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Abstract18

[19

This work is concerned with the estimation of radial velocities of sea surface elevations.20

The data, is a noisy along-track interferometric synthetic aperture radar (AT-INSAR) image.21

We assume the Velocity Bunching Model. This model relates the complex AT-INSAR image22

at a point in the image plane, with the radial velocity of a scatterer point in the sea surface.23

The relation is by means of a nonlinear integral operator, mapping radial velocities into AT-24

INSAR images. Consequently, the estimation of radial velocities amounts to the solution of25

nonlinear integral equations. Our proposal is to solve the latter by Newton’s methods on func-26

tion spaces, the so-called optimize then discretize approach. We show that this continuous ver-27

sion is accurate, and faster than the classical discretize then optimize version. A physical com-28

parison is also carried out with the interferometric velocities.]29

1 Introduction30

In recent decades, imaging of the surface of our planet Earth has increased with the ap-31

pearance and improvement of tele-detection systems, such as Synthetic Aperture Radar (SAR).32

A SAR system is capable of constructing an image from the information of electromagnetic33

waves, which are firstly emitted by the radar and then backscattered by the observed region.34

See (Moreira et al., 2013) for a basic introduction on the subject.35

Within the oceanographical context, radar engineers have found that SAR imaging can36

be successfully applied to measure ocean surface properties, such as currents or wave energy,37

for example. This adds to the well-known fact that a particular sea state can be statistically38

modeled by an appropriate two-dimensional directional wave spectrum (Holthuijsen, 2007).39

Consequently, an ongoing research problem consists of finding the relationship between40

SAR images and ocean wave spectra. The literature on this subject is vast. For starters, see41

the work of (Alpers, 1983), where such relationship is studied. Therein, it is shown that the42

SAR response to the moving ocean wave field is a nonlinear process for a large range of ocean43

wave parameters. This means that, in order to determine an ocean wave spectrum, a nonlin-44

ear inverse problem is to be solved.45

In (K. Hasselmann & Hasselmann, 1991), a mapping of an ocean wave spectrum into46

a SAR image spectrum is given by a closed integral transform. It is noted that the problem47

is undetermined when trying to solve for the wave spectrum, and a unique formal inversion48

of the forward mapping relation cannot exist. The classical approach is to solve a regularized49

least squares problem, where the cost function is the squared norm of the observed fitted SAR50

spectra plus a regularization term that uses additional information from a first-guess wave spec-51

trum. The numerical solution is based a quasi-Newton method scheme. This algorithm is im-52

proved in (S. Hasselmann et al., 1996), by introducing a modified cost function with an ad-53

ditional iteration loop, such that the first-guess input spectrum is systematically updated.54

In the aforementioned works, the observed nonlinear relationship between ocean wave55

spectra and SAR image spectra stress the effect of velocity bunching. This term is used to de-56

scribe variations on the scatter density due to a fluctuating surface radial velocity. This phys-57

ical mechanism causes the formation of wave-like patterns on SAR images of the ocean sur-58

face. For more details, see (Alpers & Rufenach, 1979) and K. Hasselmann et al. (1985).59

The retrieval of the field of radial velocities is a problem that has attracted some atten-60

tion recently. It provides complementary information to existing ocean observation systems,61

see (Hwang et al., 2013) and (Moiseev et al., 2020). In the former, for instance, the interfer-62

ometric velocity is used to observe wave breaking in swell-dominant conditions, and its own63

references provide further motivation on the imaging problem that is developed below.64
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(Goldstein & Zebker, 1987) proposed the so-called airborne along-track interferomet-65

ric synthetic aperture radar (AT-INSAR). Under this scheme, the radar data is acquired by two66

antennas, the fore and the aft, which are carried (in baseline) by a flying platform in the along-67

track direction at a given speed. While the aft antenna transmits the signals, both antennas re-68

ceive the backscattered signals. Each antenna generates its own raw data, which is processed69

to produce its corresponding SAR image. After this, both SAR images are combined inter-70

ferometrically to get the AT-INSAR image. A well-known fact is that the phase difference that71

is caused by the motion of the surface is proportional to the interferometric velocity. Thus,72

when the velocity bunching mechanism is a linear process, the interferometric velocity is an73

appropriate approximation to the surface radial velocity in the wave parameter range. The char-74

acterization of this parameter range is presented in (Alpers et al., 1981) and (Alpers & Rufe-75

nach, 1979).76

Unlike (Goldstein & Zebker, 1987), the purpose of the present work is to retrieve the77

scalar field of radial velocities when the velocity bunching mechanism is a nonlinear process.78

Our model of reference is the AT-INSAR Velocity Bunching Model presented in (Mingquan79

Bao et al., 1997). Such a model relates the complex AT-INSAR image at a point in the im-80

age plane, to the radial velocity of a scatterer point in the sea surface. In the mathematical jar-81

gon, this relation is given by an integral operator that maps radial velocities into AT-INSAR82

intensities. Assuming that the radial velocity is known in advance, the AT-INSAR image is83

readily obtained by quadrature. This is the so-called direct problem. For this work, we con-84

sider the following inverse (imaging) problem:85

Given a noisy AT-INSAR image of an unknown scalar field of sea surface elevations,86

estimate the scalar field of radial velocities that is associated with such surface elevations.87

