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Abstract17

It is shown that a recently developed hybrid modeling approach that combines machine18

learning (ML) with an atmospheric global circulation model (AGCM) can serve as a ba-19

sis for capturing atmospheric processes not captured by the AGCM. This power of the20

approach is illustrated by three examples from a decades-long climate simulation exper-21

iment. The first example demonstrates that the hybrid model can produce sudden strato-22

spheric warming (SSW), a dynamical process of nature not resolved by the low resolu-23

tion AGCM component of the hybrid model. The second and third example show that24

introducing 6-h cumulative precipitation and sea surface temperature (SST) as ML-based25

prognostic variables improves the precipitation climatology and leads to a realistic ENSO26

signal in the SST and atmospheric surface pressure.27

Plain Language Summary28

This paper introduces and tests schemes for efficiently enabling significant expan-29

sion of the utility and scope of a recently introduced hybrid modeling technique that com-30

bines machine learning with an atmospheric global circulation model (AGCM). Simu-31

lation experiments are carried out with an implementation of the approach on a low res-32

olution simplified AGCM. An examination of the simulated atmospheric circulation sug-33

gests that the hybrid model can capture dynamical process not captured by the AGCM.34

Moreover, the addition of precipitation and sea surface temperature as machine learn-35

ing predicted physical quantities to the model improves the precipitation climatology and36

leads to a realistic El Niño-La Niña signal in the SST and atmospheric surface pressure.37

1 Introduction38

Arcomano et al. (2022) (AEA22 hereafter) described a hybrid atmospheric mod-39

eling approach that combines machine learning (ML) with an atmospheric general cir-40

culation model (AGCM). They showed that, when the hybrid model was used for weather41

prediction, it provided more accurate short and medium range (1-7 days) forecasts than42

either the AGCM or the ML-only component of the model (Arcomano et al., 2020) act-43

ing alone. They also showed that when the model was used for climate simulations, it44

greatly reduced the systematic errors (biases) of the model climate compared to that of45

the AGCM. In the present study, we further explore the potential of the approach of AEA2246

for climate modeling, and describe methods that significantly extends its utility and scope.47

The results we report are in accord with the idea that the inaccuracies of an AGCM could48

potentially be mitigated by utilization of information in time series of past observational49

data via the ML component of the hybrid.50

The approach of AEA22 is an implementation of the combined hybrid/parallel pre-51

diction (CHyPP) scheme of Wikner et al. (2020) on an AGCM. CHyPP itself is an adap-52

tation of the hybrid modeling approach of Pathak, Wikner, et al. (2018) to large dynam-53

ical systems, using the parallel reservoir computing (RC) algorithm of Pathak, Hunt, et54

al. (2018) for ML. Other hybrid approaches recently proposed for earth system model-55

ing (Brenowitz & Bretherton, 2018, 2019; Rasp et al., 2018; Chattopadhyay et al., 2020;56

Farchi et al., 2021; Gentine et al., 2018; Watt-Meyer et al., 2021; Clark et al., 2022) use57

either random forests or deep learning for ML.58

Section 2 summarizes the approach of AEA22 and explains how additional prog-59

nostic variables can be introduced into the hybrid model without changing the AGCM.60

Section 3 demonstrates the potential of the approach by three examples from a climate61

simulation experiment. The first example, the presence of sudden stratospheric warm-62

ing (SSW) events, illustrates that the hybrid model can capture some dynamical pro-63

cesses of nature not resolved by the AGCM. The second and third example, realistic pre-64

cipitation climatology and SST variability, demonstrate that some other dynamical pro-65
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cesses can be reproduced by modifying the AEA22 hybrid via addition of new ML-based66

prognostic variables (precipitation and sea surface temperature). As in AEA22, the AGCM67

of the simulation experiments is the Simplified Parameterization, primitive-Equation Dy-68

namics (SPEEDY) model (Kucharski et al., 2006; Molteni, 2003).69

2 The Hybrid Modeling Approach70

2.1 The Hybrid Modeling Approach of AEA2271

The hybrid model uses the same computational grid as the AGCM. The elements72

of the hybrid global state vector vH
G (t) and physics-based global state vector vP

