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Abstract
Wetlands are precious natural resources with huge ecosystem services value behind them. Understanding the temporal and spatial variation of wetland ecosystem services value and its driving forces is essential for sustainable development and human well-being. Taking the Yellow River Delta as an example, this article calculated ecosystem services values based on equivalent factor method from 2000 to 2020 and analyzed the spatiotemporal characteristics of ecosystem services value by spatial statistics analysis; used Geodetector to detect and interact with the driving factors. The results show the following: (1) The reduction of wetland area directly caused the reduction of ecosystem services value, and the distribution of ecosystem services value in the wetland area shows agglomeration phenomenon. (2) NDVI, GDP and humidity were the main driving factors affecting the change of ecosystem services value, while elevation, slope and aspect had little effect. (3) The main factors affecting the ecosystem services value are all related to vegetation. (4) When temperature, NDVI, precipitation, humidity, GDP and population density interacted, they had a greater effect on ESV than when they acted alone. Our research results can provide reference information for the world's delta regions and provide scientific advice for ecological environment governance to promote the healthy development of the ecological environment.
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1. Introduction
Wetland ecosystems are one of the three major ecosystems on Earth and are known as the 'kidneys of the planet'. Wetlands provide a wealth of resources for human society, including climate regulation, water retention, purification, soil conservation, food supply, recreation and cultural heritage (Belyaev et al., 2022; McInnes and Everard, 2017). At the same time wetlands are being transformed directly into urban land, agricultural land, industrial land, etc. to achieve rapid economic growth. These ESs (Ecosystem Services) outputs make the proper functioning of human society dependent on the stability of wetland ecosystems (Camacho-Valdez et al., 2020; Wondie, 2018). However, social development driven by economic goals has long failed to recognize the value of wetland ecosystem services. Rapid urbanization, industrial pollution (Wang et al., 2012) and extensive reclamation of wetlands have led to a significant reduction in the area of wetlands (Al-Obaid et al., 2017; Asselen et al., 2013; Cui et al., 2018; Li et al., 2014). Between 1970-2015, global wetlands have declined by 35% (Gardner and Finlayson, 2018). Although some countries have taken measures to curb wetland degradation, the results have not been significant (Limaye et al., 2014; Meng et al., 2017). Therefore, carrying out the assessment of wetland ecosystem service value can help enhance society's understanding of wetland value, which is important to curb wetland degradation and promote wetland ecological restoration.
Ecosystem service value assessment is a powerful tool for managing global wetland resources and provides a suitable methodological model for measuring and comparing the various benefits of wetlands (Meng and Dong, 2019). In existing wetland studies, scholars have mostly used the functional value method (Hu et al., 2021; Pirard and Lapeyre, 2014; Wang et al., 2022), the emergy method (Li et al., 2016; Yang et al., 2020; Zhao and Wu, 2015), and the equivalence factor method (Xu and Xiao, 2022; Zhang et al., 2013, 2021) to assess the value of ecosystem services. The functional value method is subdivided into the direct market approach (Thapa, 2020), the alternative market approach (Escobedo et al., 2015) and the simulated market approach (“Valuation of ecosystem functions and services: Dehdez forest in Iran,” n.d.). This method considers more parameters, the calculation process is more complicated, and the evaluation methods and parameter criteria for each service output vary, making it difficult to unify the overall ecosystem service value assessment to a uniform scale (Long et al., 2022). The emergy method can unify the value of ecosystem services that cannot be accounted for by economic values and energy that cannot be compared into energy values for analysis and comparison (Hau and Bakshi, 2004). However, this method is only suitable for evaluating the value of a single service type or the value of a single land type and the calculation process is still complex. The equivalent factor method combines the area of different ecosystem types for calculations with low data requirements and intuitive and easy to use data, making it particularly suitable for ESV assessments of multiple land types at the regional scale (Xie et al., 2015a). Considering that wetland ecosystems are influenced by their own development and the situation of surrounding land use, the equivalent factor method can be used to cover the factors influencing the value of wetlands using correction factors and can provide a uniform standard for valuing various land use types. Therefore, this study uses the equivalent factor approach to assess the value of ecosystem services in the study area from a macro perspective.