Under the first-study assumption that the ocean surface exhibits a swell sea state, we estimate88

radial velocities by solving the AT-INSAR velocity bunching integral equation.89

The core of the paper is the development of numerical methods for solving the under-90

lying integral equation. It will become apparent that the latter is nonlinear and oscillatory, which91

makes the solution challenging.92

We develop two modified Newton’s methods on function spaces for solution. First a non-93

linear system, second as a nonlinear least squares problem. Derivatives are computed in the94

sense of Fréchet. See for instance (Cheney, 2001), for the required Functional Analysis.95

Both solutions are mutually cross-validating. For comparison we implement also a dis-96

cretize then optimize approach, in the case of minimization. As expected, the former perform97

better and are considerably faster in terms of execution time.98

A physical comparison is also carried out between the bulk kinetic energy on the ocean99

surface area under study, associated to the estimated field of radial velocities and that of the100

interferometric velocities. The comparison is in terms of relative errors, again, the latter is out-101

performed.102

We work with synthetic data, we generate a field of surface elevations following the clas-103

sical variance spectra to surfaces approach. We obtain a random 2-D realization of a sea sur-104

face. Following (Mobley, 2016), we develop our own implementation.105

Our work may be regarded as a numerical simulation study in line with (Yoshida, 2016)106

and (Estatico et al., 2015). In the former, the contribution of bunching to show a wavelike pat-107

tern of an azimuthal wave by numerical simulation is explored. In the latter, an algorithm is108

proposed for a buried object detection problem. Such algorithm is based on a regularizing ap-109

proach in Lp Banach spaces. In our inverse problem, we follow this function space formal-110

ism, using the Hilbert properties of L2. Our motivation is to postpone discretization until the111

last moment, that is, the optimize then discretize approach. It is proven to be more efficient,112

(Stuart, 2010), and sometimes necessary, (Zuazua, 2005).113

–3–



manuscript submitted to Radio Science

2 Materials and Methods114

In this section we formulate the imaging problem of interest and we develop the mod-115

ified Newton’s methods for its solution. We follow a functional approach, that is, we optimize116

on normed vector spaces of functions.117

More precisely, we shall consider all function spaces as subspaces of L2
((a,b)), the space

of square summable complex functions. For two of such functions, namely φ and ψ , the in-

ner product is

〈

φ ,ψ
〉 = ∫ b

a
φ(x)ψ(x)dx (1)

We shall freely use all the well-known Hilbertian properties of L2.118

These methods of applied analysis are fully covered in (Cheney, 2001). An attractive fea-119

ture of this book is the carefully chosen numerical examples. See, for instance, the discussion120

on Newton’s method.121

2.1 Problem statement122

Our starting point is the AT-INSAR configuration, according to (Goldstein & Zebker,123

1987). The AT-INSAR image is acquired by two antennas, the fore and the aft, which are car-124

ried (in baseline) by a flying platform in the along-track direction at the speed V . The anten-125

nas are separated by a distance 2B. We assume that the system operates in the so-called mode126

1, namely, the aft antenna transmits radar signals, and both antennas receive the backscattered127

signals.128

Hereafter, we use the following notation:129

• kr, the wavenumber of the incoming electromagnetic wave.130

• λr, the radar wavelength.131

• x and xR, the coordinates in the ground range direction (cross-track).132

• y and yR, the coordinates in the azimuth direction (along-track).133

• x = (x,y), a point in the reference frame of the sea surface.134

• xR = (xR,yR), a point in the image plane.135

• Px, the scatterer at the point (x,z(x)).136

• I(xR), the AT-INSAR image at the position xR associated with Px.137

• R, the distance from the median of the two antennas to Px.138

• τs, the scene coherence time.139

We assume the AT-INSAR Velocity Bunching Model for a complex AT-INSAR image140

Ivb, as introduced in (Mingquan Bao et al., 1997). In this model, the AT-INSAR (single-look)141

integration time T0 is considered small when compared to the period of the dominant ocean142

wave. So, both the normalized radar cross section (NRCS) σ(x, t) and the radial velocity ur(x, t)143

show a small variation with respect to time. This allows an approximation of these values by144

the respective quantities σ0(x) and ur(x), which are independent of time. In the particular case145

of the radial velocity, a first order approximation in time around t0 = x/V is used:146

ur(x, t)≈ ur(x)+ ar(x)(t− t0)
Here, ar(x) denotes the radial acceleration (at x) that is associated with the ocean surface.147
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With these considerations, the expression for Ivb(yR)≡ Ivb(xR) is:148

Ivb(yR) = πT 2
0 ρa

2
exp

[

− 4B2

V 2T 2
0

]

∫ +∞

−∞

σ0(x)
ρ ′a(x)

× exp

[

− 2 jkr

B

V
ur(x)]exp

[

4B2ρ2
a

V 2 T 2
0 ρ ′2a (x)]

× exp

[

2 jBkr

R

(

2ρ2
a

ρ ′2a (x) − 1

)(

yR− y− R

V
ur(x))]

× exp

[

− π2

ρ ′2a (x)(yR− y− R

V
ur(x))2]

dy

(2)

ρ ′a(x) = {

ρ2
a +[

π

2

T0R

V
ar(x)]2 + ρ2

a T 2
0

τ2
s

}1/2

(3)

Here, ρ ′a(x) denotes the degraded single-look azimuthal resolution, and ρa = λrR/(2VT0)149

is the full-bandwidth, single-look azimuthal resolution for stationary targets.150

The inverse (imaging) problem of interest is stated as follows: given a noisy AT-INSAR151

image D of an unknown sea surface z, compute an approximation of the corresponding scalar152

field of radial velocities ur that is associated with z.153

We assume that D(xR) is a complex AT-INSAR image Ivb(xR) that is corrupted by ad-154

ditive noise η , namely, D = Ivb +η . Note that, for each fixed x in the cross-track direction,155

the problem consists of solving an oscillatory nonlinear integral equation for ur(·)≡ ur(x, ·).156