G(t) are73

the grid-point values of the prognostic model variables. The input of the “one-time-step”74

hybrid global model solution vH
G (t+∆t) is vH

G (t), where the “time step” ∆t is signifi-75

cantly longer than the time step of the AGCM. No changes are made to the AGCM, which76

is started from vH
G (t) to provide the physics-based contribution vP

G(t+∆t) to vH
G (t+77

∆t). The hybridization is done by subdividing the global atmosphere into L local regions78

and obtaining a hybrid local model solution for each region. The computations for the79

different local regions (ℓ = 1, 2, . . . , L) are carried out in parallel and vH
G (t+∆t) is ob-80

tained by assembling the hybrid local solutions. The next paragraph outlines the cal-81

culations that provide the hybrid local model solution for local region ℓ.82

The elements of the physics based local state vector v̆P
ℓ (t+∆t) are the standard-

ized elements of vP
G(t + ∆t) that fall into local region ℓ. (Hereafter, the symbol x̆ in-

dicates a standardized vector obtained by subtracting a related mean value and divid-
ing by a related standard deviation for each element of x.) The “one-time-step” hybrid
local model solution is

v̆H
ℓ (t+∆t) = Wℓ

(
v̆P
ℓ (t+∆t)
r̃ℓ(t+∆t)

)
, (1)

where Wℓ is a weight matrix whose entries are to be determined by ML training, which
will be discussed in Sec. 2.2. The Dr-dimensional vector r̃ℓ(t+∆t) is a quadratic func-
tion of the reservoir state vector rℓ(t+∆t), where the reservoir is a dynamical system
with evolution equation (Jaeger, 2001; Lukoševičius & Jaeger, 2009; Lukoševičius, 2012)

rℓ(t+∆t) = tanh [Aℓrℓ(t) +Bℓŭℓ(t)]. (2)

Each entry of the Dr × Dr weighted adjacency matrix Aℓ is randomly chosen with a83

probability κ/Dr of being nonzero and assigned a random value chosen uniformly in (0, 1].84

The nonzero entries are scaled such that the magnitude of the largest eigenvalue of Aℓ85

has a prescribed value ρ (0 < ρ < 1), called the spectral radius. The Du-dimensional86

vector ŭℓ(t) is the input vector of the reservoir, whose elements are standardized elements87

of the global hybrid state vector vH
G (t) from an extended local region that has overlaps88

with its four neighbors. Bℓ is a matrix with entries chosen randomly on the interval (−α, α),89

where α is an adjustable parameter. The hybrid local model solution is obtained by trans-90

forming the standardized values of the elements of v̆H
ℓ (t+∆t) to non-standardized val-91

ues.92

The initial value of vH
G (0) at the beginning of a forecast or simulation is a conven-93

tional observational analysis vA
G(0) for the AGCM. Starting the hybrid model also re-94

quires an initial value rℓ(0) for each of the L reservoir state vectors. These initial val-95

ues are obtained using Equation 2 to synchronize the evolution of the reservoirs with the96

atmospheric states for a short period prior (t < 0) to the start time of the forecast or97

simulation. This synchronization is achieved by feeding the reservoirs input vectors based98

on observational analyses for the synchronization period.99
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2.2 Training the Hybrid Model100

The machine-learning component of the model learns to predict v̆H
ℓ (t+∆t) from101

vH
G (t) for each local region by training. The training data are based on global observa-102

tional analyses vA
G(t). These analyses provide the initial conditions for the ∆t-long AGCM103

forecasts and are standardized and restricted to the extended local region to form the104

input uℓ(t) for each of the L reservoirs. To promote stability, a small-magnitude ran-105

dom noise ε(k∆t) is introduced into the analyses before forming the input vectors by the106

formula [1 + ε(k∆t)]vA
G(k∆t).107

The training data after standardization also provide the elements of the desired out-
come v̆A

ℓ (t+∆t) to which v̆H
ℓ (t+∆t) can be compared during training. Formally, the

training seeks the weight matrix Wℓ for which the “one-time-step” predictions v̆H
ℓ (k∆t,Wℓ)

