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Introduction  

This supporting information contains the description of equations used in the numerical models 
and gravitational collapse of the mushy layer. 

Text S1. 
For an isoviscous mantle that is approximated as an incompressible, Boussinesq fluid with an 
infinite Prandtl number, the governing equations of motion in Cartesian geometry are (e.g., 
Schubert et al., 2001): 
 
 𝜂∇!𝒗 − ∇𝑃" = 𝜌#[1 − 𝛼(𝑇 − 𝑇#)]𝑔𝒛1 (S1) 

 ∇ ⋅ 𝒗 = 0 (S2) 

 
where η is the reference viscosity of the mantle, 𝒗 is the velocity field due to buoyancy 
variations, 𝑃" is the pressure field, 𝜌# is the reference density of the mantle, 𝛼 is the 
thermal expansion coefficient, 𝑇 is the temperature, 𝑇# is the reference temperature, 
and 𝑔 is the acceleration due to gravity.  As mentioned in the main text, convective 
flows exert normal stresses 𝜎$$ on the CMB which creates dynamic topography ℎ. In our 
calculations, we assume that the mantle follows a Newtonian rheology such that 
 
 𝜎$$ = 2𝜂

𝜕𝑣$
𝜕𝑧  

(S3) 

 
This viscous stress deforms the CMB to produce topography variations according to 
Equation (1) in the main text. 
 

The rate of change of the mushy-layer thickness %&
%'

 in Equation (3) in the main 
text has contributions from both the silicate and metallic components, and we let the 
combined vertical velocity of both components at the mantle-mushy layer interface be 
𝑈;$(𝑥, 𝑦) such that %&

%'
= 𝑈;$(𝑥, 𝑦). Since only the silicate component is exchanged across 

this interface, the metallic component has to be subtracted from the total velocity such 
that 𝑈;$ − 𝜙𝑈;$ = (1 − 𝜙)𝑈;$ where 𝜙𝑈;$ is the contribution from the liquid metal. Let 
𝑢$( be the velocity of the silicate component. Hence, 𝑢$( = (1 − 𝜙)𝑈;$. Plugging this 
result back into Equation (3), the velocity of the silicate component is 
 
 𝑢$( =

Δ𝜌𝑔(1 − 𝜙)
12𝜇 ∇)! ℎ* 

(S4) 

 
Gravitational collapse of the mushy layer creates a secondary flow in the overlying 
mantle 𝒖 that superimposes on the existing buoyancy-driven flow. This velocity field can 
be obtained by solving the Stokes’ and continuity equations: 
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 𝜂∇!𝒖 − ∇𝑃+ = 𝜌#𝑔𝒛1 (S5) 

 ∇ ⋅ 𝒖 = 0 (S6) 
 
where 𝑃+ is the pressure field arising from the flow 𝒖. These two equations have to be 
solved with the inhomogeneous boundary condition given by Equation (S4) at each 
timestep. The two velocity fields 𝒗 and 𝒖 are summed together to advect any relevant 
scalar fields in the domain. In the instance of temperature, the temperature field 𝑇 will 
evolve according to the following equation: 
 
 𝜕𝑇

𝜕𝑡 + 𝒗,-- ⋅ ∇𝑇 = 𝜅∇!𝑇 
(S7) 

 
where 𝒗,-- = 𝒗 + 𝒖 . 
 
To compute the material flux due to buoyancy-driven flows 𝐹./, we first only 
approximate 𝑣$(𝑥, 𝑦, 𝑧) about the point 𝑧 = 0 using the Maclaurin series 
 
 

𝑣$(𝑥, 𝑦, 𝑧) ≈ 𝑣$(𝑥, 𝑦, 0) +
𝜕𝑣$
𝜕𝑧 I$0#

𝑧 +
𝜕!𝑣$
𝜕𝑧! J

$0#

𝑧!

2! + ⋯ 

 

(S8) 

Since the boundaries are impenetrable 𝑣$(𝑥, 𝑦, 0) = 0, the first term on the right side 
disappears. Ignoring the terms 𝑧! and larger, we can approximate 𝑉N$(𝑥, 𝑦) = 𝑣$(𝑥, 𝑦, ℎ) 
as 
 
 𝑉N$ ≈

𝜕𝑣$
𝜕𝑧 I$0#

ℎ 
(S9) 

 
Since 𝑉N$ contains contributions from both silicate and metallic components, the latter 
has to be subtracted from 𝑉N$ to obtain the velocity of the silicate component 𝑣$(. 
Hence,  
 
 𝑣$( ≈ (1 − 𝜙)

𝜕𝑣$
𝜕𝑧 I$0#

ℎ (S10) 

 
This allows us to compute 𝐹./  using the following equation 
 
 

𝐹./ = O 𝜌1
|𝑣$(| − 𝑣$(

22
𝑑𝑆 

(S11) 
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where 𝑆 is the area of the interface between the mushy layer and overlying mantle. 
Equation (S11) is written with a “rectified” velocity because the flux into the layer is only 
non-zero when the 𝑣$( is less than 0. 
 

 
 
Figure S1. Plot of the initial temperature field during each calculation. In our illustrative models, 
buoyancy-driven convection is run to steady-state and then collapse-driven flow is initiated. This 
eliminates transient effects associated with particular choices for initial conditions. 
 

 

Figure S2. In our numerical calculations, the topographic depressions produced by buoyancy 
forces in the mantle are symmetric about the mid-point (see Figure 2b in the main text). We use 
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𝐿 to quantify the value of the half width at half the minimum amplitude of the topography. 
Prime notation indicates nondimensional variables. (a) A plot of log!" 𝐿′ against log!" 𝑅𝑎 where 
𝐿# = 𝐿/𝐻	. The results indicate that 𝐿# ∝ 𝑅𝑎$".!&'". (b) Plot of the logarithmic root-mean-
square (rms) velocities against log!" 𝑅𝑎. The velocities are multiplied with a normalization 
factor 𝐻/𝜅. The best-fit line for log!" 𝑣′()* has a slope close to 2/3 which agrees with boundary 
layer theory. The slope of log!" 𝑢′()* against log!" 𝑅𝑎 is gentler and does not seems to vary 
significantly with different 𝜉. (c) Plot showing the relationship between the width of the 
topography with the collapse-driven flow. (d) Plot of maximum amplitude of dynamic 
topography with Rayleigh number. The amplitude is normalized by 𝐻. 

 

Figure S3. A plot of log!" 𝐹+,  against log!" 𝑅𝑎 showing that 𝐹+, ∝ 𝑅𝑎".-.&-. 
 

Parameter Value Unit 

𝜌(  5500 kg m-3 

𝜌) 9900 kg m-3 

𝜙 0.2 - 

𝛼 2.5 ´ 10-5 K-1 

𝑇" 2500 K 

𝑔 10 m s-2 

𝜅 10-6 m2 s-1 

𝜂 1.375 ´ 1021 – 1.375 ´ 1023 Pa s 

𝜉	 9=
𝜇
𝜂;

 10-6 – 10-5 - 
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Table S1. List of parameters and values used in the numerical calculations.  
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