For later reference, let us define

A0 = πT 2
0 ρa

2
exp

[

− 4B2

V 2T 2
0

]

(4)

and

A1 = yR− y− R

V
ur(x) (5)

Finally, if we denote the integrand by fvb, equation (2) can be written in the form:

Ivb(yR) = A0

∫ +∞

−∞
fvb(ur(x),ar(x),x,yR)dy (6)

Remark157

In our case study, it is found a fortiori, that variations of this integral operator with re-158

spect to the radial acceleration are negligible. Consequently, the terms involving the latter in159

the Newton’s methods that follow are discarded. It is possible to show this mathematically,160

but in this work we will only focus on the numerical results.161

2.2 Newton’s method for the nonlinear integral equation162

The nonlinear integral equation (given above), implicitly defines a map between some

function spaces V and W , namely,

V →W , ur 7→I (ur) = Ivb.

To formulate the inversion problem as the solution of a nonlinear integral equation, we

consider the residual map

F : V →W , F (ur) = D− Ivb.
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The problem is to find ur such that

F (ur) = 0.

Assuming Fréchet differentiability, we apply the Newton’s method.163

Given the initial guess u0
r ∈ V , we solve at each iteration k for the function hk

164

F
′(uk

r)hk = −F (uk
r) (7)

and update

uk+1
r = uk

r + hk. (8)

Here, F ′ is the Fréchet derivative of F . It follows that

F
′(ur) =−I

′(ur) =−I′vb, and

I′vbh = A0

∫ ∞

−∞

[

∂ fvb

∂ur

]

h(y)dy

where (∂ fvb/∂ur) is the vector calculus derivative of fvb with respect to ur:

∂ fvb

∂ur

= [

2π2RA1

V ρ ′a2
− j

4Bkr ρ2
a

Vρ ′a2

]

fvb (9)

We remark that the scheme (7), (8) is the continuous (infinite dimensional) version of165

the Newton’s method.166

Subsequently, we discretize with an appropriate quadrature to obtain a finite dimensional167

residual F : RNy → R2Ny .168

The Newton’s method reads: given an initial guess ~ur
0 ∈RNy , solve at each iteration k:169

F ′(~ur
k)~hk = −F(~ur

k) (10)

~ur
k+1 = ~ur

k +~hk (11)

The linear system to be solved in each iteration is overdetermined and ill conditioned.170

Thus, its numerical solution is somewhat challenging.171

We apply Tikhonov regularization using the SVD of F ′(~ur
k), namely,172

~hk ≈ ~hk
αT

= −
Ny

∑
i=1

σi

σ2
i +αT

[

~ui·F(~ur
k)]~vi (12)

where σi ∈ R≥0 is the i-th largest singular value of F ′(~ur
k), ~ui ∈ R2Ny is the corresponding173

i-th left singular vector, and ~vi ∈ RNy is the corresponding i-th right singular vector.174

This regularization technique is classical, see (Vogel, 2002). The problem strives on the175

choice of the regularization parameter for a successful application. Here, the parameter is set176

to the square of the first (and largest) singular value of F ′(~ur
k):177

αT ← σ2
1 (13)

2.3 A minimization approach178

For comparison, we develop a descent method for the corresponding nonlinear squares

problem. The underlying functional,

G : V → [0,∞),
–6–
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is given by179

G (ur) = 1

2
‖F (ur)‖2 = 1

2
〈F (ur) , F (ur)〉

It is readily seen that the Fréchet derivative of G at ur applied to h is:180

G
′(ur)h = 1

2

[

〈h,(F ′(ur))∗F (ur)〉+ 〈h,(F ′(ur))∗F (ur)〉]
where (F ′(ur))∗ is the adjoint operator of F ′(ur). Hence,181

G
′(ur)h = 〈h,Re

{(F ′(ur))∗F (ur)}〉
Substituting F ′(ur), it follows that182

G
′(ur)h = 〈

h,Re

{

−A0

∫ ∞

−∞

[

∂ fvb

∂ur

][

[

F (ur)](yR)]dyR

}

〉

(14)

By the Riesz representation theorem, the second argument of the inner product is the con-183

tinuous gradient of G at ur. That is, the function ∇G (ur) is defined as:184

∇G (ur) = Re

{

−A0

∫ ∞

−∞

[

∂ fvb

∂ur

][

[

F (ur)](yR)]dyR

}

(15)

The minimization problem is solved by the BFGS method with known gradient. In our case,185

a discrete version of (15).186

3 Synthetic Data187

In this section we specify the parameters and functions that we have employed to sim-188

ulate the ocean surface and its associated AT-INSAR data. The area under study is a square189

Q with 1280 meters of side length, centered at the origin. We consider a 128×128 uniform190

square mesh, whose computation points lie at their vertices. Using this area with its mesh, the191

simulated ocean surface is z : Q→ R, and its associated AT-INSAR data is D : Q→ C.192

3.1 Sea surface193

We have developed our own software for ocean surface simulation. We follow the clas-194

sical variance spectra to surface approach, to generate a random 2-D realization of a sea sur-195

face, see (Mobley, 2016). We adopt the configuration given in (Mingquan Bao et al., 1997).196

Table 1 shows ocean surface parameters.

Description Name Value Units Parameter

Wind speed U10 5 [m s−1] input
Peak wavelength λS 100 [m] input
Peak wave period TS 8.004415 [s] derived

Table 1. Ocean surface parameters.