(k = −K + 1,−K + 2, . . . , 0) best fit v̆A
ℓ (k∆t) in a least-square sense. That is, Wℓ is

the minimizer of the quadratic cost-function

J(Wℓ) =

0∑
k=−K+1

∥v̆H
ℓ (k∆t,Wℓ)− v̆A

ℓ (k∆t)∥2 + βP ∥WP ∥2 + βR∥WR∥2, (3)

where WP and WR are matrices for which

v̆H
ℓ (t+∆t) = WP

ℓ v̆
P
ℓ (t+∆t) +WR

ℓ r̃ℓ(t+∆t), Wℓ =
(
WP

ℓ WR
ℓ

)
, (4)

is equivalent to Equation 1. The adjustable parameters βP and βR are chosen regular-108

ization parameters (Tikhonov and Arsenin 1977). It can be shown that the direct solu-109

tion of the minimization problem is the matrix110

Wℓ =
(
VA

ℓ

(
VP

ℓ

)T
VA

ℓ R̃
T
ℓ

)(VP
ℓ

(
VP

ℓ

)T
+ βP I VP

ℓ R̃
T
ℓ

R̃ℓ

(
VP

ℓ

)T
R̃ℓR̃

T
ℓ + βRI

)−1

. (5)

In this equation, column k of the matrix VP
ℓ is the local state vector v̆P

ℓ (k∆t) that cor-111

responds to the physics-based model solution vP
G(k∆t) started from vA

G[(k−1)∆t], col-112

umn k of the matrix R̃ℓ is r̃ℓ(k∆t), and column k of the matrix VA
ℓ is v̆A

ℓ (k∆t).113

2.3 Introducing New ML-Based Prognostic Variables114

In atmospheric modeling, the term ‘prognostic variable’ refers to a state variable115

whose temporal evolution is predicted directly by a model equation. The hybrid approach116

provides a framework for introducing new prognostic variables without making any changes117

to the AGCM provided that training data are available for the new variables. Two spe-118

cific methods that take advantage of this flexibility are described here: Method I is de-119

signed for atmospheric variables that are not required to evolve the ACGM; while Method120

II is designed for external variables, variables represented by prescribed boundary fields121

in a standalone ACGM, which might vary on a different time scale than the atmospheric122

prognostic variables.123

2.3.1 Method I124

The purpose of Method I is to introduce a prognostic variable that is either not pre-125

dicted by the AGCM, or predicted only indirectly as a ‘byproduct’ of the parameteri-126

zation schemes. This approach will be demonstrated by introducing precipitation as a127

prognostic variable (Section 3).128

Let

vH+
G (t+∆t) =

(
vH
G (t+∆t)

vH∗
G (t+∆t)

)
(6)
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be the global state vector of hybrid model, where vH∗
G (t) represents the global field of

a new prognostic variable. The corresponding local state vector for local region ℓ is

v̆H+
ℓ (t+∆t) =

(
v̆H
ℓ (t+∆t)

v̆H∗
ℓ (t+∆t)

)
. (7)

The equation of the reservoir dynamics is modified as

r+ℓ (t+∆t) = tanh
[
Aℓr

+
ℓ (t) +Bℓŭ

+
ℓ (t)

]
, (8)

where ŭ+
ℓ (t) is an extended local state vector, which also includes the grid-point values

of the new prognostic variable from the extended local region. In addition, Equation 4
is modified as

v̆H+
ℓ (t+∆t) =

(
v̆H
ℓ (t+∆t)

v̆H∗
ℓ (t+∆t)

)
=

(
WP

ℓ

WP∗
ℓ

)
v̆P
ℓ (t+∆t) +

(
WR

ℓ

WR∗
ℓ

)
r̃+ℓ (t+∆t)

which leads to the following modification of Equation 1:129

v̆H+
ℓ (t+∆t) =

(
v̆H+
ℓ (t+∆t)

v̆H∗
ℓ (t+∆t)

)
= Wℓ

(
v̆P
ℓ (t+∆t)

r̃+ℓ (t+∆t)

)
(9)

Wℓ =

(
WP

ℓ WR
ℓ

WP∗
ℓ WR∗

ℓ

)
.

