green box), GAMs below threshold (left, light red), Darwin below threshold
(bottom, light red), both below threshold (dark red). Bottom inset: The R2, relative dif-
ference of the means (X̄me), and relative difference of the medians (X̃md). (f) As per 1(e)
but for 2079-2100. See Supplemental Materials for other functional groups.

355
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Figure 2: Comparing Darwin model ‘true’ biomasses with GAMs predictions for
each functional group in 1987-2008 (historical) and 2079-2100 (future), and from
measurements-derived and randomly-sampled training sets. Top to Bottom: (a) Rela-
tive differences of the means, given by (GAMsmean −Darwinmean)/Darwinmean.
(b) Balanced accuracy, given by (sensitivity + specificity)/2. (c) R2

4 Discussion356

Broadly, our results suggest that statistical models – as applied in the current con-357

text – can qualitatively capture large-scale spatial patterns of plankton biogeography,358

but struggle to make robust quantitative predictions. This is particularly evident when359

the model is trained on historical ocean measurement data, and used to predict future360

plankton biogeography as a response to climate change. The fraction of variance that361

GAMs can account for saturates with sample size well below 100%, implying a ceiling362

on GAMs’ predictive ability. The emergent relationships between predictor variables and363

plankton abundances change spatially, seasonally and over the longer term. This is demon-364

strated by the variable nature of the partial dependence plots (Figure 3(a)−(b) and Fig-365

ures S10 and S11), and by the change in correlation strengths identified by each of the366

independent methods used in generating the correlation matrices (Figure 3(c)−(f) and367

Figure S12). The correlation matrices offer an especially powerful visual demonstration368

of these points; we clearly see the change in apparent relationships between biomass and369

environmental predictors in the measurement-derived sample space, assessed over the370

same period of time, one hundred years into the future (Figure 3(c) and 3(d)). It’s im-371
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Figure 3: Changing Relationships: (a) Partial dependence plots of coccolithophore
biomass (mmol C/m3) as a function of each predictor, centred around the median (PO4,
NO3, Fe, Si in mmol X/m3, SST in ◦C, SSS in PSU, PAR in E/m2/day). Plotted using
data from 3586 Darwin surface ocean cells at measurements-derived locations spanning
1987-2008 (dashed red line) and at the same locations from 2079-2100 (blue line). Grey
lines indicate 95% confidence interval for the 1987-2008 case. (b) As per 3(a), but using
data from 3586 randomly sampled cells. (c) Correlation heatmap for the measurements-
derived training set, 1987-2008, generated using the distance correlations method of
(Székely et al., 2007). (d) Difference between correlation strengths derived in 3(b) and
those found at the same locations from 2079-2100. (e) and (f) As per 3(c) and 3(d), but
for the equivalently-sized, randomly-sampled training set.

portant to note that we should expect these differences to be exaggerated in the real world,372

where the system is significantly more complex.373

For example, there are many more degrees of freedom in real-world interactions be-374

tween plankton individuals, communities, the wider ecosystem and environment. In ad-375

dition to the controlling influence of e.g. nutrient supply rate, physical transport pro-376

cesses and level of top down pressure, plankton are also able to adapt genetically and377

epigenetically to change. With their short generation times and high biodiversity, we might378

reasonably expect intrinsic relationships to change over the course of a century. This is379

especially likely in such a dynamic, randomly-perturbed, and far-from-equilibrium en-380

vironment, where conditions are ideal for unpredictable emergent phenomena to arise.381

By contrast, all such elements within the Darwin Model are simplified by design and by382

necessity, and intrinsic relationships are held steady over time, such that the spatiotem-383

poral variability in apparent relationships seen here are the product of many fewer sources384

of complexity.385

Additionally, our results also demonstrate how spatial sampling bias can signifi-386

cantly alter the patterns of apparent relationships between environmental predictors and387
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Figure 4: R2 of GAMs model prediction as a function of sample size. Points are the
mean R2 value for coccolithophore predictions from three independent randomly-
generated training sets for each of the 18 sample sizes, ranging from N=63 to N=11,557.
Shading is the standard deviation.

plankton biomass. The association strengths identified in the measurements-derived sam-388

ple vary considerably from those found in the randomly sample of equivalent size (see389

Figure 3(c) vs. 3(e)). Importantly, this finding is robust across a range of random sam-390

ple sizes, where almost identical patterns of correlations are seen in the 3586 cell case391

as in the 25, 683 cell case, and robust across several methods of deriving correlations (see392

Figure S12). Nonetheless, the spatial patterns of over and under-prediction derived from393

the GAMs are not merely the result of spatiotemporal measurement biases. We see re-394

markable agreement in these broad qualitative patterns between the predictions gener-395

ated from measurements-derived and random samples ((c) and (d) of Figures 1, and S1−396

6, and Figures S8 and S9). Ocean measurement biases may explain some element of the397

tendency towards overestimation of historical biogeography/abundances; perhaps because398

measurements have more often been made in places with higher than average abundances.399

In all cases, training the statistical model on a non-biased dataset reduces the severity400

of over and underprediction, especially for spatial predictions (Figure S8(e) and S9(e)).401