197
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Since our basis for comparison is (Brüning et al., 1990), we consider a swell sea described

by the highly-peaked JONSWAP omnidirectional spectrum introduced therein. Namely,

SS(k) = αS

2k3
exp

[

− 5

4

(

k

kS

)−2
]

γS
GS

where

GS = exp

[

− 1

2

(

k1/2 − k
1/2

S

)2

σ2
S kS

]

Here,198

• αS = 0.212× 10−3 is the energy scale of SS.199

• kS = (2π)/λS is the spatial peak frequency of SS.200

• γS = 10 is the peak enhancement factor of SS.201

• σS is the spectral width centered at kS,202

σS = {

0.07 for k ≤ kS

0.09 for k > kS

(16)

In the frequency domain, figure 1 depicts the omnidirectional spectrum SS, whose nar-203

row shape —centered at low frequencies— constitutes the underlying model that generates a204

swell sea state in the space-time domain. This spectrum SS corresponds to one of the sea state205

configurations that are proposed in (Brüning et al., 1990), which in turn is adopted by (Mingquan206

Bao et al., 1997) in its AT-INSAR imaging problem of ocean waves.207

Figure 1. Omnidirectional spectrum SS: continuous (line) and sampled (dots).

Next, a spreading function is used. In this case, the two-sided cosine-power model,

Φcp2(k,φ) = 1

2
Np |cos(φ −φw)|2p, |φ −φw| ≤ π ,

Leading to the two-sided directional swell spectrum,

Ŝ2C(kx,ky) = 1

k
SS(k)Φcp2(k,φ),

where (k,φ) and (kx,ky) are the equivalent polar and cartesian coordinates, respectively.208

We obtain a particular instance of the ocean variance spectrum ẑ. The ocean surface z209

is obtained by computing the discrete inverse Fourier transform of ẑ.210

3.2 The AT-INSAR data211

Table 2 shows the values that are given to the input parameters for the configuration of212

the AT-INSAR system. This selection is based on part III-B of (Mingquan Bao et al., 1997).213

214
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Description Name Value Units

Angle of incidence θr π/4 [rad]

Platform speed V 200 [m s−1]

Carrier frequency f0 1.25× 109 [s−1]

Target exposure time T0 0.751 [s]

Half the distance between antennas B 9.8 [m]

Scene coherence time τs 0.12 [s]

Radar polarization (like-polarized) VV – –

Number of NRCS realisations Nσ 100 [realisations]

Table 2. Input parameters to configure the AT-INSAR system.

Based on table 2 and the ocean variance spectrum ẑ, we show a relevant set of derived215

parameters and functions in table 3. This configuration allows the construction of the discrete216

scalar fields of ocean-radar interaction: the radial velocities ur, the radial accelerations ar, and217

the time-averaged radar reflectivities σ0.

Description Name Value Units

Radar wavelength λr 0.239834 [m]

Radar wavenumber kr 26.19806 [rad m−1]

Antenna length (in azimuth) La 21.22099 [m]

Time separation between antennas ∆t 0.049 [s]
Field of radial velocities ur ur[xR] [m s−1]

Field of radial accelerations ar ar[xR] [m s−2]

Field of radar reflectivities σ0 σ0[xR] [1]

Table 3. Derived parameters and functions of the AT-INSAR system.

218

From the information of table 3, the intensity Ivb(xR) is approximated by quadrature.219

Our modeling study is within the scope of inverse problems theory, see (Kaipio & Som-220

ersalo, 2005). In this context, we consider additive noise at each xR.221

More precisely, to generate synthetic data, we add to Ivb(xR) noise η(xR) given by

η(xR) = 1√
2

[

aη(xR) + jbη (xR)],
where the elements aη(xR) and bη(xR) are independent, identically distributed, real Gaussian222

random variables, with mean 0 and variance σ2
η(xR).223

The location-dependent standard deviation ση(xR) is given by

ση(xR) = ε max
{

|Ivb(xR)| , LB
}

(17)

We set ε = 0.05, allowing a 5% Gaussian error. LB = 1×10−10 is about the same order of224

magnitude of Ivb(x). This latter is introduced to avoid point supported densities.225

Consequently, the noisy AT-INSAR data D is given by

D(xR) = Ivb(xR)+η(xR)
–9–
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3.3 Interferometric velocities226

Given the noisy AT-INSAR image D, the interferometric phase ΦATI is ΦATI =∠D, the

latter is proportional to the interferometric velocity uATI (Goldstein & Zebker, 1987):

uATI(x) =− λr

4π

V

B
ΦAT I(xR).

In applications, uATI is used as an approximation of the radial velocity ur. We gauge this227

approximation in the results that follow.228

4 Numerical Results229

For imaging of the radial velocity, we consider two main configurations: range travel-230

ling waves (RTW) and azimuthally travelling waves (ATW). In the former, both tilt and hy-231

drodynamic modulations of the ocean surface are specially stronger, whereas azimuthal smear-232

ing and velocity bunching of the ocean surface are particularly stronger in the latter.233

In the Appendix we shall present results for variations of both RTW and ATW, which234

consists of a different wind direction φw and two additional R/V ratios. Here we fully report235

the RTW scenario, which is based on section III-B of (Mingquan Bao et al., 1997).236

Table 4 shows the particular values that characterize this scenario. Figure 2 depicts its237

most relevant fields and spectra. Note that the angle φ0 [rad] given here corresponds to the238

angle φp = φw−φ0 +π/2 [rad] given in (Mingquan Bao et al., 1997).239

Description Name Value Units Parameter

Wind direction φw 0 [rad] input

Azimuthal look direction φ0 0 [rad] input

Slant range R 15× 103 [m] input

Range-to-velocity ratio R/V 75 [s] derived

Variance of surface elevation Var{z(xR, t)} 0.020575 [m2] derived

Sample variance of z s2
z 0.021478 [m2] derived

Sample significant wave height Ĥm0
0.586215 [m] derived

Azimuth SAR resolution ρa 11.97573 [m] derived

Vector of radar LOS vLOS

[√
2

2
, 0 ,−

√
2

2

]T

unitary derived

Table 4. The RTW scenario: input and derived parameters.