2.3.2 Method II130

In an AGCM, the effects of the other earth system components, such as the ocean,131

cryosphere, land, and biosphere on the atmosphere are taken into account by parame-132

terization schemes that include fields of some state variables of the other components133

at the earth’s surface as input. In a standalone AGCM these fields must be prescribed.134

For instance, the thermal effects of the ocean on the atmosphere are taken into account135

by schemes that include prescribed SST fields, which are based on past SST observational136

analyses in the case of a climate simulation, or the latest SST analysis in the case of a137

weather forecast. A limitation of this approach is that it does not take into account feed-138

backs from the state variables of the AGCM to the prescribed state variables. Method II139

addresses this issue by replacing a prescribed field with an ML-based prognostic vari-140

able. It also takes into account the fact that the climate-relevant effects of these feed-141

backs on the atmosphere typically occur on time scales that are different than the time142

scale of the changes of the atmosphere on which the AGCM evolves. Method II will be143

demonstrated by introducing SST as a prognostic variable (Section 3).144

In contrast with Method I, the reservoirs for the new prognostic variable are sep-
arate from the original reservoirs of the hybrid model. Let vH∗

G (t) be the state vector
that represents the global state of the new variable in the hybrid model, and v̆H∗

ℓ (t) (ℓ =
1, 2, . . . , L) the related local state vectors. The ML-based “prognostic equation” for lo-
cal vectors ℓ is

v̆H∗
ℓ (t+∆t∗) = WR∗

ℓ r̃∗ℓ (t+∆t∗), (10)

where
r∗ℓ (t+∆t∗) = tanh [A∗

ℓr
∗
ℓ (t) +B∗

ℓ ŭ
∗
ℓ (t)]. (11)

The input vector u∗
ℓ (t) includes standardized grid-point values of both the new variable145

and the original variables, while the “time step” ∆t∗ is not necessarily equal to ∆t (an-146

other difference with Method I). For instance, when the newly added prognostic vari-147

able evolves on a slower time scale than the atmospheric prognostic variable (e.g., the148

SST), ∆t∗ > ∆t, and the interactions between the new variable and the atmospheric149

variables are treated as follows: (1) the time t+n∆t (n = 1, 2, . . . ,∆t∗/∆t− 1) input150

from the new prognostic variable to the AGCM and the atmospheric reservoirs are the151

values at time t; and (2) the time t input from the atmospheric prognostic variables to152
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the reservoirs of the new prognostic variable are the average values for the “time steps”153

t+ n∆t (n = 0, 1, . . . ,∆t∗/∆t).154

The weight matrix WR∗
ℓ is computed separately from WR

ℓ by

WR∗
ℓ = VA∗

ℓ R̃∗T
ℓ

(
R̃∗

ℓR̃
∗T
ℓ + βR∗I

)−1

, (12)

where βR∗ is a regularization parameter, column k of the matrix R̃∗
ℓ is r̃∗ℓ (k∆t∗), and155

column k of the matrix VA∗
ℓ is v̆A∗

ℓ (k∆t∗) (the local vector of training data for time k∆t).156

3 Climate Simulation Experiment157

3.1 Experiment Design158

The hybrid model is the same as in AEA22, except that precipitation and SST are159

added as prognostic variables to the two horizontal coordinates of the wind vector, tem-160

perature, specific humidity, and the logarithm of the surface pressure. The precipitation161

variable is defined by ln (P/0.001 + 1), where P is the cumulative precipitation for the162

prior 6 h. The fields of the SST, precipitation, and logarithm of the surface pressure are163

two-dimensional, while the fields of the other variables are three-dimensional. All fields164

are represented by a 3.75◦×3.75◦ horizontal grid, while the three-dimensional fields have165

eight vertical levels at sigma equals 0.95, 0.835, 0.685, 0.51, 0.34, 0.20, 0.095, and 0.025.166

The L = 1, 152 local regions for the atmospheric state variables have a 7.5◦×7.5◦ hor-167

izontal footprint and contain all vertical levels. The extended local regions have a hor-168

izontal footprint of 15.0◦ × 15.0◦ with an overlap of 3.75◦ (1 grid point) on each side.169