ESV changes with the process of continuous interaction between people and nature (Adhya and Banerjee, 2022). To meet the needs of human society and to obtain more targeted outputs of ecosystem services, it is necessary to explore the social and natural drivers that lead to their change (Song et al., 2021). The existing methods for exploring drivers are mainly of two main types, decomposition analysis (Fujii et al., 2017; Xing et al., 2021) and regression analysis (Jianhong et al., 2022; Zhen et al., 2022). The most commonly used method in decomposition analysis is the logarithmic mean divisia index (LMDI) (Zhou et al., 2022). LMDI has the advantage of having no unexplained residuals after decomposing the object, but it is more suitable for analysis scenarios with few parameters of driving factors (Ang, 2005). Regression analysis methods are based on spatial heterogeneity and commonly used methods are Geographically weighted regression (GWR) (Zhu et al., 2020) and Geodetector (He et al., 2022). In brief, GWR is more precise in the detection of single factors and can detect whether the effect of the driver on the dependent variable is positively or negatively correlated. However, spatio-temporal and socio-natural interactions produce complex and multilayered impact factors [39]. The above studies are mostly analyzed at the level of individual factors, which is not conducive to a comprehensive grasp of the driving mechanisms behind value changes. Considering that wetlands are often subject to a combination of human activities and multiple climate change impacts (Dang et al., 2020)，and Geodetector is capable of quantifying single-factor drivers and multi-factor drivers interacting in space and time (Cheng et al., 2022; Long et al., 2022) and can detect a variety of interactions such as linear, nonlinear, multiplicative and additive (Wang and Xu, 2017). Therefore, in this study Georeactor was chosen as the tool to explore the drivers.
Overall, the stability of wetland ecosystems faces serious challenges, and it is important to conduct ESV assessments as well as their probing drivers. The Yellow River Delta, with its active human and social activities such as oil and agriculture, and the large amount of data from various disciplines accumulated by scholars exploring the region over time, makes it an ideal area to explore the mechanisms driving human and natural impacts on ecosystem services (Ren and Walker, 1998). At the same time, the Yellow River Delta region is rich in wetland resources, but under the rapid expansion of human society at the end of the last century, a large number of wetlands have been destroyed and the ecosystem services have undergone major changes. Therefore, the Yellow River Delta was selected as the study area. Specifically, this study first evaluated and analyzed the ESV in the Yellow River Delta using the equivalent factor method and exploratory spatial data analysis. Then the drivers of ESV changes were detected and analyzed using Geodetector. Finally, this study analyzed the spatial and temporal variation characteristics of ESV based on the distribution of wetlands in the Yellow River Delta and revealed the single-factor and two-factor interactive driving mechanisms affecting ESV changes. The purpose of this study is to characterize ESV changes from different perspectives and to identify the most important drivers and their patterns of action under the combined influence of man and nature. Hope the results of this paper will provide scientific references for future research on the drivers of ecosystem services, especially the interaction between multiple factors; and provide policy recommendations for the sustainable development of wetlands and the rational use of ecosystem service values.
2. Methods and Materials 
2.1 Study area
The Yellow River Delta is an alluvial plain formed by the deposition of sediment carried by the Yellow River estuary in the Bohai Sea depression. It is in Dongying City, Shandong Province, China. The Yellow River Delta is rich in land, oil and gas, biological, marine, and warm temperate climate resources (Xu et al., 2019). It has a rare estuarine wetland ecosystem in the world, which is also the most extensive, perfect, and youngest wetland ecosystem in the warm temperate zone in the world. Wetlands are mainly distributed near the estuary of the Yellow River in the east of the Yellow River Delta and in the northern coastal areas. With rich wetland vegetation and aquatic biological resources, excellent breeding, migration and wintering habitats are provided to birds (Xu et al., 2004). Although the Yellow River Delta has experienced economic progress in the recent years (Wang et al., 2012), under the action of natural factors and human activities, the fragile environment has undergone profound changes (Ren and Walker, 1998). Considering the scope of the study area, this study only uses the data of the Hekou and Kenli districts, while the Lijin district accounts for a relatively small area, and its impact is negligible (Fig 1) . 
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[bookmark: _Ref117233760]Fig 1. Geographical Location of the Modern Yellow River Delta.