Figure 2. The RTW scenario: its most relevant fields and spectra.

As we show in figure 2(b), some properties of the ocean surface z are evident: there is240

a regular pattern of waves whose directions are very close to the wind direction φw = 0 [rad],241

the majority of wavelengths are around λS = 100 [m], and a big amount of measured wave242

heights is well characterized by Ĥm0
= 0.586215 [m].243
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4.1 Radial velocity imaging244

Given D(xR) for each xR (cross-track coordinate) we solve for ur(x), both the Nonlin-245

ear System (NL) and the Functional Minimization (FM), which are associated with the non-246

linear integral equation. In total there are 128 problems ordered from left to right, from 0 to247

127.248

We stress that we follow the optimize then discretize approach. For comparison, we use249

the discretize then optimize in the minimization problem. Results with the latter shall be re-250

ferred as DFM.251

In the minimization problems, the main difference is the computation of the gradient.252

In the infinite dimensional, optimize then discretize approach, the gradient is analytic and is253

given by the expression (15). In the discretize then optimize formulation, the gradient is ap-254

proximated with appropriate finite differences of the discretized (finite dimensional) functional.255

To avoid bias, we start all iterative methods with u0
r ≡ 0 as initial guess.256

Summarizing, for each optimization problem, we compute the following four solutions:257

• The Nonlinear System solution, denoted by u∗r –NL.258

• The Continuous Functional Minimization solution, denoted by u∗r –FM.259

• The Discrete Functional Minimization solution, denoted by u∗r –DFM.260

• The interferometric velocity solution, denoted by uATI .261

To show a global comparison, we compute the Root Mean Square Error (RMSE) of each so-262

lution with respect to the target ur. In figures 3 and 4, we exhibit such comparison for each263

optimization problem (each point in the horizontal axis corresponds to a fitting problem).264

Figure 3. Blue: u∗r –NL Black: u∗r –DFM Violet: uATI

Figure 4. Red: u∗r –FM Black: u∗r –DFM Violet: uAT I

From figure 3, it is apparent that NL performs better than DFM. From figure 4, we see265

that both FM and FDM have a very similar performance. Finally, both figures 3 and 4 illus-266

trate that any optimization strategy (NL, FM or FDM) for any optimization problem, outper-267

forms the interferometric velocity of (Goldstein & Zebker, 1987).268

For the interested reader, our exhaustive numerical experiments are available in the Ma-269

rine Data Archive (MDA) repository, in accordance with the Data Availability Statement that270

we have provided below. It is apparent that results are remarkably consistent in all RTW, ATW271

configurations for the 128 problems. In the Appendix we show a small sample.272

In the following numerical results, we employ a specific figure to show the solution of273

a particular problem via a particular strategy. More specifically, the figure contains the fit for274

the radial velocity (using a particular strategy) and its associated AT-INSAR image I (the for-275
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ward mapping). In each figure, and for comparison purposes, we have also included the in-276

terferometric velocity solution uATI . In the case under study for this section, we only show prob-277

lems 0 and 64.278

Figures 5 and 6 are related to the same problem 0: figure 5 shows the solution to prob-279

lem 0 via the Nonlinear System solution u∗r –NL, whereas figure 6 shows the solution to prob-280

lem 0 via the Continuous Functional Minimization solution u∗r –FM.281

Figure 5. PROBLEM 0 VIA NL. Top: radial velocity ur (black), initial point ur
0 (blue), interferometric

velocity uAT I (violet), estimated radial velocity ur
∗ (red); Middle: Re

{

D
}

(black), Re
{

I0

}

(blue), Re
{

IATI

}

(violet), Re
{

I∗
}

(red); Bottom: Im
{

D
}

(black), Im
{

I0

}

(blue), Im
{

IATI

}

(violet), Im
{

I∗
}

(red).

Figure 6. PROBLEM 0 VIA FM. Top: radial velocity ur (black), initial point ur
0 (blue), interferometric

velocity uAT I (violet), estimated radial velocity ur
∗ (red); Middle: Re

{

D
}

(black), Re
{

I0

}

(blue), Re
{

IATI

}

(violet), Re
{

I∗
}

(red); Bottom: Im
{

D
}

(black), Im
{

I0

}

(blue), Im
{

IATI

}

(violet), Im
{

I∗
}

(red).

Figures 7 and 8 are related to the same problem 64: figure 7 shows the solution to prob-282

lem 64 via the Nonlinear System solution u∗r –NL, whereas figure 8 shows the solution to prob-283

lem 64 via the Continuous Functional Minimization solution u∗r –FM.284

Figure 7. PROBLEM 64 VIA NL. Top: radial velocity ur (black), initial point ur
0 (blue), interferometric

velocity uAT I (violet), estimated radial velocity ur
∗ (red); Middle: Re

{

D
}

(black), Re
{

I0

}

(blue), Re
{

IATI

}

(violet), Re
{

I∗
}

(red); Bottom: Im
{

D
}

(black), Im
{

I0

}

(blue), Im
{

IATI

}

(violet), Im
{

I∗
}

(red).