The climatological mean and standard deviation for the standardization of the compo-170

nents of the local state vectors and input vectors of the reservoirs are computed for the171

specific variable at the specific vertical level for the extended local region.172

The input vectors of the reservoirs for the atmospheric prognostic variables include173

the standardized values of the atmospheric prognostic variables from the extended lo-174

cal region, plus the incoming solar radiation at the top of the atmosphere. The “time175

step” for the atmospheric state variables is ∆t = 6 h. The other hyper-parameters of176

the reservoirs for the atmospheric prognostic variables are Dr = 6000, α = 0.5, βR =177

10−4, βP = 1, κ = 6, ε = 0.2, ρ increases from 0.3 at the equator to 0.7 at latitude178

45◦ and beyond. A local state vector and reservoir are created for the SST only if the179

local region includes at least one oceanic grid point. The coordinates of the local state180

vectors are the standardized SST values at the oceanic grid points. (A similar approach181

is employed in the standalone parallel RC-based global SST model of Walleshauser and182

Bollt (2022)). The “time step” for the SST is ∆t∗ = 168 h (7 days), which is 28 times183

longer than ∆t. The elements of the input vectors of the reservoirs are the averages of184

the atmospheric state variables at the lowest model level for the period [t, t+∆t∗] and185

the SST at time t from the extended local region. At grid points over land, the SST el-186

ements of the input vectors are set to a predefined constant (land mask) value. A non-187

standardized SST value ≤ −1◦C is assumed to indicate ice. In a local region where the188

ocean is permanently covered by ice in the training data, the ocean is assumed to remain189

covered by ice. In a local region where both water and ice are present in the training data,190

the phase of sea water is allowed to change, but non-standardized values of the SST that191

are < −1◦C at the end of a time step are reset to −1◦C. The other hyperparameters192

for the SST are D∗
r = 4000, α∗ = 0.6, βR∗ = 10−4, κ∗ = 6, ρ∗ = 0.9, ε∗ = 0.1. The193

feedback from the SST to the atmosphere is introduced by replacing the prescribed SST194

field of SPEEDY with the last predicted values of the SST, which stays constant for 7195

days.196

The training and verification data are ERA5 reanalyses (Hersbach et al., 2020). The197

training period is from 0000UTC 1 January 1981 to 0000UTC 1 December 2006. The198

ERA5 reanalyses from December 2006 are used to keep the reservoirs synchronized with199
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the atmosphere, and a 70-year simulation experiment (free run without observational in-200

put) is started from the ERA5 reanalysis for 0000 UTC 1 January 2007. The hybrid model201

remains stable and produces a realistic climate for the entirety of the experiment. The202

hybrid model climatology for the first 40 years of this experiment is compared to the ERA5203

climatology for 1981-2020, and the 40-year climatology for a free run with SPEEDY, which204

is also started from the ERA5 reanalysis for 000UTC 1 January 2007. The prescribed205

SST field for SPEEDY is the daily varying 40-year ERA5 SST climatology.206

3.2 Sudden Stratospheric Warming207

The dominant features of stratospheric variability are wintertime events of sudden208

stratospheric warming (SSW) in the NH. The term SSW refers to a dynamical process209

in which the normally strong westerly zonal mean flow at the edge of the NH stratospheric210

polar vortex suddenly turns easterly, which leads to a sudden rise of the polar strato-211

spheric temperature. This rapid change is caused by an unusually strong coupling be-212

tween the dynamics of the stratospheric and tropospheric flow (Andrews et al., 1987).213

While SPEEDY would need additional vertical levels above 25 hPa (its current top level)214

to produce realistic stratospheric dynamics, the hybrid model can produce realistic SSW215

events (Figure 1). The blue curves and gray shades show, respectively, the calendar-day216

mean and year-to-year variability of the strength of the zonal flow at the edge of the strato-217

spheric polar vortex (top three panels) and the polar temperature (bottom three pan-218

els). From July to December, the stratospheric flow (left panels) first turns from east-219

erly (negative values) to westerly (positive values), and then it gradually strengthens un-220

til midwinter, when it starts to weaken and eventually turns easterly again in April. The221

mean polar temperature gradually decreases from midsummer to midwinter, when it starts222

to increase to complete the cycle. The variability of the strength of the zonal flow and223

the polar temperature is low from May to September and high from October to April,224

with a maximum in midwinter. While both the hybrid model (middle two panels) and225