2.2 Methodology
First, the changes of ESV in Yellow River Delta were explored based on the land-use change and the annual value of unit area. Second, the exploratory spatial data analysis (ESDA) was used to explore whether ESV has spatial agglomeration. Third, Geodetector was used to explore the driving factors influencing the ESV and further reveal the mechanism of driving factors. Finally, recommendations for ecological management are presented according to the results.

2.2.1 Estimation of ESV
The equivalent coefficient of ESV per unit area is the basis for assessing the ESV of a regional ecosystem (Hu et al., 2019). Xie et al. (Xie et al., 2008) improved the assessment method proposed by Costanza (Costanza et al., 1997) and obtained a new system for assessing ESV based on 700 expert questionnaires. However, with the deepening of research, scholars have found that the ESV is different at different regional scales. The space-time difference needs to be eliminated to ensure the accuracy of ESV. Therefore, Xie et al. (Xie et al., 2015) took the net profit of food production per unit area in farmland ecosystem as a standard value of an equivalent factor. The food production per unit area in farmland is calculated mainly by three grains: rice, wheat and corn.
Its calculation equation is as follows:
	 
[bookmark: _Ref117235146]		(1)
Where:  represents the ESV with a standard equivalent factor [Yuan/hm2] (Yuan is the unit of RMB); 、and represent the sown area of rice, wheat and corn as a percentage of the total sown area of the three crops [%]; 、and represent the national average net profit per unit area of rice, wheat and corn [Yuan/hm2]. The price level has been unified until 2020. The net profit per unit area of grain is the average level from 2011 to 2020; After calculating the ESV for one standard equivalent factor for each year between 2000 and 2020, take the average to get the final result.

2.2.2 Spatial statistics analysis
ESDA is a collection of techniques to describe and visualize spatial distributions, identify atypical locations or spatial outliers, discover patterns of spatial association, clusters, or hot spots. The core is to measure and test spatial convergence or heterogeneity through global spatial autocorrelation and local spatial autocorrelation (Anselin et al., 2007). Usually, there are two indictors to describe the spatial characters: the global Moran index and the local Moran index. The global Moran index of a region will be determined first, and the global Moran index illustrates whether there are clusters or outliers in the space. If there is global autocorrelation, and then the local autocorrelation analysis will be determined and shows where outliers or clusters appear.
(1) Global Spatial Autocorrelation
Global spatial autocorrelation (Global Moran’s I) reflects whether there is spatial clustering of a certain attribute value in the entire study area. It is defined as: 

	(2)
Where: is the Moran’s I index; is the is the number of spatial units indexed by and ;  and is the variable of interest; is the mean of ; is a matrix of spatial weights with zeroes on the diagonal.
(2) Local Spatial Autocorrelation
The conception of local spatial autocorrelation (Local Moran’s I) was proposed by Anselin (Anselin, 1995). It is used to observe the local imbalance in space and identify the spatial correlation and spatial heterogeneity existing in the local area. Local Moran’s I can be displayed by Local Indicators of Spatial Association (LISA), Moran scatter plot, and significance indicator. It is defined as: 

[bookmark: _Ref117235177]	(3)
Where:

is the local Moran index of region ; Other symbols have the same meaning as equation (3).
At 1kmⅹ1km grid scale, the ESV was divided into five types: (1) Not significant: The grid has no significant features; (2) High-High: Both the grid itself and its surrounding grids have high ESV; (3) Low-Low: Both the grid itself and its surrounding grids have low ESV; (4) Low-High: The ESV of the grid itself is low, but the ESV of its surrounding grids is high; (5) High-Low: The ESV of the grid itself is high, but the ESV of its surrounding grids is low.