Figure 8. PROBLEM 64 VIA FM. Top: radial velocity ur (black), initial point ur
0 (blue), interferometric

velocity uAT I (violet), estimated radial velocity ur
∗ (red); Middle: Re

{

D
}

(black), Re
{

I0

}

(blue), Re
{

IATI

}

(violet), Re
{

I∗
}

(red); Bottom: Im
{

D
}

(black), Im
{

I0

}

(blue), Im
{

IATI

}

(violet), Im
{

I∗
}

(red).
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4.2 Computational efficiency285

In practice, imaging problems are computationally expensive. In the discretize then op-286

timize approach, the approximation of derivatives by finite differences is costly. Having the287

exact derivative, and postponing discretization until the last moment, the solution is in general288

more efficient.289

We can see this advantage in figures 9 and 10, where we report the values of execution290

time for the 128 inversion problems: in figure 9, we show the comparison between the solu-291

tions u∗r –NL and u∗r –DFM; in figure 10, we show the comparison between the solutions u∗r –292

FM and u∗r –DFM. We notice that both NL and FM are at least one order of magnitude faster293

than DFM.

Figure 9. Blue: u∗r –NL Black: u∗r –DFM

Figure 10. Red: u∗r –FM Black: u∗r –DFM

294

4.3 A physical comparison295

A first inspection of radial velocity fitting and AT-INSAR images, figures 5, 6, 7 and 8,296

the gain with respect to the interferometric velocity uATI may seem marginal. To compare in297

terms of a physical quantity, we compute the relative error of kinetic energies (RE-KE) that298

are associated with the whole two-dimensional fields u∗r –NL, u∗r –FM and uATI . Results are shown299

in table 5.300

The relative error of uATI is much greater than u∗r –NL and u∗r –FM. The error of using301

uATI is about 12%. In soome appliecations this might be critical.302

Estimated solution u∗r -NL u∗r -FM uATI

RE-KE 0.0630604 0.0130545 0.1240790

Table 5. Relative errors of kinetic energies associated with three estimated solutions.

5 Technical information303

For the simulation of the ocean surface realizations, the AT-INSAR images (forward map-304

pings), and the functional versions of the Newton’s methods (inverse mappings), we have de-305

veloped our own in house implementations. The comparative performance of the methods given306

above was carried out in a computer with the following specifications:307
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Hardware308

• Processor: AMD c© A10-5800B with Radeon(tm) HD Graphics, 3.80 GHz309

• Physical memory: 8.00 Gb (7.20 Gb usable).310

• Round-off unit (machine epsilon): εM = 2.220446049250313×10−16.311

Software312

• System type: 64-bit operating system.313

• Operating system: Windows 7 Professional c© 2009 – SP1, Microsoft Corporation.314

• Programming language: Anaconda3 5.2.0 with Python 3.6.5 for 64 bits.315

• Classical numerical methods (e.g. SVD and BFGS): NumPy and SciPy packages.316

• IDE: The Scientific PYthon Development EnviRonment (Spyder) c©, version 3.2.8317

6 Conclusions318

Assuming the AT-INSAR-VB model, we have posed —the estimation of radial veloc-319

ities of a simulated ocean surface— as the solution to a nonlinear integral equation. To solve320

this equation, we have developed functional (infinite-dimensional) versions of two modified321

Newton’s methods, namely, a nonlinear system method coupled with Tikhonov regularization,322

and the BFGS method with known gradient for functional minimization.323

For each technique, we have formulated the solution on function spaces, where the ap-324

plication of the Newton’s method requires the Fréchet derivative of the objective function.325

We have implemented discrete models and numerical algorithms, which have led to nu-326

merical results that are satisfactory. The functional approach produces faster solutions when327

compared to the classical discretize then optimize strategy. Furthermore, the fitting of the es-328

timated solutions of radial velocity improves upon the interferometric veloctiy uATI . Finally,329

the comparison of predicted kinetic energies shows that, for certain applications, a better fit330

other than interferometric velocities is required.331

This research is manifold: ocean waves modeling, SAR imaging of sea surfaces, inverse332

problems, numerical optimization, computational methods, etc. On the modeling side, we have333

only considered a swell spectrum. We left for future works other spectra of interest, such as334

those of JONSWAP and Pierson-Moskowitz. Also, the synthetic character of our input data335

may be regarded as a drawback. An imaging problem with actual data in a realistic test area336

is desired. However, a closer look to our methodology shows that the results mainly depend337

on the integral transform, and so the methods apply regardless of the test area. We shall pro-338

vide evidence of this in later works.339

Research on methods for sea surface imaging is ongoing. In a computational sense, the340

use of High Performance Computing is a straightforward continuation of this work. In our study,341

an integral equation is solved separately for each point in the cross track coordinate. This is342

because of the AT-INSAR-VB model, in which all the optimization problems are mutually in-343

dependent. Consequently, a parallel implementation in a low-level computer language shall344

lead to even faster solutions.345

ORCID346

M. A. Moreles https://orcid.org/0000-0003-1643-1844347

J. H. Morales-Barcenas https://orcid.org/0000-0001-9377-4918348
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7 Appendix. Numerical results for different directions and R/V ratios410