SPEEDY (right two panels) can capture the mean trends, the hybrid model somewhat226

overestimates, while SPEEDY substantially underestimates the variability of the flow.227

The relationship between the variability of the flow and SSW can be further investigated228

by using the criteria of Charlton and Polvani (2007) to detect SSW: an event occurs when229

the stratospheric zonal mean of the zonal wind at 60◦N turns easterly and then it turns230

back to westerly for at least 10 consecutive days. Here, the criteria is applied to the zonal231

wind at vertical pressure level 25 hPa. For ERA5, the hybrid model, and SPEEDY, there232

are 0.6, 0.87, and zero SSW events per year, respectively. The examples for an event shown233

by the red curves in Fig. 1 illustrate that both the speed of the onset and the duration234

of the SSW are captured realistically by the hybrid model.235

3.3 Precipitation Climatology236

The prognostic precipitation variable of the hybrid model provides cumulative pre-237

cipitation values with 6 hourly resolution, while the diagnostic precipitation variable of238

SPEEDY provides this variable with a monthly resolution. The precipitation model cli-239

matologies of Figure 2 are based on these variables. This figure shows that the hybrid240

model produces lower magnitude precipitation biases than SPEEDY at most locations241

(top two rows of panels): the 1.29 mm per day global root-mean-square of the bias for242

SPEEDY is reduced to 0.63 mm per day for the hybrid model, and the absolute value243

of the largest-magnitude local bias is reduced from 10.50 mm per day to 5.17 mm per244

day. SPEEDY has a dry bias in the extension regions of the Kuroshio Current and Gulf245

Stream (two right panels), which is greatly reduced by the hybrid approach (top two mid-246

dle panels). The bias is also lower for the hybrid model than SPEEDY in mountainous247

regions (e.g., Rockies, Himalayas) and equatorial South America and Africa. One region248

where the hybrid model has a larger bias than SPEEDY is the Tropical Pacific, where249
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Figure 1. The performance of the hybrid model in capturing SSW. Results are shown for the

(left) ERA5 reanalyses, (center) hybrid model, and (right) SPEEDY. Results are shown at the

25 hPa pressure level for (top panels) the mean of the zonal wind component in the 55◦N-65◦N

latitude band, and (bottom panels) the mean temperature north of 60◦N. Blue curves show the

climatological daily mean, while the gray shading characterizes the annal variability by displaying

the range between plus and minus two standard deviations. Positive values of the wind indicate

westerly flow, while negative values indicate easterly flow. The red curves show the same diag-

nostics as the blue curves, except for a particular SSW event rather then the 40-year mean. (No

SSW event is detected for SPEEDY.) The event from ERA5 took place in 2013.

it has a wet bias. Interestingly, the hybrid model produces a “double ITCZ”, which has250

also been a persistent problem for physics-based models (Zhang et al., 2019).251

In addition to providing improved mean precipitation, the hybrid model produces252

precipitation events of varying intensity at the correct rates in the range from about 1 mm/6 h253

to about 7-8 mm/6 h, and it only slightly underestimates the frequency of low and ex-254

treme high intensity precipitation (bottom panel).255

3.4 SST Climatology and ENSO256

The SST prognostic variable (Fig. 3, left panels) has low biases: the global root-257

mean-square value of the SST bias is 0.43◦C, while the largest local values of the bias258

are in the 1◦-2◦C range. While the model correctly captures the main regions of largest259

temporal variability of the SST (Fig. 3, right panels), it tends to somewhat underesti-260

mate the variability associated with the western boundary currents and their extension261

regions, and overestimate the variability associated with ENSO in the Equatorial Pa-262

cific near the coast of South America.263

The skills and the limitations of the model in capturing climate variability related264

to ENSO are further illustrated by Fig. 4. Two of the most common metrics used for di-265
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Figure 2. The performance of the hybrid model in capturing the precipitation climatology.

