REFERENCES
[1] Zhang, L., Zou, Y., Wang, W., Jin, Z., Su, Y., & Chen, H.
(2021). Resource allocation and trust computing for blockchain-enabled
edge computing system. Computers & Security , 105 , 102249.
[2] Liu, J., Gong, B., & Wang, Q. (2022). A trusted proof mechanism
of data source for smart city. Future Generation Computer
Systems , 128 , 349-364.
[3] Rocha, A. S., Pinheiro, B. A., & Borges, V. C. (2021). Secure
D2D caching framework inspired on trust management and blockchain for
Mobile Edge Caching. Pervasive and Mobile Computing , 77 ,
101481.
[4] Gadekallu, T. R., Pham, Q. V., Nguyen, D. C., Maddikunta, P. K.
R., Deepa, N., Prabadevi, B., … & Hwang, W. J. (2021). Blockchain for
edge of things: applications, opportunities, and challenges. IEEE
Internet of Things Journal , 9 (2), 964-988.
[5] Song, J., Gu, T., & Mohapatra, P. (2021). How BlockChain Can
Help Enhance The Security And Privacy in Edge Computing? arXiv
preprint arXiv:2111.00416 .
[6] Pahl, C., El Ioini, N., & Helmer, S. (2018, March). A Decision
Framework for Blockchain Platforms for IoT and Edge Computing.
In IoTBDS (pp. 105-113).
[7] Christo, M. S., Jesi, V. E., Priyadarsini, U., Anbarasu, V.,
Venugopal, H., & Karuppiah, M. (2021). Ensuring Improved Security in
Medical Data Using ECC and Blockchain Technology with Edge
Devices. Security and Communication Networks , 2021 .
[8] Kumar, G., Saha, R., Lal, C., & Conti, M. (2021).
Internet-of-Forensic (IoF): A blockchain based digital forensics
framework for IoT applications. Future Generation Computer
Systems , 120 , 13-25.
[9] Faiyaz, F. R., Lisa, A. S., Rahat, L., Tabassum, N., & Istiaq,
W. B. (2021). Blockchain-based edge computing for medical data
storage & processing using federated learning (Doctoral dissertation,
Brac University).
[10]Hathaway, M., & Klimburg, A. (2012). Preliminary
considerations: on national cyber security. National Cyber Security
Framework Manual. NATO Cooperative Cyber Defence Centre of Excellence,
Tallinn.
[11]Von Solms, R., & Van Niekerk, J. (2013). From information
security to cyber security. computers & security, 38, 97-102.
[12]
”Proposal
for a Regulation of the European Parliament and of the Council on the
protection of individuals with regard to the processing of personal data
and on the free movement of such data (General Data Protection
Regulation)”. Council of the European Union. 2019.
[13] Rahman, M. A., Hossain, M. S., Loukas, G., Hassanain, E.,
Rahman, S. S., Alhamid, M. F., & Guizani, M. (2018). Blockchain-based
mobile edge computing framework for secure therapy
applications. IEEE Access , 6 , 72469-72478.
[14] Wang, J., Wu, L., Choo, K. K. R., & He, D. (2019).
Blockchain-based anonymous authentication with key management for smart
grid edge computing infrastructure. IEEE Transactions on
Industrial Informatics , 16 (3), 1984-1992.
[15] Guo, F., Yu, F. R., Zhang, H., Ji, H., Liu, M., & Leung, V. C.
(2019). Adaptive resource allocation in future wireless networks with
blockchain and mobile edge computing. IEEE Transactions on
Wireless Communications , 19 (3), 1689-1703.
[16] Guo, S., Hu, X., Guo, S., Qiu, X., & Qi, F. (2019). Blockchain
meets edge computing: A distributed and trusted authentication
system. IEEE Transactions on Industrial
Informatics , 16 (3), 1972-1983.
[17] L. Cui, S. Yang, Z. Chen, Y. Pan, Z. Ming, and M. Xu, “A
Decentralized and Trusted Edge Computing Platform for Internet of
Things,” IEEE Internet of Things Journal , vol. 7, no. 5, pp.
3910–3922, 2020
[18] N. Z. Aitzhan and D. Svetinovic, “Security and Privacy in
Decentralized Energy Trading Through Multi-Signatures, Blockchain and
Anonymous Messaging Streams,” IEEE Transactions on Dependable and
Secure Computing , vol. 15, no. 5, pp. 840–852, 2018.
[19] A. Jindal, G. S. Aujla, and N. Kumar, “SURVIVOR: A blockchain
based edge-as-a-service framework for secure energy trading in
SDN-enabled vehicle-to-grid environment,” Computer Networks ,
vol. 153, no. 2019, pp. 36–48, 2019.
[20] W. Sun, J. Liu, Y. Yue, and P. Wang, “Joint Resource
Allocation and Incentive Design for Blockchain-Based Mobile Edge
Computing,” IEEE Transactions on Wireless Communications , pp.
1–1, jun 2020.
[21] P. K. Sharma, S. Singh, Y. S. Jeong, and J. H. Park,
“DistBlockNet: A Distributed Blockchains-Based Secure SDN Architecture
for IoT Networks,” IEEE Communications Magazine , vol. 55, no. 9,
pp. 78–85, 2017
[22] S. Biswas, K. Sharif, F. Li, S. Maharjan, S. P. Mohanty, and Y.