2.2.3 Driver detection and interaction analysis
Geodetector is a statistical method to detect spatial heterogeneity and reveal the driving forces behind it. Using Geodetector to quantitatively explain the driving factors, including factor detection and interaction detection.
(1) Differentiation and factor detection
Detection of the spatial differentiation of Y (changes of ESV); and detection of the explanatory power of each driving factor  on the spatial differentiation of the dependent variable Y. Measured by  (Jianhong et al., 2022),
The equation is as follows:

	(4)
Where:  is the degree to which factor  explains the spatial heterogeneity of Y, , the larger the  value, the stronger the spatial differentiation of Y; If it is caused by the driving factor , the larger the q value, the stronger the explanatory power of the driving factor  on the dependent variable Y; and vice versa, the weaker. Usually, when the  value is greater than 0.1, it has a strong explanatory power. Conversely, if the  value is less than 0.1, it has a less explanatory. A  value of 1 indicates that driver  completely controls Y, and a  value of 0 indicates that driver  has no relationship with Y. H=1,2,3... is the classification of variable Y or driver X, and  represent the number of samples of the driver  in the classification  and the whole area, respectively.  and  are the variance of the driver factor X in the layer classification h and the Y value of the whole region, respectively.
(2)Interaction analysis
[bookmark: _Hlk117088952]Identifying the interaction between different risk factors  and , is to assess whether factors  and  act together to increase or decrease the explanatory power of the dependent variable Y, or whether the effects of these factors on Y are independent of each other (Wang et al., 2010). First calculate  and  separately, then calculate the explanatory force  when  interacts with , and finally compare the size relationship of ,  and , analyze the interaction type between  and . Five results of interaction detect are illustrated in Table 1 & Table 2.

[bookmark: _Ref117232777]Table 1. Type of interaction of two factors (X1 & X2) on changes of ESV in Yellow River Delta.
	Graphical representation
	Description
	Interaction

	
	＜Min(q(), q())
	Nonlinear reduction

	
	Min(q(), q()) ＜＜Max(q(), q())
	Single-factor nonlinearity reduction

	
	＞Max(q(), q())
	Two-factor enhancement

	
	＝
	Independent

	
	＞
	Nonlinear enhancement



[bookmark: _Ref117232786]Table 2. The meaning of the symbols in Table 1.
	    Symbol
	Meaning

	
	

	
	Min(q(), q())

	
	Max(q(), q())

	
	



2.3 Data sources 
In this article, the land use data was obtained by analyzing the satellite remote sensing images and used socio-economic data to calculate the Equivalent Factor Table. Physical geographic data and socio-economic data were collected to analyze the driving factors.
The satellite remote sensing image data used in this study comes from the United States Geological Survey (https://earthexplorer.usgs.gov/). Satellite remote sensing images are all from the Landsat series. The image data for 2000-2010 comes from Landsat 4-5 TM; the image data for 2010-2020 comes from Landsat 8 OLI. With reference to the characteristics of the study area, the land use types in the study area are divided into 8 categories: farmland, forest land, grassland, water, wetland, salt field, aquaculture pond, and construction land. Land use/land cover change (LUCC) data from 2000 to 2020 were obtained with the help of ENVI 5.1 software for supervised classification. The grain output, planting area and prices of the rice, wheat and corn come from Dongying Bureau of Statistics (http://dystjj.dongying.gov.cn/), and China National Bureau of Statistics (http://www.stats.gov.cn/). The driving factors in this study are divided into two categories: natural driving factors and socioeconomic driving factors (Table 3). The nature driving factors contains elevation, slope, aspect, NDVI, temperature, precipitation and humidity. Socioeconomic drivers include per capital GDP, population density. The elevation data comes from the Geospatial Data Cloud (http://www.gscloud.cn/). The slope and aspect data are obtained after processing by ArcGIS; NVDI, per capital GDP and population density data are all derived from Resource and Environment Science and Data Center (https://www.resdc.cn/). Temperature, precipitation and humidity data are all derived from National Earth System Science Data Center, National Science & Technology Infrastructure of China (http://www.geodata.cn)
Referring to the classification of driving factors by CAO et al. (Cao et al., 2013), combined with the actual situation of the Yellow River Delta, this study included the elevation, slope, annual average temperature, NDVI, humidity among the driving factors, GDP per capita and population density are divided into 8 categories according to the natural discontinuity classification method. The aspect is divided into 9 categories according to the equidistant method. Due to the lack of data in 2020, four years were selected for factor detection, which are 2000, 2005, 2010 and 2015.

