REFERENCES
[1] Zhang, L., Zou, Y., Wang, W., Jin, Z., Su, Y., & Chen, H. (2021). Resource allocation and trust computing for blockchain-enabled edge computing system. Computers & Security105 , 102249.
[2] Liu, J., Gong, B., & Wang, Q. (2022). A trusted proof mechanism of data source for smart city. Future Generation Computer Systems128 , 349-364.
[3] Rocha, A. S., Pinheiro, B. A., & Borges, V. C. (2021). Secure D2D caching framework inspired on trust management and blockchain for Mobile Edge Caching. Pervasive and Mobile Computing77 , 101481.
[4] Gadekallu, T. R., Pham, Q. V., Nguyen, D. C., Maddikunta, P. K. R., Deepa, N., Prabadevi, B., … & Hwang, W. J. (2021). Blockchain for edge of things: applications, opportunities, and challenges. IEEE Internet of Things Journal9 (2), 964-988.
[5] Song, J., Gu, T., & Mohapatra, P. (2021). How BlockChain Can Help Enhance The Security And Privacy in Edge Computing? arXiv preprint arXiv:2111.00416 .
[6] Pahl, C., El Ioini, N., & Helmer, S. (2018, March). A Decision Framework for Blockchain Platforms for IoT and Edge Computing. In IoTBDS  (pp. 105-113).
[7] Christo, M. S., Jesi, V. E., Priyadarsini, U., Anbarasu, V., Venugopal, H., & Karuppiah, M. (2021). Ensuring Improved Security in Medical Data Using ECC and Blockchain Technology with Edge Devices. Security and Communication Networks2021 .
[8] Kumar, G., Saha, R., Lal, C., & Conti, M. (2021). Internet-of-Forensic (IoF): A blockchain based digital forensics framework for IoT applications. Future Generation Computer Systems120 , 13-25.
[9] Faiyaz, F. R., Lisa, A. S., Rahat, L., Tabassum, N., & Istiaq, W. B. (2021). Blockchain-based edge computing for medical data storage & processing using federated learning  (Doctoral dissertation, Brac University).
[10]Hathaway, M., & Klimburg, A. (2012). Preliminary considerations: on national cyber security. National Cyber Security Framework Manual. NATO Cooperative Cyber Defence Centre of Excellence, Tallinn.
[11]Von Solms, R., & Van Niekerk, J. (2013). From information security to cyber security. computers & security, 38, 97-102.
[12] ”Proposal for a Regulation of the European Parliament and of the Council on the protection of individuals with regard to the processing of personal data and on the free movement of such data (General Data Protection Regulation)”. Council of the European Union. 2019.
[13] Rahman, M. A., Hossain, M. S., Loukas, G., Hassanain, E., Rahman, S. S., Alhamid, M. F., & Guizani, M. (2018). Blockchain-based mobile edge computing framework for secure therapy applications. IEEE Access6 , 72469-72478.
[14] Wang, J., Wu, L., Choo, K. K. R., & He, D. (2019). Blockchain-based anonymous authentication with key management for smart grid edge computing infrastructure. IEEE Transactions on Industrial Informatics16 (3), 1984-1992.
[15] Guo, F., Yu, F. R., Zhang, H., Ji, H., Liu, M., & Leung, V. C. (2019). Adaptive resource allocation in future wireless networks with blockchain and mobile edge computing. IEEE Transactions on Wireless Communications19 (3), 1689-1703.
[16] Guo, S., Hu, X., Guo, S., Qiu, X., & Qi, F. (2019). Blockchain meets edge computing: A distributed and trusted authentication system. IEEE Transactions on Industrial Informatics16 (3), 1972-1983.
[17] L. Cui, S. Yang, Z. Chen, Y. Pan, Z. Ming, and M. Xu, “A Decentralized and Trusted Edge Computing Platform for Internet of Things,” IEEE Internet of Things Journal , vol. 7, no. 5, pp. 3910–3922, 2020
[18] N. Z. Aitzhan and D. Svetinovic, “Security and Privacy in Decentralized Energy Trading Through Multi-Signatures, Blockchain and Anonymous Messaging Streams,” IEEE Transactions on Dependable and Secure Computing , vol. 15, no. 5, pp. 840–852, 2018.
[19] A. Jindal, G. S. Aujla, and N. Kumar, “SURVIVOR: A blockchain based edge-as-a-service framework for secure energy trading in SDN-enabled vehicle-to-grid environment,” Computer Networks , vol. 153, no. 2019, pp. 36–48, 2019.
[20] W. Sun, J. Liu, Y. Yue, and P. Wang, “Joint Resource Allocation and Incentive Design for Blockchain-Based Mobile Edge Computing,” IEEE Transactions on Wireless Communications , pp. 1–1, jun 2020.
[21] P. K. Sharma, S. Singh, Y. S. Jeong, and J. H. Park, “DistBlockNet: A Distributed Blockchains-Based Secure SDN Architecture for IoT Networks,” IEEE Communications Magazine , vol. 55, no. 9, pp. 78–85, 2017
[22] S. Biswas, K. Sharif, F. Li, S. Maharjan, S. P. Mohanty, and Y. Wang, “PoBT: A Lightweight Consensus Algorithm for Scalable IoT Business Blockchain,” IEEE Internet of Things Journal , vol. 7, no. 3, pp. 2343–2355, 2020
[23] A. Asheralieva and D. Niyato, “Reputation-Based Coalition Formation for Secure Self-Organized and Scalable Sharding in IoT Blockchains with Mobile Edge Computing,” IEEE Internet of Things Journal , vol. 4662, no. c, pp. 1–1, 2020.