Shown is the climatological daily mean precipitation rate for (top left) ERA5, (top center) the

hybrid model, and (top right) SPEEDY. Also shown are (middle left) the difference between the

biases of the daily precipitation rates for the hybrid model and SPEEDY, and (middle center)

the biases of the daily precipitation rates for the hybrid model and (middle right) SPEEDY. Also

shown (bottom center) are the rates of occurrence of different precipitation intensities in per-

centile for (blue) ERA5 and (orange) the hybrid model.

agnosing ENSO phases are the Oceanic Niño Index (ONI) and the Southern Oscillation266

Index (SOI) for the Niño 3.4 region (5◦S-5◦N, 120◦W-170◦W). The model correctly cap-267

tures the inverse relationship between the smoothed time series of the two indexes (top268

panel). In addition, the autocorrelation function of the Niño 3.4 SST anomalies for the269

model is in good agreement with that for the ERA5 reanalyses for the first 6 months of270

lag (bottom left panel). The model, however, does not capture the timing of the crossover271

into negative autocorrelation at about 10 months: the model transitions from one phase272

of ENSO to another with a delay. In addition, the occurrence of ENSO is more regular273

in the model than in the reanalyses, with too much power at period 5 years, and too lit-274

tle power at period 3, 4, and 7 years (bottom right panel). While some climate models275

produce too much variability associated with ENSO in the western Tropical Pacific (Menary276

et al., 2018), the hybrid model does not exhibit such behavior (Fig. 3, bottom right panel).277

4 Conclusions278

The goal of this paper was to demonstrate that hybridizing an AGCM by incor-279

porating ML can help the model to capture dynamical processes of nature that are miss-280

ing from climate simulations with the AGCM. For some dynamical processes, this po-281

tential can be realized without introducing new prognostic variables in the ML compo-282

nent of the model. This point was illustrated with the process of SSW. Some other pro-283

cesses can be introduced into the model dynamics by adding new ML-based prognostic284
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Figure 3. The SST climatology of the hybrid model. Shown are the climatological mean SST

for (top left) ERA5, (middle left) the hybrid model, and (bottom left) the difference between

the two fields; and the standard deviation of the monthly mean SST for (top right) ERA5 and

(middle right) the hybrid model, and (bottom right) the difference between the two fields.

variables. This point was illustrated by two examples. First, the 6-h cumulative precip-285

itation was introduced as a prognostic variable, and it was shown that the model pro-286

duced a highly realistic climatology for the newly added prognostic variable. Second, SST,287

which is a prescribed boundary parameter of the AGCM, was turned into a prognostic288

variable. The SST prognostic variable had highly realistic climatology, and it also had289

a realistic ENSO signal. Moreover, the hybrid model also correctly captured the related290

atmospheric surface pressure signal, the indication of a realistic two-way coupling be-291

tween an oceanic state variable and the model atmosphere. We conjecture that similar292

two-way coupling could be introduced for other interacting components of the earth sys-293

tem by turning other boundary parameters into prognostic variables.294

The one important caveat concerning our conclusions is that they are based on the295

application of the hybrid approach to an AGCM that has much lower resolution and sim-296

pler parameterization schemes than a state-of-the-art AGCM. A state-of-the-art model297

may leave less room for the improvement of the model representation of some dynam-298

ical processes. We still believe that the hybrid approach has a great potential to econom-299

ically address some of the limitations of even the most sophisticated existing AGCMs.300
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Figure 4. Illustration of the performance of the hybrid model in capturing ENSO. Shown

are (top) time series of (solid black) the 3-month running mean of the ONI and (green dashes)

the 5-month running mean of the SOI. Red and blue shadings indicate El Niño and La Niña, re-

spectively. Also shown are (bottom left) the autocorrelation functions and (bottom right) power

spectra of the Niño 3.4 SST anomalies for (orange) the ERA5 reanalyses and (blue) the coupled

model (blue).
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