This complementary section presents a small sample of numerical results, which we have411

selected from the results of the whole set of Nx = 128 problems. As pointed out above, since412

all the fitting results are remarkably similar, we only show two problems from the variants of413

the scenarios RTW and ATW. To cover different regions of our simulated ocean surface, our414

sample comprises the equidistant problems 0, 16, 32, 48, 64, 80, 96 and 112. We only show415

results for the FM method, because the solutions that are obtained with the NL and DFM meth-416

ods are consistent with the results that are reported in section 4.417

7.1 Scenarios: input and derived parameters418

To test our proposed methods under different conditions, we specify here the set of pa-419

rameters that determine each of five additional scenarios. On the one hand, the five scenar-420

ios are governed by the same properties that we provide in subsection 3.1 and table 2. On the421

other hand, each scenario is distinctive from the others because of the values of three input422

parameters: the azimuthal look direction φ0, the wind direction φw, and the slant range R. In423

particular, the modification of the ratio R/V is of interest in velocity bunching.424

These are the five scenarios: RTW-R16 (table 6, figure 11); RTW-R18 (table 7, figure425

14); ATW (table 8, figure 17); ATW-R16 (table 9, figure 20); ATW-R18 (table 10, figure 23).426

Their construction is based on sections III-B and III-E of (Mingquan Bao et al., 1997).427

Description Name(s) Value(s) Units Parameter

Wind direction φw π/9 [rad] input

Azimuthal look direction φ0 0 [rad] input

Slant range R 16× 103 [m] input

Range-to-velocity ratio R/V 80 [s] derived

Variance of surface elevation Var{z(xR, t)} 0.020620 [m2] derived

Sample variance of z s2
z 0.016873 [m2] derived

Sample significant wave height Ĥm0
0.519591 [m] derived

Azimuth SAR resolution ρa 12.77411 [m] derived

Vector of radar LOS vLOS

[√
2

2
, 0 ,−

√
2

2

]T

unitary derived

Table 6. The RTW-R16 scenario: input and derived parameters. First modification of R/V .
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Description Name(s) Value(s) Units Parameter

Wind direction φw π/9 [rad] input

Azimuthal look direction φ0 0 [rad] input

Slant range R 18× 103 [m] input

Range-to-velocity ratio R/V 90 [s] derived

Variance of surface elevation Var{z(xR, t)} 0.020620 [m2] derived

Sample variance of z s2
z 0.016873 [m2] derived

Sample significant wave height Ĥm0
0.519591 [m] derived

Azimuth SAR resolution ρa 14.37087 [m] derived

Vector of radar LOS vLOS

[√
2

2
, 0 ,−

√
2

2

]T

unitary derived

Table 7. The RTW-R18 scenario: input and derived parameters. Second modification of R/V .

Description Name(s) Value(s) Units Parameter

Wind direction φw 0 [rad] input

Azimuthal look direction φ0 π/2 [rad] input

Slant range R 15× 103 [m] input

Range-to-velocity ratio R/V 75 [s] derived

Variance of surface elevation Var{z(xR, t)} 0.020575 [m2] derived

Sample variance of z s2
z 0.021478 [m2] derived

Sample significant wave height Ĥm0
0.586215 [m] derived

Azimuth SAR resolution ρa 11.97573 [m] derived

Vector of radar LOS vLOS

[

0 ,
√

2
2
,−
√

2
2

]T

unitary derived

Table 8. The ATW scenario: input and derived parameters.

Description Name(s) Value(s) Units Parameter

Wind direction φw π/9 [rad] input

Azimuthal look direction φ0 π/2 [rad] input

Slant range R 16× 103 [m] input

Range-to-velocity ratio R/V 80 [s] derived

Variance of surface elevation Var{z(xR, t)} 0.020620 [m2] derived

Sample variance of z s2
z 0.016873 [m2] derived

Sample significant wave height Ĥm0
0.519591 [m] derived

Azimuth SAR resolution ρa 12.77411 [m] derived

Vector of radar LOS vLOS

[

0 ,
√

2
2
,−
√

2
2

]T

unitary derived

Table 9. The ATW-R16 scenario: input and derived parameters. First modification of R/V .

Each value of φ0 allows to select different mechanisms of the ocean surface: in the RTW428

scenario, there is a stronger influence of tilt and hydrodynamic modulations; in the ATW sce-429

nario, there is a stronger influence of azimuthal smearing and velocity bunching. Also, if φw430

is not parallel to the range or azimuth directions, the respective variations of RTW and ATW431

make each inversion problem more challenging, because the mechanisms of both directions432

get combined. Finally, if the ratio R/V increases, velocity bunching is stronger. See (Alpers,433

1983; Brüning et al., 1990; Mingquan Bao et al., 1997).434
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Description Name(s) Value(s) Units Parameter

Wind direction φw π/9 [rad] input

Azimuthal look direction φ0 π/2 [rad] input

Slant range R 18× 103 [m] input

Range-to-velocity ratio R/V 90 [s] derived

Variance of surface elevation Var{z(xR, t)} 0.020620 [m2] derived

Sample variance of z s2
z 0.016873 [m2] derived

Sample significant wave height Ĥm0
0.519591 [m] derived

Azimuth SAR resolution ρa 14.37087 [m] derived

Vector of radar LOS vLOS

[

0 ,
√

2
2
,−
√

2
2

]T

unitary derived

Table 10. The ATW-R18 scenario: input and derived parameters. Second modification of R/V .