But the same broad biogeographic patterns of over and underprediction remain, indi-402

cating that the GAMs are still failing to effectively capture changes over time, despite403

their relatively robust performance according to the broad brush strokes of summary statis-404

tics (Figure S4(e) and S4(f)).405

With that in mind, a number of optimisations could be made to improve predic-406

tive skill in real-world applications. First, we note that an unrepresentative training set407

presence/absence ratio compared to the population can lead to an unreliable represen-408

tation of presence/absence in the resulting predictions. To avoid this possibility, researchers409

working with real observational data will sometimes employ resampling techniques (e.g.410

(Wei & Dunbrack, 2013)) to account for this effect. By contrast, our experimental de-411
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sign permitted us the unusual opportunity of testing our outcomes alongside a range of412

representative, randomly-sampled datasets spanning the surface ocean. These unbiased413

samples are representative of the presence/absence ratios of the population, and thus act414

as a control for our observations-derived test case. Given the broadly similar patterns415

of over and underprediction found across test cases, we do not employ resampling tech-416

niques here, but we encourage their application in real-world settings.417

Related also to the more flexible nature of our study in comparison to statistical-418

learning models applied to real-world observations, is the manner in which we approach419

training, validation and testing datasets. In some cases, ML practitioners working with420

real-world observations might reserve a proportion of the training set for model valida-421

tion, as well as an independent, but similarly-distributed, dataset for performance test-422

ing. A validation set allows for optimisation via the fine-tuning of model parameters, and423

for the avoidance of over-fitting, while the test set permits evaluation of model skill. Here,424

we use whole-ocean Darwin Model output as our test set for evaluating overall perfor-425

mance. Given model response to sensitivity tests, and GAMs natural robustness to over-426

fitting, we do not explicitly employ a validation set. Model skill could be improved with427

parameter fine-tuning, especially in the spatial predictions test case. It is less clear whether428

fine-tuning for GAMs performance using a training set sampled from the Darwin Model429

ocean of 1987-2008 would have a positive effect on end-of-century predictions, as this would430

depend on the direction of drift between the statistical model and the ground truth over431

time. Additionally, we speculate that our decision to train the GAMs using the entire432

measurements-derived sample might itself yield improvements relative to splitting the433

samples into training, testing and validation subsamples.434

We focus here on a particular type of statistical learning method that, for reasons435

outlined in Materials & Methods, we believe makes for an excellent case study. Our in-436

vestigation has allowed us to better clarify the strengths and limitations of such an ap-437

proach, as applied in the current context. Owing to the complex and ever-changing na-438

ture of the system, some of these limitations could be fundamental and unavoidable, par-439

ticularly when extrapolating far beyond the training regime. Indeed, the median over-440

estimation by the GAMs, even when using randomly sampled training data, implies that441

the predicted abundance distributions are less skewed than the Darwin model distribu-442

tions, which are, in turn, less skewed than distributions in the the real ocean. But we443

stress that these observations do not extend to data-driven methods writ large. The re-444

cent work of (Holder & Gnanadesikan, 2021) evaluates random forests (RF) and neu-445

ral network ensembles (NNE) in their ability to resolve the intrinsic relationships between446

plankton biomass and predictors, as extracted in a laboratory setting, from the appar-447

ent relationships in the data. They demonstrate variability in model predictive skill across448

different test scenarios, and find that NNE’s yield overall superior performance, partic-449

ularly in the case where plankton growth rates respond rapidly to environmental change.450

However, while these more sophisticated machine-learning models might yield an improve-451

ment in predictive skill, this can come at the cost of interpretability. Nonetheless, recent452

work by (Rudy et al., 2017) has shown that it is possible to use data-driven methods to453

directly extract the mechanistic equations that describe a dynamical system. This is an454

extremely promising advance toward hybrid methods that can provide both high levels455

of predictive skill, and an underlying description of the drivers of change.456

Methodologically, the approach we have presented of applying a statistical model457

to output from a numerical model may be useful for addressing a number of additional458

questions. These might include evaluating how best to statistically model whole-ecosystem459

properties, such as diversity, from observations, or assessing where and when to make460

new observations to maximise information content about global plankton biogeography.But,461

as our results here have demonstrated and reinforced, it is important to be aware strengths462

and limitations of this approach, especially when dealing with a high degree of complex-463

ity over time.464
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5 Conclusion465

In summary, our results suggest that statistical models like the one explored here466

can be powerful tools for extrapolating from sparse measurement sets to capture the qual-467

itative spatial patterns of plankton biomass in the present-day ocean. However, these468

biomass predictions are especially sensitive to the spatiotemporal bias in historical mea-469

surements, and can tend towards overprediction if not properly accounted for. In addi-470

tion, such models demonstrably struggle to predict future plankton biomass because the471

inherently complex and dynamic nature of the system generates variability in the rela-472

tionships between predictors and biomass over time; variability that cannot be captured473

by statistical methods. This model drift effect could be exaggerated when attempting474

to address the substantially more complex problem of predicting real-world plankton bio-475

geography using sparse observational data. Of course, this is a challenge that applies equally476

to all methods that may be applied to its possible resolution. Our results nonetheless477

help to constrain the strengths and limitations of statistical learning models in this con-478

text, and when applied to a wide range of broadly similar problems.479
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