Wang, “PoBT: A Lightweight Consensus Algorithm for Scalable IoT
Business Blockchain,” IEEE Internet of Things Journal , vol. 7,
no. 3, pp. 2343–2355, 2020
[23] A. Asheralieva and D. Niyato, “Reputation-Based Coalition
Formation for Secure Self-Organized and Scalable Sharding in IoT
Blockchains with Mobile Edge Computing,” IEEE Internet of Things
Journal , vol. 4662, no. c, pp. 1–1, 2020.
[24] D. V. Medhane, A. K. Sangaiah, M. S. Hossain, G. Muhammad, and
J. Wang, “Blockchain-Enabled Distributed Security Framework for
Next-Generation IoT: An Edge Cloud and Software-Defined
NetworkIntegrated Approach,” IEEE Internet of Things Journal ,
vol. 7, no. 7,pp. 6143–6149, jul 2020.
[25] L. Lao, X. Dai, B. Xiao, and S. Guo, “G-PBFT: A Location-based
and Scalable Consensus Protocol for IoT-Blockchain Applications,”Proceedings - 2020 IEEE 34th International Parallel and
Distributed Processing Symposium, IPDPS 2020 , pp. 664–673, 2020
[26] Sousa, J., Bessani, A., & Vukolic, M. (2018, June). A
byzantine fault-tolerant ordering service for the hyperledger fabric
blockchain platform. In 2018 48th annual IEEE/IFIP international
conference on dependable systems and networks (DSN) (pp. 51-58). IEEE.
[27] Xu, X., Zhu, D., Yang, X., Wang, S., Qi, L., & Dou, W. (2021).
Concurrent practical byzantine fault tolerance for integration of
blockchain and supply chain. ACM Transactions on Internet
Technology (TOIT) , 21 (1), 1-17.
[28] Ajayi, O. J., Rafferty, J., Santos, J., Garcia-Constantino, M.,
& Cui, Z. (2021). BECA: A Blockchain-Based Edge Computing Architecture
for Internet of Things Systems. IoT , 2 (4), 610-632.
[29] V. Buterin, “A next-generation smart contract and
decentralized application platform.,” Available online at:
https://github.com/ethereum/wiki/wiki/White-Paper/ [Accessed
19/02/2017].
[30] Alharby, M., & Van Moorsel, A. (2017). Blockchain-based smart
contracts: A systematic mapping study. arXiv preprint
arXiv:1710.06372 .
[31] Li, W., Feng, C., Zhang, L., Xu, H., Cao, B., & Imran, M. A.
(2020). A scalable multi-layer pbft consensus for blockchain. IEEE
Transactions on Parallel and Distributed Systems , 32 (5),
1146-1160.
[32] Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning
to forget: Continual prediction with LSTM. Neural
computation , 12 (10), 2451-2471.
[33] Jalayer, M., Orsenigo, C., & Vercellis, C. (2021). Fault
detection and diagnosis for rotating machinery: A model based on
convolutional LSTM, Fast Fourier and continuous wavelet
transforms. Computers in Industry , 125 , 103378.
[34] Süzen, A. A., Yildiz, Z., & Yilmaz, T. (2019). Lstm Tabanlı
Derin Sinir Ağı Ile Ayak Taban Basınç Verilerinden Vki Durumlarının
Sınıflandırılması. Bitlis Eren Üniversitesi Fen Bilimleri
Dergisi , 8 (4), 1392-1398.
[35] Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K., &
Njilla, L. (2017, May). Provchain: A blockchain-based data provenance
architecture in cloud environment with enhanced privacy and
availability. In 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID) (pp. 468-477). IEEE.
[36] Putz, B., Menges, F., & Pernul, G. (2019). A secure and
auditable logging infrastructure based on a permissioned
blockchain. Computers & Security , 87 , 101602.
[37] Lone, A. H., & Mir, R. N. (2019). Forensic-chain: Blockchain
based digital forensics chain of custody with PoC in Hyperledger
Composer. Digital investigation , 28 , 44-55.
[38] Cebe, M., Erdin, E., Akkaya, K., Aksu, H., & Uluagac, S.
(2018). Block4forensic: An integrated lightweight blockchain framework
for forensics applications of connected vehicles. IEEE
Communications Magazine , 56 (10), 50-57.
[39] Tian, Z., Li, M., Qiu, M., Sun, Y., & Su, S. (2019).
Block-DEF: A secure digital evidence framework using
blockchain. Information Sciences , 491 , 151-165.
[40] Zheng, W., Zheng, Z., Chen, X., Dai, K., Li, P., & Chen, R.
(2019). Nutbaas: A blockchain-as-a-service platform. Ieee
Access , 7 , 134422-134433.
[41] Nyaletey, E., Parizi, R. M., Zhang, Q., & Choo, K. K. R.
(2019, July). BlockIPFS-blockchain-enabled interplanetary file system
for forensic and trusted data traceability. In 2019 IEEE
International Conference on Blockchain (Blockchain) (pp. 18-25). IEEE.
[42] Rane, S., & Dixit, A. (2019, January). BlockSLaaS: Blockchain
assisted secure logging-as-a-service for cloud forensics.
In International Conference on Security & Privacy (pp. 77-88).
Springer, Singapore.
[43] Noura, H. N., Salman, O., Chehab, A., & Couturier, R. (2020).
DistLog: A distributed logging scheme for IoT forensics. Ad Hoc
Networks , 98 , 102061.
[44] Awuson-David, K., Al-Hadhrami, T., Alazab, M., Shah, N., &
Shalaginov, A. (2021). BCFL logging: An approach to acquire and preserve
admissible digital forensics evidence in cloud ecosystem. Future
Generation Computer Systems , 122 , 1-13.