[bookmark: _Ref117235359]Table 3. Driving Factors influencing ESV changes in the Yellow River Delta region.
	Pattern
	Variable
	Symbol

	Nature
	Elevation
	X1

	
	Slope
	X2

	
	Aspect
	X3

	
	Temperature
	X4

	
	NDVI
	X5

	
	Precipitation
	X6

	
	Humidity
	X7

	Socioeconomic
	Per capital GDP
	X8

	
	Population density
	X9



3.Results
3.1 Analysis of the spatiotemporal variation characteristics of ESV
3.1.1 Analysis of ESV Changes Based on LUCC Transfer Matrix
The LUCC maps (Fig 2) of Yellow River Delta between 2000 and 2020 were obtained by using the Supervised Classification method based on ENVI software. The LUCC transition matrices were calculated and displayed in the flow diagram form (Fig 3) and they can illustrate the flow of different land types.
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[bookmark: _Ref117233291]Fig 2. Land use in Yellow River Delta between 2000 and 2020.
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[bookmark: _Ref117233302]Fig 3. The flow direction of LUCC in Yellow River Delta between 2000 and 2020.

This study based on the equivalent factor table proposed by Liu et al. (Liu et al., 2020), referring to the evaluation method based on Xie et al. to correct the regional differences. This study did not consider the value of construction land use type. According to equation (1), the  value is 3007.65 Yuan/hm2. Then the equivalent factor table per unit area was built (Table 4). Combining with the land-use data and Table 4, annual ESV of Yellow River Delta between 2000 and 2020 was built (Table 5). Combining all the above information, the following ESV variation characteristics of the Yellow River Delta was obtained:

[bookmark: _Ref117233388]Table 4. Ecosystem services value (ESV) per unit area of ecosystem services of various land use types in the Yellow River Delta.
	
	Ecosystem Services Value（Yuan/hm2）

	
	Farm
	Forest
	Grass
	Water
	Wetland
	Salt field
	Aquaculture pond

	Food production
	3007.65
	992.53
	1293.30
	1594.05
	1082.75
	0.00
	54421.26

	Raw material
	1172.99
	8962.80
	1082.75
	1052.67
	721.84
	49923.53
	0.00

	Gas regulation
	2165.51
	12993.06
	4511.47
	1533.90
	7248.45
	1500.67
	1533.90

	Climate regulation
	2917.42
	12241.14
	4691.94
	6195.76
	40753.69
	0.00
	6195.76

	Waste treatment
	4180.64
	5173.17
	3970.10
	44663.64
	43310.20
	1050.47
	0.00

	Hydrological regulation
	2315.89
	12301.30
	4571.63
	56453.63
	40422.84
	12421.34
	0.00

	Soil conservation
	4421.25
	12090.76
	6737.14
	1233.14
	5985.23
	0.00
	0.00

	Biodiversity
	3067.81
	13564.51
	5624.31
	10316.24
	11098.24
	6903.09
	10316.24

	Aesthetics
	511.30
	6255.92
	2616.66
	13353.97
	14105.89
	6989.44
	6989.44



[bookmark: _Ref117233419]Table 5. ESV of Yellow River Delta between 2000 and 2020 (108 Yuan)
	Year
	Farm
	Forest
	Grass
	Water
	Wetland
	Salt field
	Aquaculture pond
	Sum