7.2 The RTW-R16 scenario435

Figure 11. The RTW-R16 scenario: its most relevant fields and spectra.
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Solution under the RTW-R16 scenario436

Figure 12. PROBLEM 64 VIA FM. Top: radial velocity ur (black), initial point ur
0 (blue), interferometric

velocity uAT I (violet), estimated radial velocity ur
∗ (red); Middle: Re

{

D
}

(black), Re
{

I0

}

(blue), Re
{

IATI

}

(violet), Re
{

I∗
}

(red); Bottom: Im
{

D
}

(black), Im
{

I0

}

(blue), Im
{

IATI

}

(violet), Im
{

I∗
}

(red).

Figure 13. PROBLEM 80 VIA FM. Top: radial velocity ur (black), initial point ur
0 (blue), interferometric

velocity uAT I (violet), estimated radial velocity ur
∗ (red); Middle: Re

{

D
}

(black), Re
{

I0

}

(blue), Re
{

IATI

}

(violet), Re
{

I∗
}

(red); Bottom: Im
{

D
}

(black), Im
{

I0

}

(blue), Im
{

IATI

}

(violet), Im
{

I∗
}

(red).
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7.3 The RTW-R18 scenario437

Figure 14. The RTW-R18 scenario: its most relevant fields and spectra.
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Solution under the RTW-R18 scenario438

Figure 15. PROBLEM 96 VIA FM. Top: radial velocity ur (black), initial point ur
0 (blue), interferometric

velocity uAT I (violet), estimated radial velocity ur
∗ (red); Middle: Re

{

D
}

(black), Re
{

I0

}

(blue), Re
{

IATI

}

(violet), Re
{

I∗
}

(red); Bottom: Im
{

D
}

(black), Im
{

I0

}

(blue), Im
{

IATI

}

(violet), Im
{

I∗
}

(red).

Figure 16. PROBLEM 112 VIA FM. Top: radial velocity ur (black), initial point ur
0 (blue), interferometric

velocity uAT I (violet), estimated radial velocity ur
∗ (red); Middle: Re

{

D
}

(black), Re
{

I0

}

(blue), Re
{

IATI

}

(violet), Re
{

I∗
}

(red); Bottom: Im
{

D
}

(black), Im
{

I0

}

(blue), Im
{

IATI

}

(violet), Im
{

I∗
}

(red).
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7.4 The ATW scenario439

Figure 17. The ATW scenario: its most relevant fields and spectra.
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Solution under the ATW scenario440

Figure 18. PROBLEM 0 VIA FM. Top: radial velocity ur (black), initial point ur
0 (blue), interferometric

velocity uAT I (violet), estimated radial velocity ur
∗ (red); Middle: Re

{

D
}

(black), Re
{

I0

}

(blue), Re
{

IATI

}

(violet), Re
{

I∗
}

(red); Bottom: Im
{

D
}

(black), Im
{

I0

}

(blue), Im
{

IATI

}

(violet), Im
{

I∗
}

(red).

Figure 19. PROBLEM 16 VIA FM. Top: radial velocity ur (black), initial point ur
0 (blue), interferometric

velocity uAT I (violet), estimated radial velocity ur
∗ (red); Middle: Re

{

D
}

(black), Re
{

I0

}

(blue), Re
{

IATI

}

(violet), Re
{

I∗
}

(red); Bottom: Im
{

D
}

(black), Im
{

I0

}

(blue), Im
{

IATI

}

(violet), Im
{

I∗
}

(red).
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7.5 The ATW-R16 scenario441

Figure 20. The ATW-R16 scenario: its most relevant fields and spectra.
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Solution under the ATW-R16 scenario442

Figure 21. PROBLEM 32 VIA FM. Top: radial velocity ur (black), initial point ur
0 (blue), interferometric

velocity uAT I (violet), estimated radial velocity ur
∗ (red); Middle: Re

{

D
}

(black), Re
{

I0

}

(blue), Re
{

IATI

}

(violet), Re
{

I∗
}

(red); Bottom: Im
{

D
}

(black), Im
{

I0

}

(blue), Im
{

IATI

}

(violet), Im
{

I∗
}

(red).

Figure 22. PROBLEM 48 VIA FM. Top: radial velocity ur (black), initial point ur
0 (blue), interferometric

velocity uAT I (violet), estimated radial velocity ur
∗ (red); Middle: Re

{

D
}

(black), Re
{

I0

}

(blue), Re
{

IATI

}

(violet), Re
{

I∗
}

(red); Bottom: Im
{

D
}

(black), Im
{

I0

}

(blue), Im
{

IATI

}

(violet), Im
{

I∗
}

(red).
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7.6 The ATW-R18 scenario443

Figure 23. The ATW-R18 scenario: its most relevant fields and spectra.
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Solution under the ATW-R18 scenario444

Figure 24. PROBLEM 96 VIA FM. Top: radial velocity ur (black), initial point ur
0 (blue), interferometric

velocity uAT I (violet), estimated radial velocity ur
∗ (red); Middle: Re

{

D
}

(black), Re
{

I0

}

(blue), Re
{

IATI

}

(violet), Re
{

I∗
}

(red); Bottom: Im
{

D
}

(black), Im
{

I0

}

(blue), Im
{

IATI

}

(violet), Im
{

I∗
}

(red).

Figure 25. PROBLEM 112 VIA FM. Top: radial velocity ur (black), initial point ur
0 (blue), interferometric

velocity uAT I (violet), estimated radial velocity ur
∗ (red); Middle: Re

{

D
}

(black), Re
{

I0

}

(blue), Re
{

IATI

}

(violet), Re
{

I∗
}

(red); Bottom: Im
{

D
}

(black), Im
{

I0

}

(blue), Im
{

IATI

}

(violet), Im
{

I∗
}

(red).
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