[24] D. V. Medhane, A. K. Sangaiah, M. S. Hossain, G. Muhammad, and J. Wang, “Blockchain-Enabled Distributed Security Framework for Next-Generation IoT: An Edge Cloud and Software-Defined NetworkIntegrated Approach,” IEEE Internet of Things Journal , vol. 7, no. 7,pp. 6143–6149, jul 2020.
[25] L. Lao, X. Dai, B. Xiao, and S. Guo, “G-PBFT: A Location-based and Scalable Consensus Protocol for IoT-Blockchain Applications,”Proceedings - 2020 IEEE 34th International Parallel and Distributed Processing Symposium, IPDPS 2020 , pp. 664–673, 2020
[26] Sousa, J., Bessani, A., & Vukolic, M. (2018, June). A byzantine fault-tolerant ordering service for the hyperledger fabric blockchain platform. In 2018 48th annual IEEE/IFIP international conference on dependable systems and networks (DSN)  (pp. 51-58). IEEE.
[27] Xu, X., Zhu, D., Yang, X., Wang, S., Qi, L., & Dou, W. (2021). Concurrent practical byzantine fault tolerance for integration of blockchain and supply chain. ACM Transactions on Internet Technology (TOIT)21 (1), 1-17.
[28] Ajayi, O. J., Rafferty, J., Santos, J., Garcia-Constantino, M., & Cui, Z. (2021). BECA: A Blockchain-Based Edge Computing Architecture for Internet of Things Systems. IoT2 (4), 610-632.
[29] V. Buterin, “A next-generation smart contract and decentralized application platform.,” Available online at: https://github.com/ethereum/wiki/wiki/White-Paper/ [Accessed 19/02/2017].
[30] Alharby, M., & Van Moorsel, A. (2017). Blockchain-based smart contracts: A systematic mapping study. arXiv preprint arXiv:1710.06372 .
[31] Li, W., Feng, C., Zhang, L., Xu, H., Cao, B., & Imran, M. A. (2020). A scalable multi-layer pbft consensus for blockchain. IEEE Transactions on Parallel and Distributed Systems32 (5), 1146-1160.
[32] Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural computation12 (10), 2451-2471.
[33] Jalayer, M., Orsenigo, C., & Vercellis, C. (2021). Fault detection and diagnosis for rotating machinery: A model based on convolutional LSTM, Fast Fourier and continuous wavelet transforms. Computers in Industry125 , 103378.
[34] Süzen, A. A., Yildiz, Z., & Yilmaz, T. (2019). Lstm Tabanlı Derin Sinir Ağı Ile Ayak Taban Basınç Verilerinden Vki Durumlarının Sınıflandırılması. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi8 (4), 1392-1398.
[35] Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K., & Njilla, L. (2017, May). Provchain: A blockchain-based data provenance architecture in cloud environment with enhanced privacy and availability. In 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)  (pp. 468-477). IEEE.
[36] Putz, B., Menges, F., & Pernul, G. (2019). A secure and auditable logging infrastructure based on a permissioned blockchain. Computers & Security87 , 101602.
[37] Lone, A. H., & Mir, R. N. (2019). Forensic-chain: Blockchain based digital forensics chain of custody with PoC in Hyperledger Composer. Digital investigation28 , 44-55.
[38] Cebe, M., Erdin, E., Akkaya, K., Aksu, H., & Uluagac, S. (2018). Block4forensic: An integrated lightweight blockchain framework for forensics applications of connected vehicles. IEEE Communications Magazine56 (10), 50-57.
[39] Tian, Z., Li, M., Qiu, M., Sun, Y., & Su, S. (2019). Block-DEF: A secure digital evidence framework using blockchain. Information Sciences491 , 151-165.
[40] Zheng, W., Zheng, Z., Chen, X., Dai, K., Li, P., & Chen, R. (2019). Nutbaas: A blockchain-as-a-service platform. Ieee Access7 , 134422-134433.
[41] Nyaletey, E., Parizi, R. M., Zhang, Q., & Choo, K. K. R. (2019, July). BlockIPFS-blockchain-enabled interplanetary file system for forensic and trusted data traceability. In 2019 IEEE International Conference on Blockchain (Blockchain)  (pp. 18-25). IEEE.
[42] Rane, S., & Dixit, A. (2019, January). BlockSLaaS: Blockchain assisted secure logging-as-a-service for cloud forensics. In International Conference on Security & Privacy  (pp. 77-88). Springer, Singapore.
[43] Noura, H. N., Salman, O., Chehab, A., & Couturier, R. (2020). DistLog: A distributed logging scheme for IoT forensics. Ad Hoc Networks98 , 102061.
[44] Awuson-David, K., Al-Hadhrami, T., Alazab, M., Shah, N., & Shalaginov, A. (2021). BCFL logging: An approach to acquire and preserve admissible digital forensics evidence in cloud ecosystem. Future Generation Computer Systems122 , 1-13.