	2000
	193.31
	18.79
	318.26
	234.49
	1045.77
	10.35
	96.24
	1917.2

	2005
	252.89
	33.3
	180.25
	289.09
	980.49
	10.84
	158.29
	1905.14

	2010
	254.61
	24.59
	162.33
	350.75
	639.97
	37.29
	297.32
	1766.86

	2015
	236.97
	22.1
	177.89
	278.68
	695.52
	80.16
	294.11
	1785.43

	2020
	207.9
	16.68
	163.58
	382.72
	685.46
	133.1
	273.71
	1863.15



(1) Overall, the ESV of the Yellow River Delta declined. ESV losses in the Yellow River Delta mainly occurred between 2005 and 2010 (a decrease of 138.28ⅹ108 Yuan) and were concentrated in the conversion of wetlands to grasslands, water, salt fields and aquaculture ponds. The wetlands on both sides of the estuary of the Yellow River degraded into grasslands; the erosion of the coastline turned the original coastal wetlands into water bodies. The substantial increase in construction land squeezes the original ecological space. At the same time, under the influence of human activities, many (natural) wetlands transformed into salt fields and aquaculture ponds. The reduction of wetland area resulted in a huge decrease of 340.52ⅹ108 Yuan in ESV. Between 2000 and 2005, the ESV in the Yellow River Delta decreased by 12.06ⅹ108 Yuan, which was mainly reflected in the conversion of grasslands to cultivated land and the conversion of wetlands to aquaculture ponds. The reduction of grassland and wetland area resulted in ESV losses of 138.01ⅹ108 and 65.28ⅹ108 Yuan, respectively.
 (2) Between 2010 and 2020, under the policy background of returning farmland to wetlands and ecological civilization construction, the ESV in the Yellow River Delta was gradually increased, and the area of wetlands was increased, mainly reflected in the conversion of grasslands, water bodies and aquaculture ponds to wetlands. Between 2010 and 2015, the ESV in the Yellow River Delta increased by 55.55ⅹ108 Yuan due to the increase in wetland area. But it is still far smaller than the losses in previous years. It shows that wetlands play a very important role in the change of ESV, but even under the conscious protection of human beings, the situation of wetlands is still not optimistic.
3.1.2 Spatial pattern and differentiation characteristics of ESV
Through the reclassification function of ArcGIS, the ESV of each period is divided into five categories according to the natural discontinuity classification method (Jenks). When ESV∈(0, 306.83] (Unit: 108 Yuan, same below) it is low; when ESV∈ (306.83, 575.66], it is relatively low; when ESV∈ (575.66, 988.82], it is medium; when ESV∈ (988.82, 1415.87], it is high; when ESV∈ (1415.87, +∞] , is high. As can be seen from Fig. 4, the areas of low, high and relatively high ESV areas showed a downward trend; the areas of low and medium ESV showed an increasing trend. The area of the intermediate ESV area changed greatly during the study period. From the analysis, the area of low ESV area accounts for most of the area of the study area; the area of relatively high ESV area has always been smaller than that of other areas. However, it remained stable, and the change of value is only -0.28km2. The area of the middle ESV area changed the most, with an increase of 289.34km2 and a change rate of 73.06%.
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Fig 4. Percentage of ESV area between 2000 and 2015.

To further explore the spatial characteristics of ESVs, this article analyzed the ESVs at the grid scale based on GeoDa software. By analyzing the Fig 5, it can be concluded that: (1) In the eastern and northern parts of the Yellow River Delta, which is the estuary area of the Yellow River and the northern coastal zone, there are large areas of wetlands. These areas are very stable High-High agglomeration area and made a great contribution to the ESV of the Yellow River Delta. In the future, protecting the ecological environment and improving the ESV of the Yellow River Delta, these areas are the focus of governance. (2) Most of the inner area of the Yellow River Delta is a very stable Low-Low agglomeration area. These areas are rich in arable land resources, with grassland and construction land distributed at the same time, which are the core areas of human activities. (3) Low-High and High-Low agglomeration areas are relatively few in Yellow River Delta, they are mainly distributed around the High-High and Low-Low agglomeration areas.
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[bookmark: _Ref117233530]Fig 5. LISA agglomeration maps of ESV in Yellow River Delta

3.2 Driving Factors Analysis
3.2.1 Factor Detection
In the final detection results (Fig 6), except for the elevation, slope and aspect in 2005; slope and aspect in 2010, the remaining detection factors in each year passed the hypothesis test at the significance level of 0.05. From the overall research period, the driving factors that dominate the ESV changes in the Yellow River Delta are different in different periods. The q-values of X5 in 2000 and 2005 were 0.7576 and 0.4231. Explaining that X5 is the absolute dominant factor. Existing research results show that there is a good correlation between NDVI value and ecosystem services value (Shao et al., 2020). Therefore, it shows that the change of ESV in the Yellow River Delta in 2000 was mainly affected by vegetation. The q values of X7 and X8 in 2010 were 0.2328 and 0.2499, which together became the dominant factor affecting the ESV change in the Yellow River Delta in 2010. The q value of X7 in 2015 was 0.7636, makes X7 become the dominant factor; secondly, the q value of X8 is 0.5267, make X8 becoming the second largest driving factor affecting ESV in the Yellow River Delta in 2015. The q values of X4, X6 and X8 are always greater than 0.1. This shows that atmospheric conditions and local economic development have always had a strong explanatory power for the ESV changes in the Yellow River Delta. The q values of X2 and X3 were always less than 0.1 during the study period; the q value of X1 was only slightly greater than 0.1 in 2000. Therefore, the explanatory power of elevation, slope, and aspect to the ESV variation of the Yellow River Delta is not strong, indicating that the ESV variation of the Yellow River Delta is not affected by elevation, slope and aspect during the study period.
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[bookmark: _Ref117233609]Fig 6. Factor detection results: q values for each factor between 2000 to 2015.

3.2.2 Factor Interaction Probe
Through the interactive detection of geographic detectors, the influence of interaction of the two driving factors on the dependent variable Y can be obtained. In the results, the interaction results of all factors in each year are Two-factor enhancement and Nonlinear enhancement, it shows that the explanatory power of the ESV changes in the Yellow River Delta after the interaction of two factors is stronger than that of a single factor. From the data, as shown in Fig 7, in 2000 and 2005, the q value of the interaction between X5 and other factors was the highest in the series (the q value of the interaction between NDVI and other factors in 2000 was greater than 0.7576; The q-values for interactions with other factors were all greater than 0.4231). It shows that when other driving factors interact with NDVI, compared with the independent effect of NDVI, they all have an enhanced explanatory power on the change of ESV in the Yellow River Delta, and confirmed the dominant role of NDVI on the ESV change in the Yellow River Delta in 2000 and 2005 just mentioned above. The q values of X4X6, X4X8, X6X8 in 2010 were 0.3963, 0.4321 and 0.4204, respectively. In 2015, the q values of X7 after interacting with other driving factors were all greater than 0.7636, indicating that other driving factors were interacting with other driving factors. When the humidity interacts, the relative humidity alone can enhance the explanatory power of the ESV variation in the Yellow River Delta.
The interaction results of all factors in 2000 were greater than 0.1, indicating that the ESV change of the Yellow River Delta in 2000 was jointly influenced by nine driving factors: elevation, slope, aspect, NDVI, precipitation, temperature, humidity, per capita GDP and population density. In the three years of 2005, 2010 and 2015, except for X1, X2 and X3, the q value after the interaction between the three driving factors was less than 0.1. In addition, the q values of all the other driving factors including X1, X2 and X3 are greater than 0.1. It shows that the ESV change in the Yellow River Delta is jointly driven by the interaction of these nine driving factors regardless of the period.
[image: ]
[bookmark: _Ref117233711]Fig 7. Interactive probe results in (a) 2000, (b) 2005, (c)2010, (d)2015, respectivly.

4.Discussion 
Currently, China is experiencing a phase of economic contradiction between development and trying to protect the natural environment (Huang et al., 2022). Through the above analysis results, combined with the social and economic impact on the environment, the following thoughts have been raised.
Before 2010, the Yellow River Delta was a typical area of wetland degradation caused by over-cultivation. Human activities continued to squeeze the ecological space. The reduction of wetland area directly caused the decline of ESV in the Yellow River Delta. After 2010, the implementation of a series of comprehensive management and returning farmland to wetlands has improved the wetland loss in Yellow River Delta. The ESV in the Yellow River Delta is also gradually rising. Wetlands are concentrated in the eastern and northern regions of the Yellow River Delta, and in these regions, ESVs are spatially clustered. Between 2000 and 2010, due to human development, the area of construction land and cultivated land increased rapidly, and the wetland area decreased significantly, and this change was reflected in the change of NDVI value. Therefore, NDVI acted as the dominant factor affecting ESV changes during this period. In 2010, GDP was the main driving factor, and GDP reflected the level of local economic development, indicating that the changes in ESV in the Yellow River Delta at this time were mainly affected by social and economic factors, and many wetlands were transformed into salt fields and aquaculture ponds. economic return, but it is a great loss for ecological value. In 2015, humidity was the main driver. Humidity affects the transpiration of plants. Air humidity that is too high or too low can affect the survival of plants, which in turn affects the entire ecosystem. 
When detecting the driving factors, the result shows that NDVI, GDP and humidity are the main driving factors in different years. These three indictors have one thing in common, they can directly or indirectly reflect the situation of the vegetation. NDVI reflects vegetation coverage; GDP represents human activities, which reflects human development and utilization of the natural environment; humidity affects plant transpiration and photosynthesis. These results indicate that vegetation has a very important influence on the changes of ESV.
Furthermore, the effects of drivers are often no single effects, but interact with each other to produce complex outcomes. The interaction results of each factor during the study period were two-factor enhancement and nonlinear enhancement. It means that when  and  interact, the explanatory power is stronger than that of  and  acting on Y respectively.

5.Conclusion& Contribution
Combined with the actual situation of the Yellow River Delta, this article used the modified equivalent factor method to estimate the ESV of the Yellow River Delta from 2000 to 2020 and analyzed its spatial characteristics. And this article identified driving factors and analyzing their interactions based on Geodetector. This paper broke through the previous research mode and analyzed the spatial distribution characteristics of ESV with modified equivalent factor method. In addition, this paper explained the effect on ESV when two different drivers interact with each other based on the factor interaction analysis function of the Geodetector. Finally, the following conclusions are drawn:
 (1) The overall ESV trend in the Yellow River Delta is declining, and the reduction of wetlands has resulted in a substantial decline in ESV; the LISA maps show that the area where wetlands are distributed presents a very stable High-High agglomeration.
(2) The dominant driving factor changed every year, in 2000 and 2005, NDVI was the dominant driving factor; in 2010, GDP was the dominant driving factor; in 2015, humidity was the dominant driving factor. In addition to elevation, slope and aspect, the interaction of other driving factors has a certain explanatory power for the variation of ESV in the Yellow River Delta. Moreover, NDVI, GDP and humidity are all related to vegetation to some extent.
(3) When these six indicators of temperature, NDVI, precipitation, humidity, GDP and population density interacted, they had a greater effect on ESV than when they acted alone. 
There are many tools to assess the value of ecosystem services value and there is a lack of uniformity among different indicators in most of the methods. In order to make the results more scientific, this study used a modified equivalent factor method. For the identification of driving factors, since existing qualitative and quantitative studies lack discussion of the two-factor interactions, to dig deeper into the driver mechanisms and provide recommendations for policy, Geodetector’s interaction analysis was used in this study. However, this paper defined the construction land value estimation as zero, which has certain limitations. On the other hand, due to insufficient data in recent years, the effect of driving factors in recent years cannot be shown. There is a huge ecosystem services value behind the wetland ecosystem. Returning farmland to wetlands and ecological restoration projects have achieved certain results and played a positive role in the growth of regional ESV; however, the loss of ESV caused by wetland degradation and human development in the past was very large, and it was difficult to recover in a short time. How to protect and restore wetlands in the current situation of continuous degradation of wetlands requires scholars to explore together. At the same time, interactions of different drivers can have stronger effects on ESV changes. In the future ecological management, artificially regulating the interaction between various driving factors may be an effective method to improve the efficiency of ecological protection. For example, restricting human activities by controlling the establishment of nature reserves. Without the interference of human activities, vegetation coverage may increase, which in turn will increase ESV. The methods and conclusions in this study are expected to help government to develop policies for sustainable development of wetlands, and provide some reference for future related studies on the drivers affecting ESV.
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